Transcranial Direct Current Stimulation in Cognitive Neuroscience

  • Priyanka P. Shah-Basak
  • Roy H. Hamilton
  • Michael A. NitscheEmail author
  • Adam J. Woods


Transcranial direct current stimulation (tDCS) is a remarkable research tool that has witnessed incredible growth in the field of cognitive neuroscience in recent years. As a technology that can manipulate brain activity, it can be used to complement neuroimaging approaches to define causal relationships between brain physiology and human behavior. The ease with which tDCS can be applied is one of the primary reasons for its ever growing popularity. A single session of tDCS enables the transient modulation of neural activity and cortical excitability, while protracted stimulation paired with behavioral tasks can induce regional plasticity in areas directly involved in the task and can result in enduring changes in performance. The effects of tDCS are not restricted to the areas to which it is directly targeted; rather, tDCS can elicit network-level changes that are relevant to complex aspects of human cognition and behavior.

In the first section of this chapter, we will describe current applications of tDCS in the field of cognitive neuroscience, covering a wide range of topics, including perception, memory formation, and social neuroscience. In the next section, we will discuss cognitive and neural enhancement using tDCS, in which the main goal is to improve performance in otherwise healthy humans. The last section will focus on the current state of the art in the field, and will include a critical discussion of the opportunities and limitations of tDCS in cognitive neuroscience, as well as future directions.


Cognition Memory Perception Social neuroscience Neuroenhancement tDCS Functional connectivity Functional imaging Structure-function relationships Limitations Future directions 


  1. Accornero, N., Li Voti, P., La Riccia, M., & Gregori, B. (2007). Visual evoked potentials modulation during direct current cortical polarization. Experimental Brain Research, 178(2), 261–266. CrossRefGoogle Scholar
  2. Amadi, U., Allman, C., Johansen-Berg, H., & Stagg, C. J. (2015). The homeostatic interaction between anodal transcranial direct current stimulation and motor learning in humans is related to GABAA activity. Brain Stimulation, 8(5), 898–905. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ambrus, G. G., Chaieb, L., Stilling, R., Rothkegel, H., Antal, A., & Paulus, W. (2016). Monitoring transcranial direct current stimulation induced changes in cortical excitability during the serial reaction time task. Neuroscience Letters, 616, 98–104. CrossRefGoogle Scholar
  4. Antal, A., Brepohl, N., Poreisz, C., Boros, K., Csifcsak, G., & Paulus, W. (2008). Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception. The Clinical Journal of Pain, 24(1), 56–63. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Antal, A., Kincses, T. Z., Nitsche, M. A., Bartfai, O., & Paulus, W. (2004). Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: Direct electrophysiological evidence. Investigative Ophthalmology & Visual Science, 45(2), 702–707.CrossRefGoogle Scholar
  6. Antal, A., Nitsche, M. A., & Paulus, W. (2001). External modulation of visual perception in humans. Neuroreport, 12(16), 3553–3555.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Antal, A., Polania, R., Schmidt-Samoa, C., Dechent, P., & Paulus, W. (2011). Transcranial direct current stimulation over the primary motor cortex during fMRI. NeuroImage, 55(2), 590–596. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Austin, A., Jiga-Boy, G. M., Rea, S., Newstead, S. A., Roderick, S., Davis, N. J., … Boy, F. (2016). Prefrontal electrical stimulation in non-depressed reduces levels of reported negative affects from daily stressors. Frontiers in Psychology, 7, 315. Google Scholar
  9. Barbieri, M., Negrini, M., Nitsche, M. A., & Rivolta, D. (2016). Anodal-tDCS over the human right occipital cortex enhances the perception and memory of both faces and objects. Neuropsychologia, 81, 238–244. CrossRefGoogle Scholar
