Advertisement

Mechanisms of Acute and After Effects of Transcranial Direct Current Stimulation

  • Marom BiksonEmail author
  • Walter Paulus
  • Zeinab Esmaeilpour
  • Greg Kronberg
  • Michael A. Nitsche
Chapter

Abstract

The broad adoption of tDCS as a tool for non-invasive brain stimulation is fueled by evidence for its ability to alter cognition and behavior in healthy humans and patients suffering from neurological and psychiatric diseases. The rationale for tDCS is based on systematic characterization of mechanisms in animal and man. For understanding and improving efficacy for various applications in healthy subjects and in treatment, knowledge about physiological mechanisms is crucial. Here, studies exploring mechanisms at the microscopic, mesoscopic and macroscopic levels are relevant, spanning from in vitro slice experiments to animal behavior to imaging of the human brain. This chapter will supply a state of the art overview of human and animal data exploring mechanisms of tDCS, from acute to after effects, and from effects at the single cell level to neuronal networks. Currently available evidence suggests that the primary acute effects of tDCS derive from a shift of membrane potential, which depend on electrical current direction relative to neuronal orientation, while the after-effects involve synaptic plasticity. Beyond these regional effects, tDCS alters neuronal network physiology. The ability of tDCS to act as a modulator of ongoing activity and plasticity, underpins it flexibility toward varied applications. Emerging evidence suggests that tDCS effects are not restricted to neurons, but involve also other brain cells and structures. As with any neuromodulation, tDCS will invariably affect a large sub-set of neurons involved in multiple functions – considering the state-dependence of tDCS is thus important to understand specificity. Perhaps above any other neuromodulation technique, tDCS has been characterized by decades of supporting mechanistic research starting with classic animal studies, to canonical neurophysiological characterization in man, to modern advanced animal and human imaging studies.

Keywords

Biophysics Neurophysiology Dose Mechanism Plasticity 

Literature

  1. Accornero, N., Voti, P. L., La Riccia, M., & Gregori, B. (2007). Visual evoked potentials modulation during direct current cortical polarization. Experimental Brain Research, 178(2), 261–266.PubMedPubMedCentralGoogle Scholar
  2. Alekseichuk, I., Diers, K., Paulus, W., & Antal, A. (2016). Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: A combined tES-fMRI approach. NeuroImage, 140, 110–117. PubMedCrossRefPubMedCentralGoogle Scholar
  3. Amzica, F., Massimini, M., & Manfridi, A. (2002). Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. The Journal of Neuroscience, 22(3), 1042–1053.PubMedCrossRefPubMedCentralGoogle Scholar
  4. An, J. H., Su, Y., Radman, T., & Bikson, M. (2008). Effects of glucose and glutamine concentration in the formulation of the artificial cerebrospinal fluid (ACSF). Brain Research, 1218, 77–86. PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anastassiou, C. A., Montgomery, S. M., Barahona, M., Buzsáki, G., & Koch, C. (2010). The effect of spatially inhomogeneous extracellular electric fields on neurons. Journal of Neuroscience, 30(5), 1925–1936.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Andreasen, M., & Nedergaard, S. (1996). Dendritic electrogenesis in rat hippocampal CA1 pyramidal neurons: Functional aspects of Na+ and Ca2+ currents in apical dendrites. Hippocampus, 6(1), 79–95.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Antal, A., Nitsche, M. A., Kruse, W., Kincses, T. Z., Hoffmann, K.-P., & Paulus, W. (2004a). Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of Cognitive Neuroscience, 16(4), 521–527.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Antal, A., Terney, D., Poreisz, C., & Paulus, W. (2007). Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. European Journal of Neuroscience, 26(9), 2687–2691.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Antal, A., Varga, E. T., Kincses, T. Z., Nitsche, M. A., & Paulus, W. (2004b). Oscillatory brain activity and transcranial direct current stimulation in humans. Neuroreport, 15(8), 1307–1310.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Ardolino, G., Bossi, B., Barbieri, S., & Priori, A. (2005). Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. The Journal of Physiology, 568(Pt 2), 653–663. PubMedPubMedCentralCrossRefGoogle Scholar
  11. Awatramani, G. B., Price, G. D., & Trussell, L. O. (2005). Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron, 48(1), 109–121.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Berliner, M. N. (1997). Skin microcirculation during tapwater iontophoresis in humans: Cathode stimulates more than anode. Microvascular Research, 54(1), 74–80. PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bestmann, S. (2015). Computational neurostimulation: Models for bridging physiology and behavior. Brain stimulation: Basic, translational, and clinical research in. Neuromodulation, 8(2), 435.Google Scholar
