Transcranial Direct Current Stimulation in Stroke Rehabilitation: Present and Future

  • Oluwole O. AwosikaEmail author
  • Leonardo G. Cohen


Stroke is the leading cause of severe lasting adult disability around the world. Despite efforts to standardize post-stroke care and rehabilitation a significant percentage of patients remain permanently disabled. Life expectancy after stroke is on the rise in part due to improvements in health care. Hence, it is necessary to develop cost efficient ways to improve the beneficial effects of customary neurorehabilitative interventions (i.e., physical and occupational therapy) on motor and cognitive function after stroke. Over the years, transcranial direct current stimulation has emerged as a possible neuromodulatory tool adjuvant to standard neurorehabilitative therapy. Recent meta-analysis suggested moderate beneficial effects of tDCS on motor function after stroke. However, results from clinical trials have not been conclusive, suggesting the need to understand mechanisms underlying tDCS effects, including optimal stimulation protocols, timing, duration and magnitude of stimulation, and the identification of patient groups more amenable to tDCS effects. Here we discuss study results (organized by functional deficits) to date and discuss critically available evidence. Future studies could benefit from tighter experimental designs, more detailed description of methodologies, preregistration when appropriate and enhanced replication efforts.


Neurorehabilitation Stroke tDCS Neuromodulation Plasticity Motor recovery Hemiparesis Hemi-neglect Aphasia Dysphagia Gait 


  1. Adeyemo, B. O., Simis, M., Macea, D., & Fregni, F. (2012). Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke. Frontiers in Psychiatry, 3, 88. Google Scholar
  2. Allman, C., Amadi, U., Winkler, A. M., Wilkins, L., Filippini, N., Kischka, U., … Johansen-Berg, H. (2016). Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Science Translational Medicine, 8(330), 330re1. PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderson, C. J., Bahnik, S., Barnett-Cowan, M., Bosco, F. A., Chandler, J., Chartier, C. R., … Zuni, K. (2016). Response to comment on “Estimating the reproducibility of psychological science”. Science, 351(6277), 1037. PubMedCrossRefPubMedCentralGoogle Scholar
  4. Auriat, A. M., Neva, J. L., Peters, S., Ferris, J. K., & Boyd, L. A. (2015). A review of transcranial magnetic stimulation and multimodal neuroimaging to characterize post-stroke neuroplasticity. Frontiers in Neurology, 6, 226. Google Scholar
  5. Baron, J. C., Cohen, L. G., Cramer, S. C., Dobkin, B. H., Johansen-Berg, H., Loubinoux, I., … Ward, N. S. (2004). Neuroimaging in stroke recovery: A position paper from the first international workshop on neuroimaging and stroke recovery. Cerebrovascular Diseases, 18(3), 260–267. Retrieved from
  6. Bernhardt, J., Borschmann, K., Boyd, L., Carmichael, T. S., Corbett, D., Cramer, S. C., … Ward, N. (2016). Moving rehabilitation research forward: Developing consensus statements for rehabilitation and recovery research. International Journal of Stroke, 11(4), 454–458. PubMedCrossRefPubMedCentralGoogle Scholar
  7. Boggio, P. S., Rigonatti, S. P., Ribeiro, R. B., Myczkowski, M. L., Nitsche, M. A., Pascual-Leone, A., & Fregni, F. (2007). A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. The International Journal of Neuropsychopharmacology/Official Scientific Journal of the Collegium Internationale Neuropsychopharmacologicum (CINP), 11(2), 249–254. Retrieved from PubMedCrossRefGoogle Scholar
  8. Bolognini, N., Rossetti, A., Casati, C., Mancini, F., & Vallar, G. (2011). Neuromodulation of multisensory perception: A tDCS study of the sound-induced flash illusion. Neuropsychologia, 49(2), 231–237. PubMedCrossRefPubMedCentralGoogle Scholar
