Transcranial Direct Current Stimulation in Aging Research

  • Adam J. WoodsEmail author
  • Daria Antonenko
  • Agnes Flöel
  • Benjamin M. Hampstead
  • David Clark
  • Helena Knotkova


As we age, the brain not only undergoes structural changes, but also a cascade of neurophysiological and neurochemical changes. These age-related changes result in declines in cognition, motor, and sensory function, even in the absence of neurological or neurodegenerative disease. Transcranial direct current stimulation-based effects on neuronal activity, neuroplastic response of tissue, and modulation of hyper vs. hypo active brain systems may have significant benefit for ameliorating symptoms of advanced aging in the brain. However, there are significant practical, technical and methodological considerations necessary for appropriately designing and implementing tDCS in aging populations. In this chapter, we will discuss the impact of brain atrophy and comorbid age-related conditions on tDCS, as well as potential modifying effects of medications commonly used in older adults. This chapter will describe appropriate considerations for selection of functional outcomes for tDCS studies in older adults. This will include discussion of relevant changes in motor and cortical excitability with age that can impact tDCS outcomes. We then review evidence for effects of tDCS on age-related cognitive, physical and motor function, and sensory processing while paying special attention to methodological challenges in these domains. This chapter will also cover special considerations for the adjunctive use of tDCS with electrophysiology and functional magnetic resonance imaging in older adults, and specific ethical consideration of tDCS use in this population. Finally, the chapter will examine additional considerations for the application of tDCS for purposes of enhancing function in healthy seniors in the absence of disease states.


Transcranial direct current stimulation (tDCS) Aging Cognition Sensory-motor function Functional outcomes Age-related disorders Neurophysiology Design Methodology Technical considerations Functional enhancement 


  1. Abernethy, A. P., & Currow, D. C. (2011). Patient self-reporting in palliative care using information technology: Yes, there is hope! Palliative Medicine, 25, 673–674. PubMedGoogle Scholar
  2. Ahn, H., Woods, A. J., Kunik, M. E., Bhattacharjee, A., Chen, Z., Choi, E., & Fillingim, R. B. (2017). Efficacy of transcranial direct current stimulation over primary motor cortex (anode) and contralateral supraorbital area (cathode) on clinical pain severity and mobility performance in persons with knee osteoarthritis: An experimenter- and participant-bl. Brain Stimulation, 10, 902–909. PubMedPubMedCentralGoogle Scholar
  3. Andrews, S. C. (2001). Caregiver burden and symptom distress in people with cancer receiving hospice care. Oncology Nursing Forum, 28, 1469–1474.Google Scholar
  4. Anton, S. D., Woods, A. J., Ashizawa, T., Barb, D., Buford, T. W., Carter, C. S., … Pahor, M. (2015). Successful aging: Advancing the science of physical independence in older adults. Ageing Research Reviews, 24, 304–327. PubMedPubMedCentralGoogle Scholar
  5. Antonenko, D., & Flöel, A. (2013). Healthy aging by staying selectively connected: A mini-review. Gerontology, 60, 3–9.PubMedGoogle Scholar