  14. Beveridge, J. A., & Politis, M. J. (1988). Use of exogenous electric current in the treatment of delayed lesions in peripheral nerves. Plastic and Reconstructive Surgery, 82(4), 573–579.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., & Jefferys, J. G. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. The Journal of Physiology, 557(1), 175–190.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bikson, M., & Rahman, A. (2013). Origins of specificity during tDCS: Anatomical, activity-selective, and input-bias mechanisms. Frontiers in Human Neuroscience, 7, 688.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bindman, L. J., Lippold, O., & Redfearn, J. (1962). Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature, 196(4854), 584–585.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bindman, L. J., Lippold, O., & Redfearn, J. (1964). The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. The Journal of Physiology, 172(3), 369–382.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bishop, G., & Erlanger, J. (1926). The effects of polarization upon the activity of vertebrate nerve. American Journal of Physiology--Legacy Content, 78(3), 630–657.CrossRefGoogle Scholar
  20. Bishop, G., & O’Leary, J. (1950). The effects of polarizing currents on cell potentials and their significance in the interpretation of central nervous system activity. Electroencephalography and Clinical Neurophysiology, 2(1), 401–416.PubMedCrossRefGoogle Scholar
  21. Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology, 232(2), 331–356.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bolognini, N., Fregni, F., Casati, C., Olgiati, E., & Vallar, G. (2010). Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Research, 1349, 76–89.PubMedCrossRefGoogle Scholar
  23. Boros, K., Poreisz, C., Munchau, A., Paulus, W., & Nitsche, M. A. (2008). Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans. The European Journal of Neuroscience, 27(5), 1292–1300. PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bullock, T. H., & Hagiwara, S. (1957). Intracellular recording from the giant synapse of the squid. The Journal of General Physiology, 40(4), 565–577.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cambiaghi, M., Teneud, L., Velikova, S., Gonzalez-Rosa, J., Cursi, M., Comi, G., & Leocani, L. (2011). Flash visual evoked potentials in mice can be modulated by transcranial direct current stimulation. Neuroscience, 185, 161–165.CrossRefGoogle Scholar
  26. Cambiaghi, M., Velikova, S., Gonzalez-Rosa, J. J., Cursi, M., Comi, G., & Leocani, L. (2010). Brain transcranial direct current stimulation modulates motor excitability in mice. European Journal of Neuroscience, 31(4), 704–709.PubMedCrossRefGoogle Scholar
  27. Carandini, M., & Ferster, D. (2000). Membrane potential and firing rate in cat primary visual cortex. Journal of Neuroscience, 20(1), 470–484.PubMedCrossRefGoogle Scholar
  28. Carter, M. J., Maslovat, D., & Carlsen, A. N. (2015). Anodal transcranial direct current stimulation applied over the supplementary motor area delays spontaneous antiphase-to-in-phase transitions. Journal of Neurophysiology, 113(3), 780–785. PubMedCrossRefGoogle Scholar
  29. Castro-Alamancos, M. A., Donoghue, J. P., & Connors, B. W. (1995). Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. The Journal of Neuroscience, 15(7 Pt 2), 5324–5333.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Cavarretta, F., Carnevale, N. T., Tegolo, D., & Migliore, M. (2014). Effects of low frequency electric fields on synaptic integration in hippocampal CA1 pyramidal neurons: Implications for power line emissions. Frontiers in Cellular Neuroscience, 8, 310. Google Scholar
  31. Chan, C., Hounsgaard, J., & Nicholson, C. (1988). Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. The Journal of Physiology, 402, 751–771.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Costain, R., Redfearn, J., & Lippold, O. (1964). A controlled trial of the therapeutic effects of polarization of the brain in depressive illness. The British Journal of Psychiatry, 110 (469),786–799.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Creutzfeldt, O. D., Fromm, G. H., & Kapp, H. (1962). Influence of transcortical dc currents on cortical neuronal activity. Experimental Neurology, 5(6), 436–452.CrossRefGoogle Scholar
  34. Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201–207. e201.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Deans, J. K., Powell, A. D., & Jefferys, J. G. (2007). Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. The Journal of Physiology, 583(2), 555–565.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Del Castillo, J., & Katz, B. (1954). Changes in end-plate activity produced by pre-synaptic polarization. The Journal of Physiology, 124(3), 586–604.PubMedCentralCrossRefGoogle Scholar
