Current Methods and Approaches of Noninvasive Direct Current–Based Neuromodulation Techniques

  • Walter PaulusEmail author
  • Alberto Priori


Transcranial direct current stimulation (tDCS) intends to achieve membrane depolarization or hyperpolarization in neurons by applying electric current to the scalp. This goal and, possibly, other effects on neuronal and glial physiology and on pathological processes within the central nervous system, can be achieved depending on a variety of physical parameters. In this chapter, we describe available techniques of transcutaneous DC stimulation and the practical issues related to their application. We will look at the different electrode types available, their placement, the importance of size, location, connection of wires, electrode gel and extracephalic return electrodes. The advantages and disadvantages of one- versus multichannel stimulation will be discussed. The intensity of stimulation will cover a range up to 3 mA, the importance of duration of stimulation with the potential to reverse polarity with longer duration and the importance of intervals to prolong after effects are discussed. Furthermore, available techniques for spinal and cerebellar stimulation will be covered in detail. Wherever reasonable, we will outline differences between routine application and research or clinical purposes.


Transcranial direct current stimulation tDCS Parameters Electrodes Intensity Duration Brain Spinal Cerebellar Methodology DC 


  1. Ambrus, G. G., Al-Moyed, H., Chaieb, L., Sarp, L., Antal, A., & Paulus, W. (2012). The fade-in – short stimulation – fade out approach to sham tDCS – reliable at 1 mA for naive and experienced subjects, but not investigators. Brain Stimulation, 5(4), 499–504. PubMedPubMedCentralGoogle Scholar
  2. Andrade, C. (2013). Once- to twice-daily, 3-year domiciliary maintenance transcranial direct current stimulation for severe, disabling, clozapine-refractory continuous auditory hallucinations in schizophrenia. The Journal of ECT, 29(3), 239–242. PubMedPubMedCentralGoogle Scholar
  3. Antal, A., Terney, D., Poreisz, C., & Paulus, W. (2007). Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. The European Journal of Neuroscience, 26(9), 2687–2691. PubMedPubMedCentralGoogle Scholar
  4. Bation, R., Poulet, E., Haesebaert, F., Saoud, M., & Brunelin, J. (2016). Transcranial direct current stimulation in treatment-resistant obsessive-compulsive disorder: An open-label pilot study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 65, 153–157. PubMedGoogle Scholar
  5. Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. The Journal of Physiology, 591(7), 1987–2000. PubMedPubMedCentralGoogle Scholar
  6. Benussi, A., Koch, G., Cotelli, M., Padovani, A., & Borroni, B. (2015). Cerebellar transcranial direct current stimulation in patients with ataxia: A double-blind, randomized, sham-controlled study. Movement Disorders, 30(12), 1701–1705. PubMedGoogle Scholar
  7. Bocci, T., Santarcangelo, E., Vannini, B., Torzini, A., Carli, G., Ferrucci, R., et al. (2015). Cerebellar direct current stimulation modulates pain perception in humans. Restorative Neurology and Neuroscience, 33(5), 597–609. PubMedGoogle Scholar
  8. Bocci, T., Vannini, B., Torzini, A., Mazzatenta, A., Vergari, M., Cogiamanian, F., et al. (2014). Cathodal transcutaneous spinal direct current stimulation (tsDCS) improves motor unit recruitment in healthy subjects. Neuroscience Letters, 578, 75–79. PubMedGoogle Scholar
  9. Brunoni, A. R., Valiengo, L., Baccaro, A., Zanao, T. A., de Oliveira, J. F., Goulart, A., et al. (2013). The sertraline vs. electrical current therapy for treating depression clinical study: Results from a factorial, randomized, controlled trial. JAMA Psychiatry, 70(4), 383–391. PubMedPubMedCentralGoogle Scholar
  10. Cogiamanian, F., Ardolino, G., Vergari, M., Ferrucci, R., Ciocca, M., Scelzo, E., et al. (2012). Transcutaneous spinal direct current stimulation. Frontiers in Psychiatry, 3, 63. Google Scholar
