Challenges, Open Questions and Future Direction in Transcranial Direct Current Stimulation Research and Applications
Abstract
The broad overview of theoretical and practical aspects pertaining to tDCS applications in this book demonstrates that tDCS applications are rapidly expanding with enormous potential in brain research and therapy. Building on the foundation of existing evidence, tDCS can benefit from further technological development and methodological refinement. This chapter discusses the state of the art as well as open questions and gaps in existing knowledge and provides insight into possible future technology developments and research initiatives intended to substantiate the potential that tDCS holds for research and clinical applications. In specifics, the need includes: further research supported by advanced neurophysiological and neuroimaging methods in order to bridge gaps in understanding the neurophysiological mechanisms of tDCS and relations to specific functional outcomes; optimization and standardization of stimulation protocols; building a pool of long-term safety data and an environment for data sharing; development toward user-friendly solutions; progress toward implementation of tDCS to clinical practice; initiatives supporting education and professional competence in tDCS use in research and clinical settings.
Keywords
Transcranial direct current stimulation (tDCS) Non-invasive neuromodulation Technology development Good practiceReferences
- Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. The Journal of Physiology, 591(7), 1987–2000.PubMedPubMedCentralGoogle Scholar
- Bestmann, S. (2015). Computational neurostimulation in basic and translational research. Progress in Brain Research, 222, xv–xx.PubMedGoogle Scholar
- Bikson, M., Dmochowski, J., & Rahman, A. (2013a). The “quasi-uniform” assumption in animal and computational models of non-invasive electrical stimulation. Brain Stimulation, 6(4), 704–705.Google Scholar
- Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., … Woods, A. J. (2016). Safety of transcranial direct current stimulation: Evidence based update 2016. Brain Stimulation, 9(5), 641–661.PubMedPubMedCentralGoogle Scholar
- Bikson, M., Rahman, A., & Datta, A. (2012). Computational models of transcranial direct current stimulation. Clinical EEG and Neuroscience, 43(3), 176–183.PubMedGoogle Scholar
- Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., & Jefferys, J. G. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. The Journal of Physiology, 15(557), 175–190.Google Scholar
- Bikson, M., Name, A., & Rahman, A. (2013b). Origins of specificity during tDCS: Anatomical, activity-selective, and input-bias mechanisms. Frontiers in Human Neuroscience, 21(7), 688.Google Scholar
- Bindman, L. J., Lippold, O. C., & Redfearn, J. W. (1964). The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. The Journal of Physiology, 172, 369–382.PubMedPubMedCentralGoogle Scholar
- Brunoni, A. R., Nitsche, M. A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L., … Fregni, F. (2012). Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimulation, 5(3), 175–195.Google Scholar
- Brunoni, A. R., Valiengo, L., Baccaro, A., Zanão, T. A., de Oliveira, J. F., Goulart, A., … Fregni, F. (2013). The sertraline vs electrical current therapy for treating depression clinical study: Results from a factorial, randomized, controlled trial. JAMA Psychiatry, 70(4), 383–391.PubMedPubMedCentralGoogle Scholar
- Charvet, L. E., Kasschau, M., Datta, A., Knotkova, H., Stevens, M. C., Alonzo, A., … Bikson, M. (2015). Remotely-supervised transcranial direct current stimulation(tDCS) for clinical trials: Guidelines for technology and protocols. Frontiers in Systems Neuroscience, 17(9), 26.Google Scholar