  37. Delgado-Lezama, R., Perrier, J. F., & Hounsgaard, J. (1999). Local facilitation of plateau potentials in dendrites of turtle motoneurones by synaptic activation of metabotropic receptors. The Journal of Physiology, 515(Pt 1), 203–207.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Di Castro, M. A., Chuquet, J., Liaudet, N., Bhaukaurally, K., Santello, M., Bouvier, D., … Volterra, A. (2011). Local Ca2+ detection and modulation of synaptic release by astrocytes. Nature Neuroscience, 14(10), 1276–1284. PubMedCrossRefPubMedCentralGoogle Scholar
  39. Dubner, H. H. (1939). Factors controlling brain potentials in the cat. Ph D, University of Chicago, Springfield, IL.CrossRefGoogle Scholar
  40. Dudel, J. (1971). The effect of polarizing current on action potential and transmitter release in crayfish motor nerve terminals. Pflügers Archiv, 324(3), 227–248.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Ezquerro, F., Moffa, A. H., Bikson, M., Khadka, N., Aparicio, L. V., Bd, S.-J., … Pereira, A. C. (2016). The influence of skin redness on blinding in transcranial direct current stimulation studies: A crossover trial. Neuromodulation: Technology at the Neural Interface.Google Scholar
  42. Floel, A. (2014). tDCS-enhanced motor and cognitive function in neurological diseases. NeuroImage, 85(Pt 3), 934–947. CrossRefGoogle Scholar
  43. Fresnoza, S., Paulus, W., Nitsche, M. A., & Kuo, M. F. (2014a). Nonlinear dose-dependent impact of D1 receptor activation on motor cortex plasticity in humans. The Journal of Neuroscience, 34(7), 2744–2753. CrossRefGoogle Scholar
  44. Fresnoza, S., Stiksrud, E., Klinker, F., Liebetanz, D., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2014b). Dosage-dependent effect of dopamine D2 receptor activation on motor cortex plasticity in humans. The Journal of Neuroscience, 34(32), 10701–10709. PubMedCrossRefPubMedCentralGoogle Scholar
  45. Freund, T. F., & Buzsaki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6(4), 347–470. CrossRefGoogle Scholar
  46. Fricke, K., Seeber, A. A., Thirugnanasambandam, N., Paulus, W., Nitsche, M. A., & Rothwell, J. C. (2011). Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology, 105(3), 1141–1149. CrossRefGoogle Scholar
  47. Fritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y., Cohen, L. G., & Lu, B. (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron, 66(2), 198–204.PubMedPubMedCentralGoogle Scholar
  48. Fröhlich, F., & Mccormick, D. A. (2010). Endogenous electric fields may guide neocortical network activity. Neuron, 67(1), 129–143.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gardner-Medwin, A. (1983). Analysis of potassium dynamics in mammalian brain tissue. The Journal of Physiology, 335, 393–426.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gartside, I. B. (1968a). Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: Reverberating circuits or modification of synaptic conductance? Nature, 220(5165), 382–383.CrossRefGoogle Scholar
  51. Gartside, I. B. (1968b). Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: Role of protein synthesis. Nature, 220(5165), 383–384.CrossRefGoogle Scholar
  52. Gellner, A. K., Reis, J., & Fritsch, B. (2016). Glia: A neglected player in non-invasive direct current brain stimulation. Frontiers in Cellular Neuroscience, 10, 188. Google Scholar
  53. Giordano, J., Bikson, M., Kappenman, E. S., Clark, V. P., Coslett, H. B., Hamblin, M. R., … Mckinley, R. A. (2017). Mechanisms and effects of transcranial direct current stimulation. Dose-Response, 15(1), 1559325816685467.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Grundey, J., Thirugnanasambandam, N., Kaminsky, K., Drees, A., Skwirba, A. C., Lang, N., … Nitsche, M. A. (2012). Rapid effect of nicotine intake on neuroplasticity in non-smoking humans. Frontiers in Pharmacology, 3, 186. Google Scholar
  55. Hanley, C. J., Singh, K. D., & Mcgonigle, D. J. (2016). Transcranial modulation of brain oscillatory responses: A concurrent tDCS-MEG investigation. NeuroImage, 140, 20–32. PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hattori, Y., Moriwaki, A., & Hori, Y. (1990). Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neuroscience Letters, 116(3), 320–324.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Haydon, P. G., & Carmignoto, G. (2006). Astrocyte control of synaptic transmission and neurovascular coupling. Physiological Reviews, 86(3), 1009–1031. CrossRefGoogle Scholar