  11. Cogiamanian, F., Vergari, M., Pulecchi, F., Marceglia, S., & Priori, A. (2008). Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans. Clinical Neurophysiology, 119(11), 2636–2640. S1388-2457(08)00879-1 [pii].PubMedGoogle Scholar
  12. Cogiamanian, F., Vergari, M., Schiaffi, E., Marceglia, S., Ardolino, G., Barbieri, S., et al. (2011). Transcutaneous spinal cord direct current stimulation inhibits the lower limb nociceptive flexion reflex in human beings. Pain, 152(2), 370–375. S0304-3959(10)00675-5 [pii].PubMedGoogle Scholar
  13. Eccles, J. C., Kostyuk, P. G., & Schmidt, R. F. (1962). The effect of electric polarization of the spinal cord on central afferent fibres and on their excitatory synaptic action. The Journal of Physiology, 162, 138–150.PubMedPubMedCentralGoogle Scholar
  14. Ferrucci, R., Cortese, F., Bianchi, M., Pittera, D., Turrone, R., Bocci, T., et al. (2016). Cerebellar and motor cortical transcranial stimulation decrease levodopa-induced dyskinesias in Parkinson’s disease. Cerebellum, 15(1), 43–47. Google Scholar
  15. Ferrucci, R., Cortese, F., & Priori, A. (2015). Cerebellar tDCS: How to do it. Cerebellum, 14(1), 27–30. Google Scholar
  16. Ferrucci, R., Marceglia, S., Vergari, M., Cogiamanian, F., Mrakic-Sposta, S., Mameli, F., et al. (2008). Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. Journal of Cognitive Neuroscience, 20(9), 1687–1697. PubMedGoogle Scholar
  17. Ferrucci, R., & Priori, A. (2014). Transcranial cerebellar direct current stimulation (tcDCS): Motor control, cognition, learning and emotions. NeuroImage, 85(Pt 3), 918–923. PubMedGoogle Scholar
  18. Galea, J. M., Jayaram, G., Ajagbe, L., & Celnik, P. (2009). Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. The Journal of Neuroscience, 29(28), 9115–9122. 29/28/9115 [pii].PubMedGoogle Scholar
  19. Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117, 845–850. PubMedPubMedCentralGoogle Scholar
  20. Geyer, S., Ledberg, A., Schleicher, A., Kinomura, S., Schormann, T., Burgel, U., et al. (1996). Two different areas within the primary motor cortex of man. Nature, 382(6594), 805–807. PubMedGoogle Scholar
  21. Grimaldi, G., Argyropoulos, G. P., Bastian, A., Cortes, M., Davis, N. J., Edwards, D. J., et al. (2016). Cerebellar transcranial direct current stimulation (ctDCS): A novel approach to understanding cerebellar function in health and disease. The Neuroscientist, 22(1), 83–97. PubMedGoogle Scholar
  22. Grimaldi, G., Argyropoulos, G. P., Boehringer, A., Celnik, P., Edwards, M. J., Ferrucci, R., et al. (2014). Non-invasive cerebellar stimulation--a consensus paper. Cerebellum, 13(1), 121–138. Google Scholar
  23. Heide, A. C., Winkler, T., Helms, H. J., Nitsche, M. A., Trenkwalder, C., Paulus, W., et al. (2014). Effects of transcutaneous spinal direct current stimulation in idiopathic restless legs patients. Brain Stimulation, 7(5), 636–642. PubMedGoogle Scholar
  24. Heise, K. F., Kortzorg, N., Saturnino, G. B., Fujiyama, H., Cuypers, K., Thielscher, A., et al. (2016). Evaluation of a modified high-definition electrode montage for transcranial alternating current stimulation (tACS) of pre-central areas. Brain Stimulation. PubMedGoogle Scholar
  25. Ho, K. A., Bai, S., Martin, D., Alonzo, A., Dokos, S., Puras, P., et al. (2014). A pilot study of alternative transcranial direct current stimulation electrode montages for the treatment of major depression. Journal of Affective Disorders, 167, 251–258. PubMedGoogle Scholar
  26. Hubli, M., Dietz, V., Schrafl-Altermatt, M., & Bolliger, M. (2013). Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury. Clinical Neurophysiology, 124(6), 1187–1195. PubMedGoogle Scholar
  27. Hyvarinen, P., Mendonca, C., Santala, O., Pulkki, V., & Aarnisalo, A. A. (2016). Auditory localization by subjects with unilateral tinnitus. The Journal of the Acoustical Society of America, 139(5), 2280–2289. PubMedGoogle Scholar
  28. Kasschau, M., Reisner, J., Sherman, K., Bikson, M., Datta, A., & Charvet, L. E. (2016). Transcranial direct current stimulation is feasible for remotely supervised home delivery in multiple sclerosis. Neuromodulation, 19(8), 824–831. Google Scholar