  10. Baron, S. G., & Osherson, D. (2011). Evidence for conceptual combination in the left anterior temporal lobe. NeuroImage, 55(4), 1847–1852. CrossRefGoogle Scholar
  11. Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. The Journal of Physiology, 591(7), 1987–2000. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bersani, F. S., Minichino, A., Fattapposta, F., Bernabei, L., Spagnoli, F., Mannarelli, D., … Delle Chiaie, R. (2015). Prefrontocerebellar transcranial direct current stimulation increases amplitude and decreases latency of P3b component in patients with euthymic bipolar disorder. Neuropsychiatric Disease and Treatment, 11, 2913–2917. Google Scholar
  13. Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., … Woods, A. J. (2016). Safety of Transcranial direct current stimulation: Evidence based update 2016. Brain Stimulation, 9(5), 641–661. Google Scholar
  14. Bindman, L. J., Lippold, O. C., & Redfearn, J. W. (1964). The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. The Journal of Physiology, 172, 369–382.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bocci, T., Caleo, M., Tognazzi, S., Francini, N., Briscese, L., Maffei, L., … Sartucci, F. (2014). Evidence for metaplasticity in the human visual cortex. Journal of Neural Transmission (Vienna), 121(3), 221–231. CrossRefGoogle Scholar
  16. Bogdanov, M., Ruff, C. C., & Schwabe, L. (2015). Transcranial stimulation over the dorsolateral prefrontal cortex increases the impact of past expenses on decision-making. Cerebral Cortex. Google Scholar
  17. Boggio, P. S., Castro, L. O., Savagim, E. A., Braite, R., Cruz, V. C., Rocha, R. R., … Fregni, F. (2006). Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neuroscience Letters, 404(1–2), 232–236. CrossRefGoogle Scholar
  18. Bolognini, N., Olgiati, E., Rossetti, A., & Maravita, A. (2010). Enhancing multisensory spatial orienting by brain polarization of the parietal cortex. The European Journal of Neuroscience, 31(10), 1800–1806. CrossRefGoogle Scholar
  19. Cerruti, C., & Schlaug, G. (2009). Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. Journal of Cognitive Neuroscience, 21(10), 1980–1987. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chi, R. P., & Snyder, A. W. (2011). Facilitate insight by non-invasive brain stimulation. PLoS One, 6(2), e16655. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chi, R. P., & Snyder, A. W. (2012). Brain stimulation enables the solution of an inherently difficult problem. Neuroscience Letters, 515(2), 121–124. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chib, V. S., Yun, K., Takahashi, H., & Shimojo, S. (2013). Noninvasive remote activation of the ventral midbrain by transcranial direct current stimulation of prefrontal cortex. Translational Psychiatry, 3, e268. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Clark, V. P., & Parasuraman, R. (2014). Neuroenhancement: Enhancing brain and mind in health and in disease. NeuroImage, 85(Pt 3), 889–894. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Clarke, P. J., Browning, M., Hammond, G., Notebaert, L., & MacLeod, C. (2014). The causal role of the dorsolateral prefrontal cortex in the modification of attentional bias: Evidence from transcranial direct current stimulation. Biological Psychiatry, 76(12), 946–952.CrossRefGoogle Scholar
  25. Clemens, B., Jung, S., Zvyagintsev, M., Domahs, F., & Willmes, K. (2013). Modulating arithmetic fact retrieval: A single-blind, sham-controlled tDCS study with repeated fMRI measurements. Neuropsychologia, 51(7), 1279–1286. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Coffman, B. A., Clark, V. P., & Parasuraman, R. (2014). Battery powered thought: Enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. NeuroImage, 85(Pt 3), 895–908. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Coffman, B. A., Trumbo, M. C., & Clark, V. P. (2012). Enhancement of object detection with transcranial direct current stimulation is associated with increased attention. BMC Neuroscience, 13(1), 108.