  58. Hess, G., & Donoghue, J. P. (1999). Facilitation of long-term potentiation in layer II/III horizontal connections of rat motor cortex following layer I stimulation: Route of effect and cholinergic contributions. Experimental Brain Research, 127(3), 279–290.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Hinkle, L., Mccaig, C. D., & Robinson, K. R. (1981). The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. The Journal of Physiology, 314, 121–135.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hone-Blanchet, A., Edden, R. A., & Fecteau, S. (2016). Online effects of transcranial direct current stimulation in real time on human prefrontal and striatal metabolites. Biological Psychiatry, 80(6), 432–438. PubMedCrossRefPubMedCentralGoogle Scholar
  61. Huang, Y., Liu, A. A., Lafon, B., Friedman, D., Dayan, M., Wang, X., … Parra, L. C. (2017). Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. eLife, 6, e18834.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hubbard, J., & Willis, W. (1962a). Hyperpolarization of mammalian motor nerve terminals. The Journal of Physiology, 163(1), 115–137.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hubbard, J. I., & Willis, W. D. (1962b). Mobilization of transmitter by hyperpolarization. Nature, 193(4811), 174–175.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Islam, N., Aftabuddin, M., Moriwaki, A., Hattori, Y., & Hori, Y. (1995a). Increase in the calcium level following anodal polarization in the rat brain. Brain Research, 684(2), 206–208.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Islam, N., Moriwaki, A., & Hori, Y. (1995b). Co-localization of c-fos protein and protein kinase C gamma in the rat brain following anodal polarization. Indian Journal of Physiology and Pharmacology, 39(3), 209–215.PubMedPubMedCentralGoogle Scholar
  66. Jackson, M. P., Rahman, A., Lafon, B., Kronberg, G., Ling, D., Parra, L. C., & Bikson, M. (2016). Animal models of transcranial direct current stimulation: Methods and mechanisms. Clinical Neurophysiology, 127(11), 3425–3454.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jaffe, L. F., & Poo, M. M. (1979). Neurites grow faster towards the cathode than the anode in a steady field. The Journal of Experimental Zoology, 209(1), 115–128. PubMedCrossRefPubMedCentralGoogle Scholar
  68. Jamil, A., Batsikadze, G., Kuo, H. I., Labruna, L., Hasan, A., Paulus, W., & Nitsche, M. A. (2017). Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. The Journal of Physiology, 595(4), 1273–1288.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Jefferys, J. (1981). Influence of electric fields on the excitability of granule cells in Guinea-pig hippocampal slices. The Journal of Physiology, 319, 143–152.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Joucla, S., & Yvert, B. (2009). The “mirror” estimate: An intuitive predictor of membrane polarization during extracellular stimulation. Biophysical Journal, 96(9), 3495–3508.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kabakov, A. Y., Muller, P. A., Pascual-Leone, A., Jensen, F. E., & Rotenberg, A. (2012). Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. Journal of Neurophysiology, 107(7), 1881–1889.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Keeser, D., Meindl, T., Bor, J., Palm, U., Pogarell, O., Mulert, C., … Padberg, F. (2011). Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. The Journal of Neuroscience, 31(43), 15284–15293. PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kirimoto, H., Ogata, K., Onishi, H., Oyama, M., Goto, Y., & Tobimatsu, S. (2011). Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices. Clinical Neurophysiology, 122(4), 777–783. CrossRefGoogle Scholar
  74. Kotnik, T., Pucihar, G., & Miklavcic, D. (2010). Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. The Journal of Membrane Biology, 236(1), 3–13. PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kronberg, G., Bridi, M., Abel, T., Bikson, M., & Parra, L. C. (2017). Direct current stimulation modulates LTP and LTD: Activity dependence and dendritic effects. Brain Stimulation, 10(1), 51–58. CrossRefGoogle Scholar
  76. Lafon, B., Rahman, A., Bikson, M., & Parra, L. C. (2017). Direct current stimulation alters neuronal input/output function. Brain Stimulation, 10(1), 36–45.CrossRefGoogle Scholar
  77. Lang, N., Siebner, H. R., Ward, N. S., Lee, L., Nitsche, M. A., Paulus, W., … Frackowiak, R. S. (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? The European Journal of Neuroscience, 22(2), 495–504. PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ledger, P. W. (1992). Skin biological issues in electrically enhanced transdermal delivery. Advanced Drug Delivery Reviews, 9(2–3), 289–307. CrossRefGoogle Scholar
  79. Lee, D., Lin, B. J., & Lee, A. K. (2012). Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science, 337(6096), 849–853. PubMedCrossRefPubMedCentralGoogle Scholar
  80. Lian, J., Bikson, M., Sciortino, C., Stacey, W. C., & Durand, D. M. (2003). Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro. The Journal of Physiology, 547(Pt 2), 427–434. PubMedPubMedCentralCrossRefGoogle Scholar