  29. Kuo, M.-F., Paulus, W., & Nitsche, M. A. (2008). Boosting focally-induced brain plasticity by dopamine. Cerebral Cortex, 18(3), 648–651. PubMedGoogle Scholar
  30. Minhas, P., Bansal, V., Patel, J., Ho, J. S., Diaz, J., Datta, A., et al. (2010). Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. Journal of Neuroscience Methods, 190(2), 188–197. S0165-0270(10)00266-9 [pii].PubMedPubMedCentralGoogle Scholar
  31. Minichino, A., Bersani, F. S., Spagnoli, F., Corrado, A., De Michele, F., Calo, W. K., et al. (2014). Prefronto-cerebellar transcranial direct current stimulation improves sleep quality in euthymic bipolar patients: a brief report. Behavioural Neurology, 2014, 876521. Google Scholar
  32. Mirdamadi, J. L. (2016). Cerebellar role in Parkinson’s disease. Journal of Neurophysiology, 01132, 02015. Google Scholar
  33. Moliadze, V., Antal, A., & Paulus, W. (2010a). Boosting brain excitability by transcranial high frequency stimulation in the ripple range. The Journal of Physiology, 588(Pt 24), 4891–4904. PubMedPubMedCentralGoogle Scholar
  34. Moliadze, V., Antal, A., & Paulus, W. (2010b). Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clinical Neurophysiology, 121(12), 2165–2171. Google Scholar
  35. Moliadze, V., Atalay, D., Antal, A., & Paulus, W. (2012). Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimulation, 5(4), 505–511. PubMedGoogle Scholar
  36. Monte-Silva, K., Kuo, M.-F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., et al. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimulation, 6(3), 424–432. PubMedPubMedCentralGoogle Scholar
  37. Mortensen, J., Figlewski, K., & Andersen, H. (2016). Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage: A double-blind randomized controlled trial. Disability and Rehabilitation, 38(7), 637–643. PubMedGoogle Scholar
  38. Nierat, M. C., Similowski, T., & Lamy, J. C. (2014). Does trans-spinal direct current stimulation alter phrenic motoneurons and respiratory neuromechanical outputs in humans? A double-blind, sham-controlled, randomized, crossover study. Journal of Neuroscience, 34(43), 14420–14429. PubMedGoogle Scholar
  39. Nitsche, M. A., Doemkes, S., Karakose, T., Antal, A., Liebetanz, D., Lang, N., et al. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology, 97(4), 3109–3117.PubMedPubMedCentralGoogle Scholar
  40. Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., et al. (2003a). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of Physiology, 553(Pt 1), 293–301. PubMedPubMedCentralGoogle Scholar
  41. Nitsche, M. A., Kuo, M. F., Karrasch, R., Wachter, B., Liebetanz, D., & Paulus, W. (2009). Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biological Psychiatry, 66(5), 503–508. S0006-3223(09)00422-3 [pii].PubMedPubMedCentralGoogle Scholar
  42. Nitsche, M. A., Müller-Dahlhaus, F., Paulus, W., & Ziemann, U. (2012). The pharmacology of neuroplasticity induced by non-invasive brain stimulation: Building models for the clinical use of CNS active drugs. The Journal of Physiology, 590, 4641–4662. PubMedPubMedCentralGoogle Scholar
  43. Nitsche, M. A., Nitsche, M. S., Klein, C. C., Tergau, F., Rothwell, J. C., & Paulus, W. (2003b). Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clinical Neurophysiology, 114(4), 600–604.PubMedPubMedCentralGoogle Scholar
  44. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(Pt 3), 633–639.PubMedPubMedCentralGoogle Scholar
  45. Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.PubMedPubMedCentralGoogle Scholar
  46. Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., et al. (2003c). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619–626. PubMedPubMedCentralGoogle Scholar
  47. Opitz, A., Paulus, W., Will, S., Antunes, A., & Thielscher, A. (2015). Determinants of the electric field during transcranial direct current stimulation. NeuroImage, 109, 140–150. Google Scholar
  48. Palm, U., Feichtner, K. B., Hasan, A., Gauglitz, G., Langguth, B., Nitsche, M. A., et al. (2014). The role of contact media at the skin-electrode interface during transcranial direct current stimulation (tDCS). Brain Stimulation, 7(5), 762–764. PubMedGoogle Scholar