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Cohen Kadosh, R., Soskic, S., Iuculano, T., Kanai, R., & Walsh, V. (2010). Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Current Biology, 20(22), 2016–2020. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Conti, C. L., Moscon, J. A., Fregni, F., Nitsche, M. A., & Nakamura-Palacios, E. M. (2014). Cognitive related electrophysiological changes induced by non-invasive cortical electrical stimulation in crack-cocaine addiction. The International Journal of Neuropsychopharmacology, 17(9), 1465–1475. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Convento, S., Vallar, G., Galantini, C., & Bolognini, N. (2013). Neuromodulation of early multisensory interactions in the visual cortex. Journal of Cognitive Neuroscience, 25(5), 685–696. CrossRefGoogle Scholar
  31. Costa, T. L., Gualtieri, M., Barboni, M. T., Katayama, R. K., Boggio, P. S., & Ventura, D. F. (2015). Contrasting effects of transcranial direct current stimulation on central and peripheral visual fields. Experimental Brain Research, 233(5), 1391–1397. CrossRefGoogle Scholar
  32. Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201–207, 207 e201. CrossRefGoogle Scholar
  33. Dieckhofer, A., Waberski, T. D., Nitsche, M., Paulus, W., Buchner, H., & Gobbele, R. (2006). Transcranial direct current stimulation applied over the somatosensory cortex – Differential effect on low and high frequency SEPs. Clinical Neurophysiology, 117(10), 2221–2227. CrossRefGoogle Scholar
  34. Ding, Z., Li, J., Spiegel, D. P., Chen, Z., Chan, L., Luo, G., … Thompson, B. (2016). The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia. Scientific Reports, 6, 19280. Google Scholar
  35. Durand, S., Fromy, B., Bouye, P., Saumet, J. L., & Abraham, P. (2002). Vasodilatation in response to repeated anodal current application in the human skin relies on aspirin-sensitive mechanisms. The Journal of Physiology, 540(Pt 1), 261–269.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ellison, A., Ball, K. L., Moseley, P., Dowsett, J., Smith, D. T., Weis, S., & Lane, A. R. (2014). Functional interaction between right parietal and bilateral frontal cortices during visual search tasks revealed using functional magnetic imaging and transcranial direct current stimulation. PLoS One, 9(4), e93767. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Fecteau, S., Fregni, F., Boggio, P. S., Camprodon, J. A., & Pascual-Leone, A. (2010). Neuromodulation of decision-making in the addictive brain. Substance Use & Misuse, 45(11), 1766–1786. CrossRefGoogle Scholar
  38. Fecteau, S., Pascual-Leone, A., Zald, D. H., Liguori, P., Theoret, H., Boggio, P. S., & Fregni, F. (2007). Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. The Journal of Neuroscience, 27(23), 6212–6218. CrossRefGoogle Scholar
  39. Filmer, H. L., Dux, P. E., & Mattingley, J. B. (2015). Dissociable effects of anodal and cathodal tDCS reveal distinct functional roles for right parietal cortex in the detection of single and competing stimuli. Neuropsychologia, 74, 120–126. CrossRefGoogle Scholar
  40. Floel, A., Rosser, N., Michka, O., Knecht, S., & Breitenstein, C. (2008). Noninvasive brain stimulation improves language learning. Journal of Cognitive Neuroscience, 20(8), 1415–1422. CrossRefGoogle Scholar
  41. Floel, A., Suttorp, W., Kohl, O., Kurten, J., Lohmann, H., Breitenstein, C., & Knecht, S. (2012). Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiology of Aging, 33(8), 1682–1689. CrossRefGoogle Scholar
  42. Fregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., … Pascual-Leone, A. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166(1), 23–30. CrossRefGoogle Scholar
  43. Fregni, F., Orsati, F., Pedrosa, W., Fecteau, S., Tome, F. A., Nitsche, M. A., … Boggio, P. S. (2008). Transcranial direct current stimulation of the prefrontal cortex modulates the desire for specific foods. Appetite, 51(1), 34–41. CrossRefGoogle Scholar