  81. Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain, 125(10), 2238–2247.CrossRefGoogle Scholar
  82. Lisman, J. E. (2001). Three Ca2+ levels affect plasticity differently: The LTP zone, the LTD zone and no man’s land. The Journal of Physiology, 532(Pt 2), 285.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lopez-Quintero, S. V., Datta, A., Amaya, R., Elwassif, M., Bikson, M., & Tarbell, J. M. (2010). DBS-relevant electric fields increase hydraulic conductivity of in vitro endothelial monolayers. Journal of Neural Engineering, 7(1), 16005. CrossRefGoogle Scholar
  84. Lu, B. (2003). BDNF and activity-dependent synaptic modulation. Learning & Memory, 10(2), 86–98. CrossRefGoogle Scholar
  85. Lugon, M. D. M. V., Batsikadze, G., Fresnoza, S., Grundey, J., Kuo, M.-F., Paulus, W., … Nitsche, M. A. (2015). Mechanisms of nicotinic modulation of glutamatergic neuroplasticity in humans. Cerebral Cortex, bhv252.Google Scholar
  86. Magee, J. C., & Cook, E. P. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neuroscience, 3(9), 895–903. PubMedCrossRefPubMedCentralGoogle Scholar
  87. Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44(1), 5–21. CrossRefGoogle Scholar
  88. Malty, A. M., & Petrofsky, J. (2007). The effect of electrical stimulation on a normal skin blood flow in active young and older adults. Medical Science Monitor, 13(4), CR147–CR155.PubMedPubMedCentralGoogle Scholar
  89. Márquez-Ruiz, J., Leal-Campanario, R., Sánchez-Campusano, R., Molaee-Ardekani, B., Wendling, F., Miranda, P. C., … Delgado-García, J. M. (2012). Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proceedings of the National Academy of Sciences, 109(17), 6710–6715.CrossRefGoogle Scholar
  90. Marsh, G., & Beams, H. W. (1946). In vitro control of growing chick nerve fibers by applied electric currents. Journal of Cellular and Comparative Physiology, 27, 139–157.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Marshall, L., Kirov, R., Brade, J., Molle, M., & Born, J. (2011). Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PLoS One, 6(2), e16905. PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mccaig, C. D., & Rajnicek, A. M. (1991). Electrical fields, nerve growth and nerve regeneration. Experimental Physiology, 76(4), 473–494.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Mccaig, C. D., Rajnicek, A. M., Song, B., & Zhao, M. (2005). Controlling cell behavior electrically: Current views and future potential. Physiological Reviews, 85(3), 943–978. PubMedCrossRefPubMedCentralGoogle Scholar
  94. Mcdevitt, L., Fortner, P., & Pomeranz, B. (1987). Application of weak electric field to the hindpaw enhances sciatic motor nerve regeneration in the adult rat. Brain Research, 416(2), 308–314.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Mcintyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition. Journal of Neurophysiology, 91(4), 1457–1469.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Merrill, D. R., Bikson, M., & Jefferys, J. G. (2005). Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. Journal of Neuroscience Methods, 141(2), 171–198.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Minhas, P., Bansal, V., Patel, J., Ho, J. S., Diaz, J., Datta, A., & Bikson, M. (2010). Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. Journal of Neuroscience Methods, 190(2), 188–197. PubMedPubMedCentralCrossRefGoogle Scholar
  98. Miranda, P. C., Lomarev, M., & Hallett, M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clinical Neurophysiology, 117(7), 1623–1629.CrossRefGoogle Scholar
  99. Monai, H., Ohkura, M., Tanaka, M., Oe, Y., Konno, A., Hirai, H., … Hirase, H. (2016). Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nature Communications, 7, 11100. Google Scholar
  100. Monte-Silva, K., Kuo, M.-F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., & Nitsche, M. A. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimulation, 6(3), 424–432.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Monte-Silva, K., Kuo, M. F., Liebetanz, D., Paulus, W., & Nitsche, M. A. (2010). Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). Journal of Neurophysiology, 103(4), 1735–1740. PubMedPubMedCentralCrossRefGoogle Scholar
  102. Nitsche, M., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., … Paulus, W. (2003a). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of Physiology, 553(1), 293–301.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Nitsche, M. A., Doemkes, S., Karakoese, T., Antal, A., Liebetanz, D., Lang, N., … Paulus, W. (2007a). Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology, 97(4), 3109–3117.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nitsche, M. A., Jaussi, W., Liebetanz, D., Lang, N., Tergau, F., & Paulus, W. (2004). Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology, 29(8), 1573–1578. PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nitsche, M. A., Muller-Dahlhaus, F., Paulus, W., & Ziemann, U. (2012). The pharmacology of neuroplasticity induced by non-invasive brain stimulation: Building models for the clinical use of CNS active drugs. The Journal of Physiology, 590(19), 4641–4662. PubMedPubMedCentralCrossRefGoogle Scholar