  6. Antonenko, D., Schubert, F., Bohm, F., Ittermann, B., Aydin, S., Hayek, D., … Flöel, A. (2017). tDCS-induced modulation of GABA levels and resting-state functional connectivity in older adults. The Journal of Neuroscience, 37, 79–17. PubMedGoogle Scholar
  7. Berryhill, M. E., & Jones, K. T. (2012). tDCS selectively improves working memory in older adults with more education. Neuroscience Letters, 521, 148–151. PubMedGoogle Scholar
  8. Bikson, M., Rahman, A., Datta, A., Fregni, F., & Merabet, L. (2012). High-resolution modeling assisted design of customized and individualized transcranial direct current stimulation protocols. Neuromodulation, 15, 306–314. Google Scholar
  9. Bishop, N. A., Lu, T., & Yankner, B. A. (2010). Neural mechanisms of ageing and cognitive decline. Nature, 464, 529–535. PubMedPubMedCentralGoogle Scholar
  10. Boggio, P. S., Campanhã, C., Valasek, C. A., Fecteau, S., Pascual-Leone, A., & Fregni, F. (2010). Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation. The European Journal of Neuroscience, 31, 593–597. PubMedGoogle Scholar
  11. Borsheski, R., & Johnson, Q. L. (2014). Pain management in the geriatric population. Missouri Medicine, 111, 508–511.Google Scholar
  12. Brambilla, M., Manenti, R., Ferrari, C., & Cotelli, M. (2015). Better together: Left and right hemisphere engagement to reduce age-related memory loss. Behavioural Brain Research, 293, 125–133. PubMedGoogle Scholar
  13. Brault, M. W. (2012). Americans with disabilities: 2010 – Household economic studies. In: Current population reports (pp. 70–131). Washington, DC: U.S. Census Bureau – U.S. Department of Commerce – Economics and Statistics Administration. Google Scholar
  14. Brunoni, A. R., Amadera, J., Berbel, B., Volz, M. S., Rizzerio, B. G., & Fregni, F. (2011). A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. The International Journal of Neuropsychopharmacology, 14, 1133–1145. PubMedGoogle Scholar
  15. Bureau, U. S. C. (2009). An aging world: 2008. Washington DC: U.S. Census Bureau – U.S. Department of Commerce –Economics and Statistics Administration. P95/09–1Google Scholar
  16. Centers for Medicare and Medicaid Services. (2012). Chronic conditions among medicare beneficiaries, chartbook. Baltimore, MD: Centers for Medicare and Medicaid Services.Google Scholar
  17. Charvet, L. E., Kasschau, M., Datta, A., Knotkova, H., Stevens, M. C., Alonzo, A., … Bikson, M. (2015). Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: Guidelines for technology and protocols. Frontiers in Systems Neuroscience, 9, 26. Google Scholar
  18. Coppi, E., Houdayer, E., Chieffo, R., Spagnolo, F., Inuggi, A., Straffi, L., … Leocani, L. (2014). Age-related changes in motor cortical representation and interhemispheric interactions: A transcranial magnetic stimulation study. Frontiers in Aging Neuroscience, 6. Google Scholar
  19. Costa-Requena, G., Espinosa Val, M. C., & Cristofol, R. (2015). Caregiver burden in end-of-life care: Advanced cancer and final stage of dementia. Palliative & Supportive Care, 13, 583–589. PubMedGoogle Scholar
  20. Craig, C. E., & Doumas, M. (2017). Anodal transcranial direct current stimulation shows minimal, measure-specific effects on dynamic postural control in young and older adults: A double blind, sham-controlled study. PLoS One, 12, e0170331. PubMedPubMedCentralGoogle Scholar
  21. Damoiseaux, J. S., & Greicius, M. D. (2009). Greater than the sum of its parts: A review of studies combining structural connectivity and resting-state functional connectivity. Brain Structure & Function, 213, 525–533. PubMedGoogle Scholar