- Dasilva, A. F., Mendonca, M. E., Zaghi, S., Lopes, M., Dossantos, M. F., Spierings, E. L., … Fregni, F. (2012). tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache, 52(8), 1283–1295.PubMedPubMedCentralGoogle Scholar
- DaSilva, A. F., Volz, M. S., Bikson, M., & Fregni, F. (2011). Electrode positioning and montage in transcranial direct current stimulation. Journal of Visualized Experiments, 23(51), 1–11.Google Scholar
- Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201–207.PubMedPubMedCentralGoogle Scholar
- Datta, A., Truong, D., Minhas, P., Parra, L. C., & Bikson, M. (2012). Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Frontiers in Psychiatry, 22(3), 91.Google Scholar
- Datta, A., Zhou, X., Su, Y., Parra, L. C., & Bikson, M. (2013). Validation of finite element model of transcranial electrical stimulation using scalp potentials: Implications for clinical dose. Journal of Neural Engineering, 10(3), 036018.PubMedGoogle Scholar
- Esmaeilpour, Z., Schestatsky, P., Bikson, M., Brunoni, A. R., Pellegrinelli, A., Piovesan, F. X., … Fregni, F. (2017). Notes on human trials of transcranial direct current stimulation between 1960 and 1998. Frontiers in Human Neuroscience, 23(11), 71.Google Scholar
- Fresnoza, S., Paulus, W., Nitsche, M. A., & Kuo, M. F. (2014). Nonlinear dose-dependent impact of D1 receptor activation on motor cortex plasticity in humans. Journal of Neuroscience, 34(7), 2744–2753.PubMedGoogle Scholar
- Furuya, S., Klaus, M., Nitsche, M. A., Paulus, W., & Altenmüller, E. (2014). Ceiling effects prevent further improvement of transcranial stimulation in skilled musicians. Journal of Neuroscience, 34(41), 13834–13839.PubMedGoogle Scholar
- Gellner, A. K., Reis, J., & Fritsch, B. (2016). Glia: A neglected player in non-invasive direct current brain stimulation. Frontiers in Cellular Neuroscience, 8(10), 188.Google Scholar
- Gillick, B., Menk, J., Mueller, B., Meekins, G., Krach, L. E., Feyma, T., & Rudser, K. (2015a). Synergistic effect of combined transcranial direct current stimulation/constraint-induced movement therapy in children and young adults with hemiparesis: Study protocol. BMC Pediatrics, 15, 178.PubMedPubMedCentralGoogle Scholar
- Gillick, B. T., Feyma, T., Menk, J., Usset, M., Vaith, A., Wood, T. J., … Krach, L. E. (2015b). Safety and feasibility of transcranial direct current stimulation in pediatric hemiparesis: Randomized controlled preliminary study. Physical Therapy, 95(3), 337–349.PubMedGoogle Scholar
- Hahn, C., Rice, J., Macuff, S., Minhas, P., Rahman, A., & Bikson, M. (2013). Methods for extra-low voltage transcranial direct current stimulation: Current and time dependent impedance decreases. Clinical Neurophysiology, 124(3), 551–556.PubMedPubMedCentralGoogle Scholar
- Huang, Y., Liu, A. A., Lafon, B., Friedman, D., Dayan, M., Wang, X., … Parra, L. C. (2017). Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. eLife, 6, e18834.PubMedPubMedCentralGoogle Scholar
- Jackson, M. P., Rahman, A., Lafon, B., Kronberg, G., Ling, D., Parra, L. C., & Bikson, M. (2016). Animal models of transcranial direct current stimulation: Methods and mechanisms. Clinical Neurophysiology, 127(11), 3425–3454.PubMedPubMedCentralGoogle Scholar
- Kabakov, A. Y., Muller, P. A., Pascual-Leone, A., Jensen, F. E., & Rotenberg, A. (2012). Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. Journal of Neurophysiology, 107(7), 1881–1889.PubMedPubMedCentralGoogle Scholar
- Kasschau, M., Sherman, K., Haider, L., Frontario, A., Shaw, M., Datta, A., … Charvet, L. (2015). A protocol for the use of remotely-supervised transcranial direct current stimulation (tDCS) in multiple sclerosis (MS). Journal of Visualized Experiments, 26(106), e53542.Google Scholar