  106. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633–639.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Nitsche, M. A., Roth, A., Kuo, M. F., Fischer, A. K., Liebetanz, D., Lang, N., … Paulus, W. (2007b). Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex. The Journal of Neuroscience, 27(14), 3807–3812. PubMedCrossRefGoogle Scholar
  109. Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003b). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619–626. PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nitsche, M. A., Seeber, A., Frommann, K., Klein, C. C., Rochford, C., Nitsche, M. S., … Antal, A. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. The Journal of Physiology, 568(1), 291–303.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Opitz, A., Falchier, A., Yan, C.-G., Yeagle, E. M., Linn, G. S., Megevand, P., & Thielscher, A. (2016). Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Scientific Reports, 6 31236.Google Scholar
  112. Palmer, A. M., Messerli, M. A., & Robinson, K. R. (2000). Neuronal galvanotropism is independent of external ca(2+) entry or internal ca(2+) gradients. Journal of Neurobiology, 45(1), 30–38.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Panatier, A., Vallee, J., Haber, M., Murai, K. K., Lacaille, J. C., & Robitaille, R. (2011). Astrocytes are endogenous regulators of basal transmission at central synapses. Cell, 146(5), 785–798. CrossRefGoogle Scholar
  114. Parra, L. C., & Bikson, M. (2004). Model of the effect of extracellular fields on spike time coherence. In Engineering in Medicine and Biology Society. IEMBS’04. 26th Annual International Conference of the IEEE, 2004. IEEE (pp. 4584–4587).Google Scholar
  115. Patel, N., & Poo, M. M. (1982). Orientation of neurite growth by extracellular electric fields. The Journal of Neuroscience, 2(4), 483–496.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Patel, N. B., & Poo, M. M. (1984). Perturbation of the direction of neurite growth by pulsed and focal electric fields. The Journal of Neuroscience, 4(12), 2939–2947.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Paulus, W., & Rothwell, J. C. (2016). Membrane resistance and shunting inhibition: where biophysics meets state–dependent human neurophysiology. The Journal of Physiology, 594(10), 2719–2728.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Pelletier, S. J., & Cicchetti, F. (2014). Cellular and molecular mechanisms of action of transcranial direct current stimulation: Evidence from in vitro and in vivo models. The International Journal of Neuropsychopharmacology, 18(2), pyu047. CrossRefGoogle Scholar
  119. Pena-Gomez, C., Sala-Lonch, R., Junque, C., Clemente, I. C., Vidal, D., Bargallo, N., … Bartres-Faz, D. (2012). Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI. Brain Stimulation, 5(3), 252–263. PubMedPubMedCentralCrossRefGoogle Scholar
  120. Perea, G., Navarrete, M., & Araque, A. (2009). Tripartite synapses: Astrocytes process and control synaptic information. Trends in Neurosciences, 32(8), 421–431. PubMedCrossRefPubMedCentralGoogle Scholar
  121. Podda, M. V., Cocco, S., Mastrodonato, A., Fusco, S., Leone, L., Barbati, S. A., … Grassi, C. (2016). Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Scientific Reports, 6, 22180. Google Scholar
  122. Polania, R., Nitsche, M. A., & Paulus, W. (2011a). Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Human Brain Mapping, 32(8), 1236–1249. PubMedCrossRefPubMedCentralGoogle Scholar
  123. Polania, R., Paulus, W., Antal, A., & Nitsche, M. A. (2011b). Introducing graph theory to track for neuroplastic alterations in the resting human brain: A transcranial direct current stimulation study. NeuroImage, 54(3), 2287–2296. PubMedPubMedCentralCrossRefGoogle Scholar
  124. Polania, R., Paulus, W., & Nitsche, M. A. (2012a). Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Human Brain Mapping, 33(10), 2499–2508. PubMedCrossRefPubMedCentralGoogle Scholar
  125. Polania, R., Paulus, W., & Nitsche, M. A. (2012b). Reorganizing the intrinsic functional architecture of the human primary motor cortex during rest with non-invasive cortical stimulation. PLoS One, 7(1), e30971. PubMedPubMedCentralCrossRefGoogle Scholar