  44. Galea, J. M., & Celnik, P. (2009). Brain polarization enhances the formation and retention of motor memories. Journal of Neurophysiology, 102(1), 294–301. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Gill, J., Shah-Basak, P. P., & Hamilton, R. (2015). It’s the thought that counts: Examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimulation, 8(2), 253–259. Google Scholar
  46. Grabner, R. H., Rutsche, B., Ruff, C. C., & Hauser, T. U. (2015). Transcranial direct current stimulation of the posterior parietal cortex modulates arithmetic learning. The European Journal of Neuroscience, 42(1), 1667–1674. CrossRefGoogle Scholar
  47. Grundey, J., Thirugnanasambandam, N., Kaminsky, K., Drees, A., Skwirba, A. C., Lang, N., … Nitsche, M. A. (2012). Neuroplasticity in cigarette smokers is altered under withdrawal and partially restituted by nicotine exposition. The Journal of Neuroscience, 32(12), 4156–4162. CrossRefGoogle Scholar
  48. Grundey, J., Thirugnasambandam, N., Amu, R., Paulus, W., & Nitsche, M. A. (2018). Nicotinic restoration of excitatory neuroplasticity is linked to improved implicit motor learning skills in deprived smokers. Frontiers in Neurology, 9, 367Google Scholar
  49. Grundmann, L., Rolke, R., Nitsche, M. A., Pavlakovic, G., Happe, S., Treede, R. D., … Bachmann, C. G. (2011). Effects of transcranial direct current stimulation of the primary sensory cortex on somatosensory perception. Brain Stimulation, 4(4), 253–260. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hamilton, R., Messing, S., & Chatterjee, A. (2011). Rethinking the thinking cap: Ethics of neural enhancement using noninvasive brain stimulation. Neurology, 76(2), 187–193. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Heimrath, K., Fiene, M., Rufener, K. S., & Zaehle, T. (2016). Modulating human auditory processing by transcranial electrical stimulation. Frontiers in Cellular Neuroscience, 10, 53. Google Scholar
  52. Horvath, J. C., Forte, J. D., & Carter, O. (2015). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 535–550. CrossRefGoogle Scholar
  53. Ihle, K., Rodriguez-Raecke, R., Luedtke, K., & May, A. (2014). tDCS modulates cortical nociceptive processing but has little to no impact on pain perception. Pain, 155(10), 2080–2087. CrossRefGoogle Scholar
  54. Impey, D., de la Salle, S., & Knott, V. (2016). Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing. Brain and Cognition, 105, 46–54. CrossRefGoogle Scholar
  55. Impey, D., & Knott, V. (2015). Effect of transcranial direct current stimulation (tDCS) on MMN-indexed auditory discrimination: A pilot study. Journal of Neural Transmission (Vienna), 122(8), 1175–1185. CrossRefGoogle Scholar
  56. Jacobson, L., Koslowsky, M., & Lavidor, M. (2012). tDCS polarity effects in motor and cognitive domains: A meta-analytical review. Experimental Brain Research, 216(1), 1–10. CrossRefGoogle Scholar
  57. Javadi, A. H., & Cheng, P. (2013). Transcranial direct current stimulation (tDCS) enhances reconsolidation of long-term memory. Brain Stimulation, 6(4), 668–674. CrossRefGoogle Scholar
  58. Javadi, A. H., & Walsh, V. (2012). Transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex modulates declarative memory. Brain Stimulation, 5(3), 231–241. CrossRefGoogle Scholar
  59. Kessler, S. K., Turkeltaub, P. E., Benson, J. G., & Hamilton, R. H. (2012). Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimulation, 5(2), 155–162. CrossRefGoogle Scholar
  60. Kim, S., Stephenson, M. C., Morris, P. G., & Jackson, S. R. (2014). tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: A 7 T magnetic resonance spectroscopy study. NeuroImage, 99, 237–243. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kincses, T. Z., Antal, A., Nitsche, M. A., Bartfai, O., & Paulus, W. (2004). Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia, 42(1), 113–117.CrossRefGoogle Scholar
  62. Knotkova, H., Nitsche, M. A., & Cruciani, R. A. (2013). Putative physiological mechanisms underlying tDCS analgesic effects. Frontiers in Human Neuroscience, 7, 628. Google Scholar