  9. Brady, M. C., Kelly, H., Godwin, J., & Enderby, P. (2012). Speech and language therapy for aphasia following stroke. The Cochrane Library, 5. Google Scholar
  10. Buch, E. R., Modir Shanechi, A., Fourkas, A. D., Weber, C., Birbaumer, N., & Cohen, L. G. (2012). Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke. Brain awr331 [pii], 135, 596–614. Google Scholar
  11. Butefisch, C. M., Wessling, M., Netz, J., Seitz, R. J., & Homberg, V. (2008). Relationship between interhemispheric inhibition and motor cortex excitability in subacute stroke patients. Neurorehabilitation and Neural Repair, 22(1), 4–21. 1545968307301769 [pii]. PubMedCrossRefPubMedCentralGoogle Scholar
  12. Butefisch, C. M., Wessling, M. M., Netz, J., Seitz, R. J., & Homberg, V. (2007). Relationship between interhemispheric inhibition and motor cortex excitability in subacute stroke patients. Neurorehabilitation and Neural Repair Retrieved from
  13. Butler, A. J., Shuster, M., O’Hara, E., Hurley, K., Middlebrooks, D., & Guilkey, K. (2013). A meta-analysis of the efficacy of anodal transcranial direct current stimulation for upper limb motor recovery in stroke survivors. Journal of Hand Therapy, 26(2), 162–171. PubMedCrossRefPubMedCentralGoogle Scholar
  14. Byblow, W. D., & Stinear, C. M. (2015). Proportional upper limb recovery after stroke is predicated upon corticospinal tract integrity. Brain Stimulation, 8(2), 429–430. CrossRefGoogle Scholar
  15. Campbell, E. G., Clarridge, B. R., Gokhale, M., Birenbaum, L., Hilgartner, S., Holtzman, N. A., & Blumenthal, D. (2002). Data withholding in academic genetics: Evidence from a national survey. JAMA, 287(4), 473–480. Retrieved from PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cassidy, J. M., & Cramer, S. C. (2016). Spontaneous and therapeutic-induced mechanisms of functional recovery after stroke. Translational Stroke Research., 8, 33–46. PubMedPubMedCentralCrossRefGoogle Scholar
  17. Celnik, P., Paik, N.-J. J., Vandermeeren, Y., Dimyan, M., & Cohen, L. G. (2009). Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke. Stroke; A Journal of Cerebral Circulation, 40(5), 1764–1771. PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chang, W.-J., Bennell, K. L., Hodges, P. W., Hinman, R. S., Liston, M. B., & Schabrun, S. M. (2015). Combined exercise and transcranial direct current stimulation intervention for knee osteoarthritis: Protocol for a pilot randomised controlled trial. BMJ Open, 5(8). PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chhatbar, P. Y., Ramakrishnan, V., Kautz, S., George, M. S., Adams, R. J., & Feng, W. (2016). Transcranial direct current stimulation post-stroke upper extremity motor recovery studies exhibit a dose–response relationship. Brain Stimulation, 9(1), 16–26. PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cicinelli, P., Pasqualetti, P., Zaccagnini, M., Traversa, R., Oliveri, M., & Rossini, P. M. (2003). Interhemispheric asymmetries of motor cortex excitability in the postacute stroke stage: A paired-pulse transcranial magnetic stimulation study. Stroke, 34(11), 2653–2658. Retrieved from PubMedCrossRefPubMedCentralGoogle Scholar
  21. Ciechanski, P., & Kirton, A. (2016). Transcranial direct-current stimulation can enhance motor learning in children. Cerebral Cortex (New York, NY 1991). Google Scholar
  22. Cohen, L. G., Celnik, P., Pascual-Leone, A., Corwell, B., Falz, L., Dambrosia, J., … Hallett, M. (1997). Functional relevance of cross-modal plasticity in blind humans. Nature, 389(6647), 180–183. Retrieved from