  126. Politis, M. J., Zanakis, M. F., & Albala, B. J. (1988). Facilitated regeneration in the rat peripheral nervous system using applied electric fields. The Journal of Trauma, 28(9), 1375–1381.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Pomeranz, B., Mullen, M., & Markus, H. (1984). Effect of applied electrical fields on sprouting of intact saphenous nerve in adult rat. Brain Research, 303(2), 331–336.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Prausnitz, M. R. (1996). Do high-voltage pulses cause changes in skin structure? Journal of Controlled Release, 40(3), 321–326. CrossRefGoogle Scholar
  129. Purpura, D. P., & Mcmurtry, J. G. (1965). Intracellular activities and evoked potential changes during polarization of motor cortex. Journal of Neurophysiology, 28(1), 166–185.CrossRefGoogle Scholar
  130. Radman, T., Datta, A., & Peterchev, A. V. (2007a). In vitro modulation of endogenous rhythms by AC electric fields: Syncing with clinical brain stimulation. The Journal of Physiology, 584(2), 369–370.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Radman, T., Ramos, R. L., Brumberg, J. C., & Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulation, 2(4), 215–228.e3.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Radman, T., Su, Y., An, J. H., Parra, L. C., & Bikson, M. (2007b). Spike timing amplifies the effect of electric fields on neurons: Implications for endogenous field effects. Journal of Neuroscience, 27(11), 3030–3036.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Rahman, A., Lafon, B., Parra, L. C., & Bikson, M. (2017). Direct current stimulation boosts synaptic gain and cooperativity in vitro. The Journal of Physiology, 595, 3535–3547. PubMedPubMedCentralCrossRefGoogle Scholar
  134. Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L. C., & Bikson, M. (2013). Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. The Journal of Physiology, 591(10), 2563–2578.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Ranieri, F., Podda, M. V., Riccardi, E., Frisullo, G., Dileone, M., Profice, P., … Grassi, C. (2012). Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. Journal of Neurophysiology, 107(7), 1868–1880.CrossRefGoogle Scholar
  136. Rattay, F., & Wenger, C. (2010). Which elements of the mammalian central nervous system are excited by low current stimulation with microelectrodes? Neuroscience, 170(2), 399–407.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Reato, D., Bikson, M., & Parra, L. C. (2015). Lasting modulation of in vitro oscillatory activity with weak direct current stimulation. Journal of Neurophysiology, 113(5), 1334–1341.CrossRefGoogle Scholar
  138. Reato, D., Gasca, F., Datta, A., Bikson, M., Marshall, L., & Parra, L. C. (2013a). Transcranial electrical stimulation accelerates human sleep homeostasis. PLoS Computational Biology, 9(2), e1002898.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Reato, D., Rahman, A., Bikson, M., & Parra, L. C. (2010). Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. Journal of Neuroscience, 30(45), 15067–15079.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Reato, D., Rahman, A., Bikson, M., & Parra, L. C. (2013b). Effects of weak transcranial alternating current stimulation on brain activity—A review of known mechanisms from animal studies. Frontiers in Human Neuroscience, 7, 687.Google Scholar
  141. Redfearn, J., Lippold, O., & Costain, R. (1964). Preliminary account of the clinical effects of polarizing the brain in certain psychiatric disorders. The British Journal of Psychiatry, 110(469), 773–785.CrossRefGoogle Scholar
  142. Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., … Krakauer, J. W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1590–1595. CrossRefGoogle Scholar
  143. Rioult-Pedotti, M.-S., Friedman, D., Hess, G., & Donoghue, J. P. (1998). Strengthening of horizontal cortical connections following skill learning. Nature Neuroscience, 1(3), 230–234.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Rivera-Urbina, G. N., Batsikadze, G., Molero-Chamizo, A., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2015). Parietal transcranial direct current stimulation modulates primary motor cortex excitability. The European Journal of Neuroscience, 41(6), 845–855. PubMedPubMedCentralCrossRefGoogle Scholar
  145. Rizzo, V., Terranova, C., Crupi, D., Sant’angelo, A., Girlanda, P., & Quartarone, A. (2014). Increased transcranial direct current stimulation after effects during concurrent peripheral electrical nerve stimulation. Brain stimulation, 7(1), 113–121.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Rohan, J. G., Carhuatanta, K. A., Mcinturf, S. M., Miklasevich, M. K., & Jankord, R. (2015). Modulating hippocampal plasticity with in vivo brain stimulation. The Journal of Neuroscience, 35(37), 12824–12832. PubMedCrossRefPubMedCentralGoogle Scholar
  147. Roman, G. C., Strahlendorf, H. K., Coates, P. W., & Rowley, B. A. (1987). Stimulation of sciatic nerve regeneration in the adult rat by low-intensity electric current. Experimental Neurology, 98(2), 222–232.PubMedCrossRefPubMedCentralGoogle Scholar