  63. Kraft, A., Roehmel, J., Olma, M. C., Schmidt, S., Irlbacher, K., & Brandt, S. A. (2010). Transcranial direct current stimulation affects visual perception measured by threshold perimetry. Experimental Brain Research, 207(3–4), 283–290. CrossRefGoogle Scholar
  64. Kuo, M. F., & Nitsche, M. A. (2012). Effects of transcranial electrical stimulation on cognition. Clinical EEG and Neuroscience, 43(3), 192–199. CrossRefGoogle Scholar
  65. Ladeira, A., Fregni, F., Campanha, C., Valasek, C. A., De Ridder, D., Brunoni, A. R., & Boggio, P. S. (2011). Polarity-dependent transcranial direct current stimulation effects on central auditory processing. PLoS One, 6(9), e25399. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lang, N., Siebner, H. R., Ward, N. S., Lee, L., Nitsche, M. A., Paulus, W., … Frackowiak, R. S. (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? The European Journal of Neuroscience, 22(2), 495–504. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lee, L., Siebner, H. R., Rowe, J. B., Rizzo, V., Rothwell, J. C., Frackowiak, R. S., & Friston, K. J. (2003). Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. The Journal of Neuroscience, 23(12), 5308–5318.CrossRefGoogle Scholar
  68. Lefebvre, S., Dricot, L., Laloux, P., Gradkowski, W., Desfontaines, P., Evrard, F., … Vandermeeren, Y. (2015). Neural substrates underlying stimulation-enhanced motor skill learning after stroke. Brain, 138(Pt 1), 149–163. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Loftus, A., & Nicholls, M. (2012). Testing the activation–orientation account of spatial attentional asymmetries using transcranial direct current stimulation. Neuropsychologia, 50(11), 2573–2576.CrossRefGoogle Scholar
  70. Lopez-Alonso, V., Cheeran, B., & Fernandez-del-Olmo, M. (2015). Relationship between non-invasive brain stimulation-induced plasticity and capacity for motor learning. Brain Stimulation, 8(6), 1209–1219. CrossRefGoogle Scholar
  71. Loui, P., Hohmann, A., & Schlaug, G. (2010). Inducing disorders in pitch perception and production: A reverse-engineering approach. Proceedings of Meetings on Acoustics, 9(1), 50002. Google Scholar
  72. Mancuso, L. E., Ilieva, I. P., Hamilton, R. H., & Farah, M. J. (2016). Does transcranial direct current stimulation improve healthy working memory?: A meta-analytic review. Journal of Cognitive Neuroscience, 28(8), 1063–1089. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Manenti, R., Brambilla, M., Petesi, M., Ferrari, C., & Cotelli, M. (2013). Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation. Frontiers in Aging Neuroscience, 5, 49. Google Scholar
  74. Marques, L. M., Lapenta, O. M., Merabet, L. B., Bolognini, N., & Boggio, P. S. (2014). Tuning and disrupting the brain-modulating the McGurk illusion with electrical stimulation. Frontiers in Human Neuroscience, 8, 533. Google Scholar
  75. Marshall, L., Molle, M., Hallschmid, M., & Born, J. (2004). Transcranial direct current stimulation during sleep improves declarative memory. The Journal of Neuroscience, 24(44), 9985–9992. CrossRefGoogle Scholar
  76. Martin, D. M., Liu, R., Alonzo, A., Green, M., Player, M. J., Sachdev, P., & Loo, C. K. (2013). Can transcranial direct current stimulation enhance outcomes from cognitive training? A randomized controlled trial in healthy participants. The International Journal of Neuropsychopharmacology, 16(9), 1927–1936. CrossRefGoogle Scholar
  77. Mathys, C., Loui, P., Zheng, X., & Schlaug, G. (2010). Non-invasive brain stimulation applied to Heschl’s gyrus modulates pitch discrimination. Frontiers in Psychology, 1, 193. Google Scholar
  78. Matsunaga, K., Nitsche, M. A., Tsuji, S., & Rothwell, J. C. (2004). Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clinical Neurophysiology, 115(2), 456–460.CrossRefPubMedPubMedCentralGoogle Scholar
  79. McIntire, L. K., McKinley, R. A., Goodyear, C., & Nelson, J. (2014). A comparison of the effects of transcranial direct current stimulation and caffeine on vigilance and cognitive performance during extended wakefulness. Brain Stimulation, 7(4), 499–507. Google Scholar