  22. Fertonani, A., Brambilla, M., Cotelli, M., & Miniussi, C. (2014). The timing of cognitive plasticity in physiological aging: A tDCS study of naming. Frontiers in Aging Neuroscience, 6. Google Scholar
  23. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., … Dale, A. M. (2002). Whole brain segmentation. Neuron, 33, 341–355. PubMedPubMedCentralGoogle Scholar
  24. Flöel, A., Suttorp, W., Kohl, O., Kürten, J., Lohmann, H., Breitenstein, C., & Knecht, S. (2012). Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiology of Aging, 33, 1682–1689. PubMedGoogle Scholar
  25. Fujiyama, H., Hinder, M. R., Barzideh, A., Van de Vijver, C., Badache, A. C., Manrique-C, M. N., … Swinnen, S. P. (2017). Preconditioning tDCS facilitates subsequent tDCS effect on skill acquisition in older adults. Neurobiology of Aging, 51, 31–42. PubMedGoogle Scholar
  26. Fujiyama, H., Hyde, J., Hinder, M. R., Kim, S. J., McCormack, G. H., Vickers, J. C., & Summers, J. J. (2014). Delayed plastic responses to anodal tDCS in older adults. Frontiers in Aging Neuroscience, 6. Google Scholar
  27. Ge, Y., Grossman, R. I., Babb, J. S., Rabin, M. L., Mannon, L. J., & Kolson, D. L. (2002). Age-related total gray matter and white matter changes in normal adult brain. Part I: Volumetric MR imaging analysis. AJNR. American Journal of Neuroradiology, 23, 1327–1333.Google Scholar
  28. Goh, J. O. S. (2011). Functional dedifferentiation and altered connectivity in older adults: Neural accounts of cognitive aging. Aging and Disease, 2, 30–48.Google Scholar
  29. Goodwill, A. M., Daly, R. M., & Kidgell, D. J. (2015). The effects of anodal-tDCS on cross-limb transfer in older adults. Clinical Neurophysiology, 126, 2189–2197. PubMedGoogle Scholar
  30. Goodwill, A. M., Reynolds, J., Daly, R. M., & Kidgell, D. J. (2013). Formation of cortical plasticity in older adults following tDCS and motor training. Frontiers in Aging Neuroscience, 5. Google Scholar
  31. Grady, C. (2012). The cognitive neuroscience of ageing. Nature Reviews. Neuroscience, 13, 491–505. PubMedPubMedCentralGoogle Scholar
  32. Gunning-Dixon, F. M., Brickman, A. M., Cheng, J. C., & Alexopoulos, G. S. (2009). Aging of cerebral white matter: A review of MRI findings. International Journal of Geriatric Psychiatry, 24, 109–117.PubMedPubMedCentralGoogle Scholar
  33. Gutchess, A. (2014). Plasticity of the aging brain: New directions in cognitive neuroscience. Science (80- ), 346, 579–582. PubMedGoogle Scholar
  34. Hampstead, B. M., Khoshnoodi, M., Yan, W., Deshpande, G., & Sathian, K. (2016). Patterns of effective connectivity during memory encoding and retrieval differ between patients with mild cognitive impairment and healthy older adults. NeuroImage, 124, 997–1008. PubMedGoogle Scholar
  35. Hardwick, R. M., & Celnik, P. A. (2014). Cerebellar direct current stimulation enhances motor learning in older adults. Neurobiology of Aging, 35, 2217–2221. PubMedPubMedCentralGoogle Scholar
  36. Harty, S., Robertson, I. H., Miniussi, C., Sheehy, O. C., Devine, C. A., McCreery, S., & O’Connell, R. G. (2014). Transcranial direct current stimulation over right dorsolateral prefrontal cortex enhances error awareness in older age. The Journal of Neuroscience, 34, 3646–3652. PubMedGoogle Scholar
  37. Hasselman, D. (2012). Super-utilizer summit common themes from innovation complex care management programs center for health care strategies. Access on 17 July18.