  23. Cohen-Maximov, T., Avirame, K., Flöel, A., & Lavidor, M. (2015). Modulation of gestural-verbal semantic integration by tDCS. Brain Stimulation, 8(3), 493–498. PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cramer, S. C., & Riley, J. D. (2008). Neuroplasticity and brain repair after stroke. Current Opinion in Neurology, 21(1), 76–82. PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cramer, S. C., Sur, M., Dobkin, B. H., O’Brien, C., Sanger, T. D., Trojanowski, J. Q., … Vinogradov, S. (2011). Harnessing neuroplasticity for clinical applications. Brain: A Journal of Neurology, 134(Pt 6), 1591–1609. awr039 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  26. Danzl, M. M., Chelette, K. C., Lee, K., Lykins, D., & Sawaki, L. (2013). Brain stimulation paired with novel locomotor training with robotic gait orthosis in chronic stroke: A feasibility study. NeuroRehabilitation, 33(1), 67–76. Google Scholar
  27. Dayan, E., Censor, N., Buch, E. R., Sandrini, M., & Cohen, L. G. (2013). Noninvasive brain stimulation: From physiology to network dynamics and back. Nature Neuroscience, 16(7), 838–844. PubMedPubMedCentralCrossRefGoogle Scholar
  28. Di Lazzaro, V., Dileone, M., Capone, F., Pellegrino, G., Ranieri, F., Musumeci, G., … Fregni, F. (2014). Immediate and late modulation of interhemipheric imbalance with bilateral transcranial direct current stimulation in acute stroke. Brain Stimulation, 7(6), 841–848. CrossRefGoogle Scholar
  29. Di Pino, G., Pellegrino, G., Assenza, G., Capone, F., Ferreri, F., Formica, D., … Di Lazzaro, V. (2014). Modulation of brain plasticity in stroke: A novel model for neurorehabilitation. Nature Reviews. Neurology, 10(10), 597–608. PubMedCrossRefGoogle Scholar
  30. Dimyan, M. A., & Cohen, L. G. (2010). Contribution of transcranial magnetic stimulation to the understanding of functional recovery mechanisms after stroke. Neurorehabilitation and Neural Repair, 24(2), 125–135. 1545968309345270 [pii]. PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dimyan, M. A., & Cohen, L. G. (2011). Neuroplasticity in the context of motor rehabilitation after stroke. Nature Reviews Neurology, 7(2), 76–85. nrneurol.2010.200 [pii]. PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dimyan, M. A., Perez, M. A., Auh, S., Tarula, E., Wilson, M., & Cohen, L. G. (2014). Nonparetic arm force does not overinhibit the paretic arm in chronic poststroke hemiparesis. Archives of Physical Medicine and Rehabilitation, 95(5), 849–856. PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dobkin, B. H. (2005). Rehabilitation after stroke. The New England Journal of Medicine, 352(16), 1677–1684. PubMedCrossRefPubMedCentralGoogle Scholar
  34. Dobkin, B. H., & Dorsch, A. (2013). New evidence for therapies in stroke rehabilitation. Current Atherosclerosis Reports, 15(6), 331. Google Scholar
  35. Duque, J., Hummel, F., Celnik, P., Murase, N., Mazzocchio, R., & Cohen, L. G. (2005a). Transcallosal inhibition in chronic subcortical stroke. NeuroImage, 28(4), 940–946. S1053-8119(05)00480-5 [pii]. PubMedCrossRefPubMedCentralGoogle Scholar
  36. Duque, J., Mazzocchio, R., Dambrosia, J., Murase, N., Olivier, E., & Cohen, L. G. (2005b). Kinematically specific interhemispheric inhibition operating in the process of generation of a voluntary movement. Cerebral Cortex, 15(5), 588–593. Retrieved from PubMedCrossRefPubMedCentralGoogle Scholar
  37. Elsner, B., Kugler, J., Pohl, M., & Mehrholz, J. (2015). Transcranial direct current stimulation (tDCS) for improving aphasia in patients with aphasia after stroke. The Cochrane Library, 5. Google Scholar
  38. Elsner, B., Kugler, J., Pohl, M., & Mehrholz, J. (2016). Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. The Cochrane Database of Systematic Reviews, 3. Google Scholar
  39. Fasotti, L., & van Kessel, M. (2013). Novel insights in the rehabilitation of neglect. Frontiers in Human Neuroscience, 7, 780. Google Scholar
  40. Feng, W., & Belagaje, S. (2014). Recent advances in stroke recovery and rehabilitation. Seminars in Neurology, 33(05), 498–506. CrossRefGoogle Scholar
  41. Feng, W., Bowden, M. G., & Kautz, S. (2013). Review of transcranial direct current stimulation in poststroke recovery. Topics in Stroke Rehabilitation, 20(1), 68–77. PubMedCrossRefPubMedCentralGoogle Scholar