- Kim, J. H., Kim, D. W., Chang, W. H., Kim, Y. H., Kim, K., & Im, C. H. (2014). Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: electric field simulation using individual MRI data. Neuroscience Letters, 564, 6–10.PubMedGoogle Scholar
- Knotkova, H., Leuschner, Z., Soto, E., Davoudzadeh, E., Greenberg, A., & Cruciani, R. A. (2014). Evaluating outcomes of transcranial direct current stimulation (tDCS) in patients with chronic neuropathic pain. The Journal of Pain, 15(4), S69.Google Scholar
- Knotkova, H., Woods, A., & Bikson, M. (2015). Transcranial direct current stimulation(tDCS): What pain practitioners need to know. Practical Pain Management, 2, 58–65.Google Scholar
- Kronberg, G., Bridi, M., Abel, T., Bikson, M., & Parra, L. C. (2017). Direct current stimulation modulates LTP and LTD: Activity dependence and dendritic effects. Brain Stimulation, 10(1), 51–58.PubMedGoogle Scholar
- Labruna, L., Jamil, A., Fresnoza, S., Batsikadze, G., Kuo, M. F., Vanderschelden, B., … Nitsche, M. A. (2016). Efficacy of anodal transcranial direct current stimulation is related to sensitivity to transcranial magnetic stimulation. Brain Stimulation, 9(1), 8–15.Google Scholar
- Lafon, B., Rahman, A., Bikson, M., & Parra, L. C. (2017). Direct current stimulation alters neuronal input/output function. Brain Stimulation, 10(1), 36–45.Google Scholar
- Lee, C., Jung, Y. J., Lee, S. J., & Im, C. H. (2017). COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation. Journal of Neuroscience Methods, 277, 56–62.PubMedGoogle Scholar
- López-Alonso, V., Fernández-del-Olmo, M., Costantini, A., Gonzalez-Henriquez, J. J., & Cheeran, B. (2015). Intra-individual variability in the response to anodal transcranial direct current stimulation. Clinical Neurophysiology, 126(12), 2342–2347.Google Scholar
- Macedo, I. C., de Oliveira, C., Vercelino, R., Souza, A., Laste, G., Medeiros, L. F., … Torres, I. L. (2016). Repeated transcranial direct current stimulation reduces food craving in Wistar rats. Appetite, 103, 29–37.PubMedGoogle Scholar
- Márquez-Ruiz, J., Leal-Campanario, R., Sánchez-Campusano, R., Molaee-Ardekani, B., Wendling, F., Miranda, P. C., … Delgado-García, J. M. (2012). Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proceedings of the National Academy of Sciences of the United States of America, 109(17), 6710–6715.PubMedPubMedCentralGoogle Scholar
- Minhas, P., Bansal, V., Patel, J., Ho, J. S., Diaz, J., Datta, A., & Bikson, M. (2010). Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. Journal of Neuroscience Methods, 190(2), 188–197.PubMedPubMedCentralGoogle Scholar
- Nitsche, M. A., Müller-Dahlhaus, F., Paulus, W., & Ziemann, U. (2012). The pharmacology of neuroplasticity induced by non-invasive brain stimulation: Building models for the clinical use of CNS active drugs. The Journal of Physiology, 590(19), 4641–4662.PubMedPubMedCentralGoogle Scholar
- Nitsche, M. A., Kuo, M. F., Karrasch, R., Wächter, B., Liebetanz, D., & Paulus, W. (2009). Serotonin affects transcranial direct current–induced neuroplasticity in humans. Biological Psychiatry, 66(5), 503–508.PubMedPubMedCentralGoogle Scholar
- Nitsche, M. A., Liebetanz, D., Antal, A., Lang, N., Tergau, F., & Paulus, W. (2003). Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. Supplements to Clinical Neurophysiology, 56, 255–276.PubMedGoogle Scholar
- Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(Pt 3), 633–639.PubMedPubMedCentralGoogle Scholar
- Opitz, A., Falchier, A., Yan, C. G., Yeagle, E. M., Linn, G. S., Megevand, P., … Schroeder, C. E. (2016). Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Scientific Reports, 6, 31236.PubMedPubMedCentralGoogle Scholar