  38. Heise, K.-F., Niehoff, M., Feldheim, J.-F., Liuzzi, G., Gerloff, C., & Hummel, F. C. (2014). Differential behavioral and physiological effects of anodal transcranial direct current stimulation in healthy adults of younger and older age. Frontiers in Aging Neuroscience, 6, 146. Google Scholar
  39. Hoff, M., Kaminski, E., Rjosk, V., Sehm, B., Steele, C. J., Villringer, A., & Ragert, P. (2015). Augmenting mirror visual feedback-induced performance improvements in older adults. The European Journal of Neuroscience, 41, 1475–1483. PubMedGoogle Scholar
  40. Holland, R., Leff, A. P., Josephs, O., Galea, J. M., Desikan, M., Price, C. J., … Crinion, J. (2011). Speech facilitation by left inferior frontal cortex stimulation. Current Biology, 21, 1403–1407. PubMedPubMedCentralGoogle Scholar
  41. Hsu, W.-Y., Ku, Y., Zanto, T. P., & Gazzaley, A. (2015). Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: A systematic review and meta-analysis. Neurobiology of Aging, 36, 2348–2359. PubMedPubMedCentralGoogle Scholar
  42. Hummel, F. C., Heise, K., Celnik, P., Floel, A., Gerloff, C., & Cohen, L. G. (2010). Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiology of Aging, 31, 2160–2168. PubMedGoogle Scholar
  43. Jeon, S. Y., & Han, S. J. (2012). Improvement of the working memory and naming by transcranial direct current stimulation. Annals of Rehabilitation Medicine, 36, 585–595. PubMedPubMedCentralGoogle Scholar
  44. Jones, K. T., Stephens, J. A., Alam, M., Bikson, M., & Berryhill, M. E. (2015). Longitudinal neurostimulation in older adults improves working memory. PLoS One, 10, e0121904. Google Scholar
  45. Krause, B., & Cohen Kadosh, R. (2014). Not all brains are created equal: The relevance of individual differences in responsiveness to transcranial electrical stimulation. Frontiers in Systems Neuroscience, 8, 25. Google Scholar
  46. Kuo, M.-F., & Nitsche, M. A. (2012). Effects of transcranial electrical stimulation on cognition. Clinical EEG and Neuroscience, 43, 192–199.PubMedGoogle Scholar
  47. Laakso, I., Tanaka, S., Koyama, S., De Santis, V., & Hirata, A. (2015). Inter-subject variability in electric fields of motor cortical tDCS. Brain Stimulation, 8(5), 906–913. PubMedGoogle Scholar
  48. Learmonth, G., Thut, G., Benwell, C. S. Y., & Harvey, M. (2015). The implications of state-dependent tDCS effects in aging: Behavioural response is determined by baseline performance. Neuropsychologia, 74, 108–119. PubMedGoogle Scholar
  49. Lindenberg, R., Nachtigall, L., Meinzer, M., Sieg, M. M., & Flöel, A. (2013). Differential effects of dual and unihemispheric motor cortex stimulation in older adults. The Journal of Neuroscience, 33, 9176–9183. PubMedGoogle Scholar
  50. Lohmann, G., Margulies, D. S., Horstmann, A., Pleger, B., Lepsien, J., Goldhahn, D., … Turner, R. (2010). Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS One, 5, e10232. PubMedPubMedCentralGoogle Scholar
  51. Luft, C. D. B., Pereda, E., Banissy, M. J., & Bhattacharya, J. (2014). Best of both worlds: Promise of combining brain stimulation and brain connectome. Frontiers in Systems Neuroscience, 8, 132. Google Scholar
  52. Makris, U. E., Abrams, R. C., Gurland, B., & Reid, M. C. (2014). Management of persistent pain in the older patient: A clinical review. JAMA, 312, 825–836. PubMedPubMedCentralGoogle Scholar
  53. Manenti, R., Brambilla, M., Petesi, M., Ferrari, C., & Cotelli, M. (2013). Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation. Frontiers in Aging Neuroscience, 5. Google Scholar
  54. Manor, B., Zhou, J., Jor’dan, A., Zhang, J., Fang, J., & Pascual-Leone, A. (2016). Reduction of dual-task costs by noninvasive modulation of prefrontal activity in healthy elders. Journal of Cognitive Neuroscience, 28(2), 275–281.PubMedGoogle Scholar