  49. Parazzini, M., Fiocchi, S., Liorni, I., Rossi, E., Cogiamanian, F., Vergari, M., et al. (2014a). Modeling the current density generated by transcutaneous spinal direct current stimulation (tsDCS). Clinical Neurophysiology, 125(11), 2260–2270. S1388-2457(14)00173-4 [pii].PubMedGoogle Scholar
  50. Parazzini, M., Rossi, E., Ferrucci, R., Fiocchi, S., Liorni, I., Priori, A., et al. (2013). Computational model of cerebellar transcranial direct current stimulation. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2013, 237–240.Google Scholar
  51. Parazzini, M., Rossi, E., Ferrucci, R., Liorni, I., Priori, A., & Ravazzani, P. (2014b). Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clinical Neurophysiology, 125(3), 577–584. Google Scholar
  52. Paulus, W., & Rothwell, J. C. (2016). Membrane resistance and shunting inhibition: Where biophysics meets state-dependent human neurophysiology. The Journal of Physiology, 594(10), 2719–2728. PubMedPubMedCentralGoogle Scholar
  53. Priori, A., Berardelli, A., Inghilleri, M., Pedace, F., Giovannelli, M., & Manfredi, M. (1998). Electrical stimulation over muscle tendons in humans. Evidence favouring presynaptic inhibition of Ia fibres due to the activation of group III tendon afferents. Brain, 121(Pt 2), 373–380.PubMedGoogle Scholar
  54. Priori, A., Hallett, M., & Rothwell, J. C. (2009). Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimulation, 2(4), 241–245. S1935-861X(09)00012-6 [pii].PubMedGoogle Scholar
  55. Ruffini, G., Fox, M. D., Ripolles, O., Miranda, P. C., & Pascual-Leone, A. (2014). Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. NeuroImage, 89, 216–225. Google Scholar
  56. Saturnino, G. B., Antunes, A., & Thielscher, A. (2015). On the importance of electrode parameters for shaping electric field patterns generated by tDCS. NeuroImage, 120, 25–35. Google Scholar
  57. Terney, D., Chaieb, L., Moliadze, V., Antal, A., & Paulus, W. (2008). Increasing human brain excitability by transcranial high-frequency random noise stimulation. The Journal of Neuroscience, 28(52), 14147–14155. PubMedGoogle Scholar
  58. Truini, A., Vergari, M., Biasiotta, A., La Cesa, S., Gabriele, M., Di Stefano, G., et al. (2011). Transcutaneous spinal direct current stimulation inhibits nociceptive spinal pathway conduction and increases pain tolerance in humans. European Journal of Pain, 15(10), 1023–1027. PubMedGoogle Scholar
  59. Turi, Z., Ambrus, G. G., Ho, K. A., Sengupta, T., Paulus, W., & Antal, A. (2014). When size matters: Large electrodes induce greater stimulation-related cutaneous discomfort than smaller electrodes at equivalent current density. Brain Stimulation, 7(3), 460–467. PubMedPubMedCentralGoogle Scholar
  60. Wallace, D., Cooper, N. R., Paulmann, S., Fitzgerald, P. B., & Russo, R. (2016). Perceived comfort and blinding efficacy in randomised sham-controlled transcranial direct current stimulation (tDCS) trials at 2 mA in young and older healthy adults. PLoS One, 11(2), e0149703. PubMedPubMedCentralGoogle Scholar
  61. Winkler, T., Hering, P., & Straube, A. (2010). Spinal DC stimulation in humans modulates post-activation depression of the H-reflex depending on current polarity. Clinical Neurophysiology, 121(6), 957–961. S1388-2457(10)00054-4 [pii].PubMedGoogle Scholar
  62. Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., et al. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031–1048. Google Scholar
  63. Woods, A. J., Bryant, V., Sacchetti, D., Gervits, F., & Hamilton, R. (2015). Effects of electrode drift in transcranial direct current stimulation. Brain Stimulation, 8(3), 515–519. PubMedPubMedCentralGoogle Scholar
  64. Wu, T., & Hallett, M. (2013). The cerebellum in Parkinson’s disease. Brain, 136(Pt 3), 696–709. PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Clinical NeurophysiologyUniversity Medical Center GöttingenGöttingenGermany
  2. 2.“Aldo Ravelli” Research Center for Neurotechnology and Experimental Brain TherapeuticsUniversity of Milan Medical SchoolMilanItaly

Personalised recommendations