- Opitz, A., Paulus, W., Will, S., Antunes, A., & Thielscher, A. (2015). Determinants of the electric field during transcranial direct current stimulation. NeuroImage, 109, 140–150.Google Scholar
- Paneri, B., Adair, D., Thomas, C., Khadka, N., Patel, V., Tyler, W. J., … Bikson, M. (2016). Tolerability of repeated application of transcranial electrical stimulation with limited outputs to healthy subjects. Brain Stimulation, 9(5), 740–754.PubMedPubMedCentralGoogle Scholar
- Pikhovych, A., Stolberg, N. P., Jessica Flitsch, L., Walter, H. L., Graf, R., Fink, G. R., … Rueger, M. A. (2016). Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain. Stem Cells, 2016, 1–9.Google Scholar
- Polanía, R., Nitsche, M. A., & Paulus, W. (2011a). Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Human Brain Mapping, 32(8), 1236–1249.PubMedPubMedCentralGoogle Scholar
- Polanía, R., Paulus, W., Antal, A., & Nitsche, M. A. (2011b). Introducing graph theory to track for neuroplastic alterations in the resting human brain: A transcranial direct current stimulation study. NeuroImage, 54(3), 2287–2296.PubMedPubMedCentralGoogle Scholar
- Polanía, R., Paulus, W., & Nitsche, M. A. (2012). Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Human Brain Mapping, 33(10), 2499–2508.PubMedPubMedCentralGoogle Scholar
- Rahman, A., Lafon, B., & Bikson, M. (2015). Multilevel computational models for predicting the cellular effects of noninvasive brain stimulation. Progress in Brain Research, 222, 25–40.PubMedGoogle Scholar
- Rahman, A., Lafon, B., Parra, L. C., & Bikson, M. (2017). Direct current stimulation boosts synaptic gain and cooperativity in vitro. The Journal of Physiology, 595(11), 3535–3547.PubMedPubMedCentralGoogle Scholar
- Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L. C., & Bikson, M. (2013). Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. The Journal of Physiology, 591(10), 2563–2578.PubMedPubMedCentralGoogle Scholar
- Reato, D., Gasca, F., Datta, A., Bikson, M., Marshall, L., & Parra, L. C. (2013). Transcranial electrical stimulation accelerates human sleep homeostasis. PLoS Computational Biology, 9(2), e1002898.PubMedPubMedCentralGoogle Scholar
- Reato, D., Rahman, A., Bikson, M., & Parra, L. C. (2010). Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. The Journal of Neuroscience, 30(45), 15067–15079.PubMedPubMedCentralGoogle Scholar
- Ridding, M. C., & Ziemann, U. (2010). Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. The Journal of Physiology, 588(Pt 13), 2291–2304.PubMedPubMedCentralGoogle Scholar
- Saturnino, G. B., Antunes, A., & Thielscher, A. (2015). On the importance of electrode parameters for shaping electric field patterns generated by tDCS. NeuroImage, 120, 25–35.Google Scholar
- Seibt, O., Brunoni, A. R., Huang, Y., & Bikson, M. (2015). The pursuit of DLPFC: Non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric bicephalic transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 590–602.Google Scholar
- Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., … Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. The Journal of Neuroscience, 29(16), 5202–5206.PubMedGoogle Scholar
- Strube, W., Bunse, T., Nitsche, M. A., Palm, U., Falkai, P., & Hasan, A. (2016). Differential response to anodal tDCS and PAS is indicative of impaired focal LTP-like plasticity in schizophrenia. Behavioural Brain Research, 311, 46–53.PubMedGoogle Scholar
- Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., … Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031–1048.PubMedPubMedCentralGoogle Scholar
- Woods, A. J., Bryant, V., Sacchetti, D., Gervits, F., & Hamilton, R. (2015). Effects of electrode drift in transcranial direct current stimulation. Brain Stimulation, 8(3), 515–519.PubMedPubMedCentralGoogle Scholar