  55. Marquez, J., Conley, A., Karayanidis, F., Lagopoulos, J., & Parsons, M. (2015). Anodal direct current stimulation in the healthy aged: Effects determined by the hemisphere stimulated. Restorative Neurology and Neuroscience, 33, 509–519. PubMedPubMedCentralGoogle Scholar
  56. Martin, A., Meinzer, M., Lindenberg, R., Sieg, M. M., Nachtigall, L., & Flöel, A. (2017). Effects of transcranial direct current stimulation on neural network structure in young and older adults. Journal of Cognitive Neuroscience, 29, 1–12. PubMedGoogle Scholar
  57. McGinley, M., Hoffman, R. L., Russ, D. W., Thomas, J. S., & Clark, B. C. (2010). Older adults exhibit more intracortical inhibition and less intracortical facilitation than young adults. Experimental Gerontology, 45, 671–678. PubMedPubMedCentralGoogle Scholar
  58. McLaren, M. E., Nissim, N. R., & Woods, A. J. (2018). The effects of medication use in transcranial direct current stimulation: A brief review. Brain Stimulation, 11(1), 52–58.PubMedGoogle Scholar
  59. Meinzer, M., Lindenberg, R., Antonenko, D., Flaisch, T., & Flöel, A. (2013). Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. The Journal of Neuroscience, 33, 12470–12478. PubMedPubMedCentralGoogle Scholar
  60. Meinzer, M., Lindenberg, R., Phan, M. T., Ulm, L., Volk, C., & Flöel, A. (2014). Transcranial direct current stimulation in mild cognitive impairment: Behavioral effects and neural mechanisms. Alzheimer’s & Dementia, 11, 1032–1040. Google Scholar
  61. Nilsson, J., Lebedev, A. V., & Lövdén, M. (2015). No significant effect of prefrontal tDCS on working memory performance in older adults. Frontiers in Aging Neuroscience, 7, Article 230. Google Scholar
  62. Nilsson, J., Lebedev, A. V., Rydström, A., & Lövdén, M. (2017). Direct-current stimulation does little to improve the outcome of working memory training in older adults. Psychological Science, 28, 907–920. PubMedPubMedCentralGoogle Scholar
  63. Nissim, N. R., O’Shea, A. M., Bryant, V., Porges, E. C., Cohen, R., & Woods, A. J. (2017). Frontal structural neural correlates of working memory performance in older adults. Frontiers in Aging Neuroscience, 08. Google Scholar
  64. Nitsche, M., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., … Paulus, W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of Physiology, 553, 293–301. PubMedPubMedCentralGoogle Scholar
  65. Nitsche, M. A., Grundey, J., Liebetanz, D., Lang, N., Tergau, F., & Paulus, W. (2004a). Catecholaminergic consolidation of motor cortical neuroplasticity in humans. Cerebral Cortex, 14, 1240–1245. Google Scholar
  66. Nitsche, M. A., Jaussi, W., Liebetanz, D., Lang, N., Tergau, F., & Paulus, W. (2004b). Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology, 29, 1573–1578. PubMedPubMedCentralGoogle Scholar
  67. Nitsche, M. A., Kuo, M. F., Karrasch, R., Wächter, B., Liebetanz, D., & Paulus, W. (2009). Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biological Psychiatry, 66, 503–508. PubMedPubMedCentralGoogle Scholar
  68. Nitsche, M. A., Lampe, C., Antal, A., Liebetanz, D., Lang, N., Tergau, F., & Paulus, W. (2006). Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. The European Journal of Neuroscience, 23, 1651–1657. PubMedPubMedCentralGoogle Scholar
  69. Nitsche, M. A., Liebetanz, D., Schlitterlau, A., Henschke, U., Fricke, K., Frommann, K., … Tergau, F. (2004c). GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. The European Journal of Neuroscience, 19, 2720–2726. PubMedPubMedCentralGoogle Scholar
  70. Nitsche, M. A., Müller-Dahlhaus, F., Paulus, W., & Ziemann, U. (2012). The pharmacology of neuroplasticity induced by non-invasive brain stimulation: Building models for the clinical use of CNS active drugs. The Journal of Physiology, 590, 4641–4662. PubMedPubMedCentralGoogle Scholar
  71. Ortman, J. M., Velkoff, V. A., & Hogan, H. (2014). An aging nation: The older population in the United States. Economics and Statistics Administration U.S. Department of Commerce, 1964, 1–28. Google Scholar