  80. Meinzer, M., Jahnigen, S., Copland, D. A., Darkow, R., Grittner, U., Avirame, K., … Floel, A. (2014). Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. Cortex, 50, 137–147. CrossRefGoogle Scholar
  81. Metuki, N., Sela, T., & Lavidor, M. (2012). Enhancing cognitive control components of insight problems solving by anodal tDCS of the left dorsolateral prefrontal cortex. Brain Stimulation, 5(2), 110–115. CrossRefGoogle Scholar
  82. Minarik, T., Berger, B., Althaus, L., Bader, V., Biebl, B., Brotzeller, F., … Sauseng, P. (2016). The importance of sample size for reproducibility of tDCS effects. Frontiers in Human Neuroscience, 10, 453. Google Scholar
  83. Nelson, J. T., McKinley, R. A., Golob, E. J., Warm, J. S., & Parasuraman, R. (2014). Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). Neuroimage, 85(Pt 3), 909–917. CrossRefGoogle Scholar
  84. Nitsche, M. A., Bikson, M., & Bestmann, S. (2015). On the use of meta-analysis in neuromodulatory non-invasive brain stimulation. Brain Stimulation, 8(3), 666–667. CrossRefPubMedPubMedCentralGoogle Scholar
  85. Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223. CrossRefPubMedPubMedCentralGoogle Scholar
  86. Nitsche, M. A., Doemkes, S., Karakose, T., Antal, A., Liebetanz, D., Lang, N., … Paulus, W. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology, 97(4), 3109–3117. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Nitsche, M. A., Jakoubkova, M., Thirugnanasambandam, N., Schmalfuss, L., Hullemann, S., Sonka, K., … Happe, S. (2010). Contribution of the premotor cortex to consolidation of motor sequence learning in humans during sleep. Journal of Neurophysiology, 104(5), 2603–2614. CrossRefGoogle Scholar
  88. Nitsche, M. A., Liebetanz, D., Lang, N., Antal, A., Tergau, F., & Paulus, W. (2003a). Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clinical Neurophysiology, 114(11), 2220–2222. author reply 2222-2223.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Nitsche, M. A., & Paulus, W. (2011). Transcranial direct current stimulation – Update 2011. Restorative Neurology and Neuroscience, 29(6), 463–492. Google Scholar
  90. Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003b). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619–626. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Parasuraman, R., & Galster, S. (2013). Sensing, assessing, and augmenting threat detection: Behavioral, neuroimaging, and brain stimulation evidence for the critical role of attention. Frontiers in Human Neuroscience, 7, 273. Google Scholar
  92. Pascual-Leone, A., Grafman, J., & Hallett, M. (1994a). Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science, 263(5151), 1287–1289.CrossRefGoogle Scholar
  93. Pascual-Leone, A., Valls-Sole, J., Wassermann, E. M., & Hallett, M. (1994b). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 117(Pt 4), 847–858.CrossRefGoogle Scholar
  94. Paulus, W., Classen, J., Cohen, L. G., Large, C. H., Di Lazzaro, V., Nitsche, M., … Ziemann, U. (2008). State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimulation, 1(3), 151–163. CrossRefGoogle Scholar
  95. Poreisz, C., Boros, K., Antal, A., & Paulus, W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Research Bulletin, 72(4–6), 208–214. CrossRefPubMedPubMedCentralGoogle Scholar
  96. Premoli, I., Castellanos, N., Rivolta, D., Belardinelli, P., Bajo, R., Zipser, C., … Ziemann, U. (2014). TMS-EEG signatures of GABAergic neurotransmission in the human cortex. The Journal of Neuroscience, 34(16), 5603–5612. CrossRefGoogle Scholar
  97. Price, A. R., McAdams, H., Grossman, M., & Hamilton, R. H. (2015). A meta-analysis of transcranial direct current stimulation studies examining the reliability of effects on language measures. Brain Stimulation, 8(6), 1093–1100. CrossRefPubMedPubMedCentralGoogle Scholar
  98. Ragert, P., Vandermeeren, Y., Camus, M., & Cohen, L. G. (2008). Improvement of spatial tactile acuity by transcranial direct current stimulation. Clinical Neurophysiology, 119(4), 805–811. CrossRefPubMedPubMedCentralGoogle Scholar