  148. Romero Lauro, L. J., Rosanova, M., Mattavelli, G., Convento, S., Pisoni, A., Opitz, A., … Vallar, G. (2014). TDCS increases cortical excitability: Direct evidence from TMS-EEG. Cortex, 58, 99–111. PubMedCrossRefPubMedCentralGoogle Scholar
  149. Ruohonen, J., & Karhu, J. (2012). tDCS possibly stimulates glial cells. Clinical Neurophysiology, 123(10), 2006–2009. PubMedCrossRefPubMedCentralGoogle Scholar
  150. Salvador, R., Silva, S., Basser, P. J., & Miranda, P. C. (2011). Determining which mechanisms lead to activation in the motor cortex: A modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry. Clinical Neurophysiology, 122(4), 748–758. CrossRefGoogle Scholar
  151. Schmidt, S. L., Iyengar, A. K., Foulser, A. A., Boyle, M. R., & Fröhlich, F. (2014). Endogenous cortical oscillations constrain neuromodulation by weak electric fields. Brain Stimulation, 7(6), 878–889.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Spitoni, G. F., Cimmino, R. L., Bozzacchi, C., Pizzamiglio, L., & Di Russo, F. (2013). Modulation of spontaneous alpha brain rhythms using low-intensity transcranial direct-current stimulation. Frontiers in Human Neuroscience, 7, 529. Google Scholar
  153. Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., … Johansen-Berg, H. (2009a). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. Journal of Neuroscience, 29(16), 5202–5206.CrossRefGoogle Scholar
  154. Stagg, C. J., O’Shea, J., Kincses, Z. T., Woolrich, M., Matthews, P. M., & Johansen-Berg, H. (2009b). Modulation of movement-associated cortical activation by transcranial direct current stimulation. The European Journal of Neuroscience, 30(7), 1412–1423. PubMedCrossRefPubMedCentralGoogle Scholar
  155. Strube, W., Bunse, T., Nitsche, M. A., Nikolaeva, A., Palm, U., Padberg, F., … Hasan, A. (2016). Bidirectional variability in motor cortex excitability modulation following 1 mA transcranial direct current stimulation in healthy participants. Physiology Reports, 4(15), e12884. PubMedPubMedCentralCrossRefGoogle Scholar
  156. Svirskis, G., Gutman, A., & Hounsgaard, J. (1997). Detection of a membrane shunt by DC field polarization during intracellular and whole cell recording. Journal of Neurophysiology, 77(2), 579–586.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Takano, Y., Yokawa, T., Masuda, A., Niimi, J., Tanaka, S., & Hironaka, N. (2011). A rat model for measuring the effectiveness of transcranial direct current stimulation using fMRI. Neuroscience Letters, 491(1), 40–43. PubMedCrossRefPubMedCentralGoogle Scholar
  158. Takeuchi, A., & Takeuchi, N. (1962). Electrical changes in pre-and postsynaptic axons of the giant synapse of Loligo. The Journal of General Physiology, 45(6), 1181–1193.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Terzuolo, C., & Bullock, T. (1956). Measurement of imposed voltage gradient adequate to modulate neuronal firing. Proceedings of the National Academy of Sciences, 42(9), 687–694.CrossRefGoogle Scholar
  160. Thirugnanasambandam, N., Grundey, J., Adam, K., Drees, A., Skwirba, A. C., Lang, N., … Nitsche, M. A. (2011). Nicotinergic impact on focal and non-focal neuroplasticity induced by non-invasive brain stimulation in non-smoking humans. Neuropsychopharmacology, 36(4), 879–886.CrossRefGoogle Scholar
  161. Wachter, D., Wrede, A., Schulz-Schaeffer, W., Taghizadeh-Waghefi, A., Nitsche, M. A., Kutschenko, A., … Liebetanz, D. (2011). Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Experimental Neurology, 227(2), 322–327. PubMedCrossRefPubMedCentralGoogle Scholar
  162. Wong, R. K., & Stewart, M. (1992). Different firing patterns generated in dendrites and somata of CA1 pyramidal neurones in Guinea-pig hippocampus. The Journal of Physiology, 457, 675–687.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Yoon, K. J., Oh, B.-M., & Kim, D.-Y. (2012). Functional improvement and neuroplastic effects of anodal transcranial direct current stimulation (tDCS) delivered 1day vs. 1week after cerebral ischemia in rats. Brain Research, 1452, 61–72.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Zaehle, T., Rach, S., & Herrmann, C. S. (2010). Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One, 5(11), e13766. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Marom Bikson
    • 1
    Email author
  • Walter Paulus
    • 2
  • Zeinab Esmaeilpour
    • 3
  • Greg Kronberg
    • 3
  • Michael A. Nitsche
    • 4
    • 5
  1. 1.Department of Biomedical EngineeringThe City College of New YorkNew YorkUSA
  2. 2.Department of Clinical NeurophysiologyUniversity Medical Center GöttingenGöttingenGermany
  3. 3.Department of Biomedical EngineeringThe City College of the City University of New YorkNew YorkUSA
  4. 4.Department of Psychology and NeurosciencesLeibniz Research Centre for Working Environment and Human FactorsDortmundGermany
  5. 5.University Medical Hospital BergmannsheilBochumGermany

Personalised recommendations