  72. Panouillères, M. T. N., Joundi, R. A., Brittain, J.-S., & Jenkinson, N. (2015). Reversing motor adaptation deficits in the ageing brain using non-invasive stimulation. The Journal of Physiology, 593(16), 3645–3655. PubMedPubMedCentralGoogle Scholar
  73. Parikh, P. J., & Cole, K. J. (2014). Effects of transcranial direct current stimulation in combination with motor practice on dexterous grasping and manipulation in healthy older adults. Physiological Reports, 2, e00255. PubMedPubMedCentralGoogle Scholar
  74. Parikh, P. J., & Cole, K. J. (2015). Effects of transcranial direct current stimulation on the control of finger force during dexterous manipulation in healthy older adults. PLoS One, 10, e0124137. PubMedPubMedCentralGoogle Scholar
  75. Park, S. H., Seo, J. H., Kim, Y. H., & Ko, M.-H. (2014). Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. Neuroreport, 25, 122–126. Google Scholar
  76. Perceval, G., Flöel, A., & Meinzer, M. (2016). Can transcranial direct current stimulation counteract age-associated functional impairment? Neuroscience and Biobehavioral Reviews, 65, 157–172.Google Scholar
  77. Prehn, K., & Flöel, A. (2015). Potentials and limits to enhance cognitive functions in healthy and pathological aging by tDCS. Frontiers in Cellular Neuroscience, 9, 355. Google Scholar
  78. Puri, R., & Hinder, M. (2016). Response: “Commentary: Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: A group and individual perspective.”. Frontiers in Aging Neuroscience, 8, 28.Google Scholar
  79. Puri, R., Hinder, M. R., Fujiyama, H., Gomez, R., Carson, R. G., & Summers, J. J. (2015). Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: A group and individual perspective. Frontiers in Aging Neuroscience, 7. Google Scholar
  80. Reid, M. C., Eccleston, C., & Pillemer, K. (2015). Management of chronic pain in older adults. BMJ, 350, h532. PubMedPubMedCentralGoogle Scholar
  81. Resnick, S. M., Davatzikos, C., Kraut, M. A., & Zonderman, A. B. (2000). Longitudinal brain changes in older adults. Neurobiology of Aging, 21, 40. Google Scholar
  82. Ross, L. A., McCoy, D., Coslett, H. B., Olson, I. R., & Wolk, D. A. (2011). Improved proper name recall in aging after electrical stimulation of the anterior temporal lobes. Frontiers in Aging Neuroscience, 3, 1–8. Google Scholar
  83. Sala-Llonch, R., Bartrés-Faz, D., & Junqué, C. (2015). Reorganization of brain networks in aging: A review of functional connectivity studies. Frontiers in Psychology, 6, 663. Google Scholar
  84. Salat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. S., Busa, E., … Fischl, B. (2004). Thinning of the cerebral cortex in aging. Cerebral Cortex, 14, 721–730. PubMedGoogle Scholar
  85. Salat, D. H., Kaye, J. A., & Janowsky, J. S. (1999). Prefrontal gray and white matter volumes in healthy aging and Alzheimer disease. Archives of Neurology, 56, 338–344. PubMedGoogle Scholar
  86. Sandrini, M., Brambilla, M., Manenti, R., Rosini, S., Cohen, L. G., & Cotelli, M. (2014). Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly. Frontiers in Aging Neuroscience, 6. Google Scholar
  87. Sandrini, M., Manenti, R., Brambilla, M., Cobelli, C., Cohen, L. G., & Cotelli, M. (2016). Older adults get episodic memory boosting from noninvasive stimulation of prefrontal cortex during learning. Neurobiology of Aging, 39, 210–216. PubMedGoogle Scholar
  88. Seo, M. H., Park, S. H., Seo, J. H., Kim, Y. H., & Ko, M. H. (2011). Improvement of the working memory by transcranial direct current stimultion in healthy older adults. Journal of Korean Academy of Rehabilitation Medicine, 35, 201–206.Google Scholar
  89. Sawyer, P., Bodner, E. V., Ritchie, C. S., & Allman, R. M. (2006). Pain and pain medication use in community-dwelling older adults. The American Journal of Geriatric Pharmacotherapy, 4, 316–324. PubMedGoogle Scholar