  99. Reinhart, R. M., Zhu, J., Park, S., & Woodman, G. F. (2015). Medial-frontal stimulation enhances learning in schizophrenia by restoring prediction error signaling. The Journal of Neuroscience, 35(35), 12232–12240. CrossRefGoogle Scholar
  100. Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., … Krakauer, J. W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1590–1595. CrossRefGoogle Scholar
  101. Rioult-Pedotti, M. S., Friedman, D., & Donoghue, J. P. (2000). Learning-induced LTP in neocortex. Science, 290(5491), 533–536.CrossRefPubMedGoogle Scholar
  102. Rogalewski, A., Breitenstein, C., Nitsche, M. A., Paulus, W., & Knecht, S. (2004). Transcranial direct current stimulation disrupts tactile perception. The European Journal of Neuroscience, 20(1), 313–316. CrossRefPubMedPubMedCentralGoogle Scholar
  103. Rogasch, N. C., Daskalakis, Z. J., & Fitzgerald, P. B. (2013). Mechanisms underlying long-interval cortical inhibition in the human motor cortex: A TMS-EEG study. Journal of Neurophysiology, 109(1), 89–98. CrossRefPubMedPubMedCentralGoogle Scholar
  104. Rogasch, N. C., Daskalakis, Z. J., & Fitzgerald, P. B. (2015). Cortical inhibition of distinct mechanisms in the dorsolateral prefrontal cortex is related to working memory performance: A TMS-EEG study. Cortex, 64, 68–77. CrossRefPubMedPubMedCentralGoogle Scholar
  105. Romero Lauro, L. J., Rosanova, M., Mattavelli, G., Convento, S., Pisoni, A., Opitz, A., … Vallar, G. (2014). TDCS increases cortical excitability: Direct evidence from TMS-EEG. Cortex, 58, 99–111. CrossRefPubMedPubMedCentralGoogle Scholar
  106. Roth, N., Lutiger, B., Hasenfratz, M., Battig, K., & Knye, M. (1992). Smoking deprivation in “early” and “late” smokers and memory functions. Psychopharmacology, 106(2), 253–260.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Rounis, E., Lee, L., Siebner, H. R., Rowe, J. B., Friston, K. J., Rothwell, J. C., & Frackowiak, R. S. (2005). Frequency specific changes in regional cerebral blood flow and motor system connectivity following rTMS to the primary motor cortex. NeuroImage, 26(1), 164–176. CrossRefPubMedGoogle Scholar
  108. Rutsche, B., Hauser, T. U., Jancke, L., & Grabner, R. H. (2015). When problem size matters: Differential effects of brain stimulation on arithmetic problem solving and neural oscillations. PLoS One, 10(3), e0120665. CrossRefPubMedPubMedCentralGoogle Scholar
  109. Sandrini, M., Brambilla, M., Manenti, R., Rosini, S., Cohen, L. G., & Cotelli, M. (2014). Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly. Frontiers in Aging Neuroscience, 6, 289. Google Scholar
  110. Sarkar, A., Dowker, A., & Cohen Kadosh, R. (2014). Cognitive enhancement or cognitive cost: Trait-specific outcomes of brain stimulation in the case of mathematics anxiety. The Journal of Neuroscience, 34(50), 16605–16610. CrossRefPubMedGoogle Scholar
  111. Saucedo Marquez, C. M., Zhang, X., Swinnen, S. P., Meesen, R., & Wenderoth, N. (2013). Task-specific effect of transcranial direct current stimulation on motor learning. Frontiers in Human Neuroscience, 7, 333. Google Scholar
  112. Shin, Y. I., Foerster, A., & Nitsche, M. A. (2015). Transcranial direct current stimulation (tDCS) – Application in neuropsychology. Neuropsychologia, 69, 154–175. CrossRefGoogle Scholar
  113. Sparing, R., Thimm, M., Hesse, M., Küst, J., Karbe, H., & Fink, G. (2009). Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain, 132(11), 3011–3020.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Stagg, C. J. (2014). Magnetic resonance spectroscopy as a tool to study the role of GABA in motor-cortical plasticity. NeuroImage, 86, 19–27. CrossRefGoogle Scholar
  115. Stagg, C. J., Bachtiar, V., & Johansen-Berg, H. (2011). The role of GABA in human motor learning. Current Biology, 21(6), 480–484. CrossRefPubMedPubMedCentralGoogle Scholar
  116. Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., … Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. The Journal of Neuroscience, 29(16), 5202–5206. CrossRefGoogle Scholar
  117. Strigaro, G., Mayer, I., Chen, J. C., Cantello, R., & Rothwell, J. C. (2015). Transcranial direct current stimulation effects on single and paired flash visual evoked potentials. Clinical EEG and Neuroscience, 46(3), 208–213. Google Scholar
  118. Tanoue, R. T., Jones, K. T., Peterson, D. J., & Berryhill, M. E. (2013). Differential frontal involvement in shifts of internal and perceptual attention. Brain Stimulation, 6(4), 675–682.CrossRefGoogle Scholar
  119. Turkeltaub, P. E., Benson, J., Hamilton, R. H., Datta, A., Bikson, M., & Coslett, H. B. (2012). Left lateralizing transcranial direct current stimulation improves reading efficiency. Brain Stimulation, 5(3), 201–207. CrossRefGoogle Scholar
  120. Varga, E. T., Elif, K., Antal, A., Zimmer, M., Harza, I., Paulus, W., & Kovacs, G. (2007). Cathodal transcranial direct current stimulation over the parietal cortex modifies facial gender adaptation. Ideggyógyászati Szemle, 60(11–12), 474–479.Google Scholar
  121. Vaseghi, B., Zoghi, M., & Jaberzadeh, S. (2014). Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study. Clinical Neurophysiology, 125(9), 1847–1858. CrossRefGoogle Scholar
  122. Weber, M. J., Messing, S. B., Rao, H., Detre, J. A., & Thompson-Schill, S. L. (2014). Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: A tDCS-fMRI study. Human Brain Mapping, 35(8), 3673–3686. CrossRefPubMedPubMedCentralGoogle Scholar
  123. Wright, J. M., & Krekelberg, B. (2014). Transcranial direct current stimulation over posterior parietal cortex modulates visuospatial localization. Journal of Vision, 14(9). CrossRefPubMedPubMedCentralGoogle Scholar
  124. Wurzman, R., Hamilton, R. H., Pascual-Leone, A., & Fox, M. D. (2016). An open letter concerning do-it-yourself users of transcranial direct current stimulation. Annals of Neurology, 80(1), 1–4. CrossRefPubMedPubMedCentralGoogle Scholar
  125. Zaehle, T., Beretta, M., Jancke, L., Herrmann, C. S., & Sandmann, P. (2011). Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: Direct electrophysiological evidence. Experimental Brain Research, 215(2), 135–140. CrossRefGoogle Scholar
  126. Zandieh, A., Parhizgar, S. E., Fakhri, M., Taghvaei, M., Miri, S., Shahbabaie, A., … Ekhtiari, H. (2013). Modulation of cold pain perception by transcranial direct current stimulation in healthy individuals. Neuromodulation, 16(4), 345–348.; discussion 348. CrossRefGoogle Scholar
  127. Zheng, X., Alsop, D. C., & Schlaug, G. (2011). Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. NeuroImage, 58(1), 26–33. CrossRefPubMedPubMedCentralGoogle Scholar
  128. Zito, G. A., Senti, T., Cazzoli, D., Muri, R. M., Mosimann, U. P., Nyffeler, T., & Nef, T. (2015). Cathodal HD-tDCS on the right V5 improves motion perception in humans. Frontiers in Behavioral Neuroscience, 9, 257. Google Scholar
  129. Zmigrod, S. (2014). The role of the parietal cortex in multisensory and response integration: Evidence from transcranial direct current stimulation (tDCS). Multisensory Research, 27(2), 161–172.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Priyanka P. Shah-Basak
    • 1
  • Roy H. Hamilton
    • 2
    • 3
    • 4
  • Michael A. Nitsche
    • 5
    • 6
    Email author
  • Adam J. Woods
    • 7
  1. 1.Rotman Research InstituteBaycrest Health SciencesTorontoCanada
  2. 2.Department of NeurologyUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Physical Medicine and RehabilitationUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Goddard Laboratories, Room 518University of PennsylvaniaPhiladelphiaUSA
  5. 5.Department of Psychology and NeurosciencesLeibniz Research Centre for Working Environment and Human FactorsDortmundGermany
  6. 6.University Medical Hospital BergmannsheilBochumGermany
  7. 7.Center for Cognitive Aging and Memory (CAM), McKnight Brain Institute, Department of Clinical and Health Psychology, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleUSA

Personalised recommendations