  90. Shpektor, A. (2015). Commentary: Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: A group and individual perspective. Frontiers in Aging Neuroscience, 7, 183.Google Scholar
  91. Small, S. A., Schobel, S. A., Buxton, R. B., Witter, M. P., & Barnes, C. A. (2011). A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nature Reviews. Neuroscience, 12, 585–601. PubMedPubMedCentralGoogle Scholar
  92. Spaniol, J., Davidson, P. S. R., Kim, A. S. N., Han, H., Moscovitch, M., & Grady, C. L. (2009). Event-related fMRI studies of episodic encoding and retrieval: Meta-analyses using activation likelihood estimation. Neuropsychologia, 47, 1765–1779.PubMedGoogle Scholar
  93. Summers, J. J., Kang, N., & Cauraugh, J. H. (2015). Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta-analysis. Ageing Research Reviews, 25(2016), 42–54. PubMedGoogle Scholar
  94. Sundaram, A., Stock, V., Cruciani, R. A., & Knotkova, H. (2009). Safety of transcranial direct current stimulation (tDCS) in protocols involving human subjects. Journal of Pain Management, 2, 285–293.Google Scholar
  95. Thomas, C., Datta, A., & Woods, A. (2017). Effect of aging on current flow due to transcranial direct current stimulation. Brain Stimulation, 10, 469. Google Scholar
  96. Woods, A. J., Cohen, R., Marsiske, M., Alexander, G. E., Czaja, S. J., & Wu, S. (2018). Augmenting cognitive training in older adults (The ACT Study): Design and Methods of a Phase III tDCS and cognitive training trial. Contemporary Clinical Trials, 65, 19–32.PubMedGoogle Scholar
  97. Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., … Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127, 1031–1048.PubMedPubMedCentralGoogle Scholar
  98. Woods, A. J., Cohen, R. A., & Pahor, M. (2013). Cognitive frailty: Frontiers and challenges. The Journal of Nutrition, Health & Aging, 17, 741–743. Google Scholar
  99. Woods, A. J., Mark, V. W., Pitts, A. C., & Mennemeier, M. (2011). Pervasive cognitive impairment in acute rehabilitation inpatients without brain injury. PM R, 3, 426–432.; quiz 432. Google Scholar
  100. Zheng, X., Alsop, D. C., & Schlaug, G. (2011). Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. NeuroImage, 58, 26–33. PubMedPubMedCentralGoogle Scholar
  101. Zhou, D., Zhou, J., Chen, H., Manor, B., Lin, J., & Zhang, J. (2015). Effects of transcranial direct current stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults. Experimental Brain Research, 233, 2401–2409. PubMedPubMedCentralGoogle Scholar
  102. Zimerman, M., Nitsch, M., Giraux, P., Gerloff, C., Cohen, L. G., & Hummel, F. C. (2013). Neuroenhancement of the aging brain: Restoring skill acquisition in old subjects. Annals of Neurology, 73, 10–15. PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Adam J. Woods
    • 1
    Email author
  • Daria Antonenko
    • 2
  • Agnes Flöel
    • 3
  • Benjamin M. Hampstead
    • 4
    • 5
  • David Clark
    • 6
  • Helena Knotkova
    • 7
    • 8
  1. 1.Center for Cognitive Aging and Memory (CAM), McKnight Brain Institute, Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of FloridaGainesvilleUSA
  2. 2.Department of NeurologyNeuroCure Clinical Research Center, Charité – UniversitätsmedizinBerlinGermany
  3. 3.Department of NeurologyUniversity Medical Hospital GreifswaldGreifswaldGermany
  4. 4.Department of Mental Health ServicesVeterans Affairs Ann Arbor Healthcare SystemsAnn ArborUSA
  5. 5.Department of PsychiatryUniversity of MichiganAnn ArborUSA
  6. 6.Department of Aging and Geriatric ResearchBrain Rehabilitation Research Center, Malcom Randall VA Medical CenterGainesvilleUSA
  7. 7.MJHS Institute for Innovation in Palliative CareNew YorkUSA
  8. 8.Department of Family and Social MedicineAlbert Einstein College of MedicineBronxUSA

Personalised recommendations