  42. Feng, W., Wang, J., Chhatbar, P. Y., Doughty, C., Landsittel, D., Lioutas, V. A., … Schlaug, G. (2015). Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes. Annals of Neurology, 78(6), 860–870. PubMedPubMedCentralCrossRefGoogle Scholar
  43. Finkel, E. J., Eastwick, P. W., & Reis, H. T. (2015). Best research practices in psychology: Illustrating epistemological and pragmatic considerations with the case of relationship science. Journal of Personality and Social Psychology, 108(2), 275–297. PubMedCrossRefPubMedCentralGoogle Scholar
  44. Fiori, V., Coccia, M., Marinelli, C. V., Vecchi, V., Bonifazi, S., Ceravolo, G. M., … Marangolo, P. (2011). Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. Journal of Cognitive Neuroscience, 23(9), 2309–2323. PubMedCrossRefPubMedCentralGoogle Scholar
  45. Flöel, A., Meinzer, M., Kirstein, R., Nijhof, S., Deppe, M., Knecht, S., & Breitenstein, C. (2011). Short-term anomia training and electrical brain stimulation. Stroke, 42(7), 2065–2067. PubMedCrossRefPubMedCentralGoogle Scholar
  46. Fregni, F., Boggio, P. S., Mansur, C. G., Wagner, T., Ferreira, M. J., Lima, M. C., … Pascual-Leone, A. (2005). Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport, 16(14), 1551–1555. Retrieved from PubMedCrossRefPubMedCentralGoogle Scholar
  47. Fridman, E. A., Hanakawa, T., Chung, M., Hummel, F., Leiguarda, R. C., & Cohen, L. G. (2004). Reorganization of the human ipsilesional premotor cortex after stroke. Brain: A Journal of Neurology, 127(Pt 4), 747–758. Retrieved from PubMedCrossRefPubMedCentralGoogle Scholar
  48. Fritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y., Cohen, L. G., & Lu, B. (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron, 66(2), 198–204. PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fusco, A., Assenza, F., Iosa, M., Izzo, S., Altavilla, R., Paolucci, S., & Vernieri, F. (2014). The ineffective role of cathodal tDCS in enhancing the functional motor outcomes in early phase of stroke rehabilitation: An experimental trial. BioMed Research International, 2014, 547290. Google Scholar
  50. Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117(4), 845–850. Retrieved from
  51. Gerloff, C., Bushara, K., Sailer, A., Wassermann, E. M., Chen, R., Matsuoka, T., … Hallett, M. (2006). Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain, 129(Pt 3), 791–808. Retrieved from PubMedCrossRefPubMedCentralGoogle Scholar
  52. Geroin, C., Picelli, A., Munari, D., Waldner, A., Tomelleri, C., & Smania, N. (2011). Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: A preliminary comparison. Clinical Rehabilitation, 25(6), 537–548. PubMedCrossRefPubMedCentralGoogle Scholar
  53. Gilbert, D. T., King, G., Pettigrew, S., & Wilson, T. D. (2016). Comment on “Estimating the reproducibility of psychological science”. Science, 351(6277), 1037. PubMedCrossRefPubMedCentralGoogle Scholar
  54. Grefkes, C., Eickhoff, S. B., Nowak, D. A., Dafotakis, M., & Fink, G. R. (2008). Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. NeuroImage, 41(4), 1382–1394. S1053-8119(08)00283-8 [pii]. PubMedCrossRefPubMedCentralGoogle Scholar
  55. Grefkes, C., Nowak, D. A., Wang, L. E., Dafotakis, M., Eickhoff, S. B., & Fink, G. R. (2010). Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. NeuroImage, 50(1), 233–242. S1053-8119(09)01317-2 [pii]. Google Scholar
  56. Group, C., Cheeran, B., Cohen, L., Dobkin, B., Ford, G., Greenwood, R., … Wolf, S. (2008). The future of restorative neurosciences in stroke: Driving the translational research pipeline from basic science to rehabilitation of people after stroke. Neurorehabilitation and Neural Repair, 23(2), 97–107. Google Scholar
  57. Hamdy, S. (2010). Role of neurostimulation and neuroplasticity in the rehabilitation of dysphagia after stroke. SIG 13 Perspectives on Swallowing and Swallowing Disorders (Dysphagia), 19(1), 3–9. CrossRefGoogle Scholar
  58. Harnish, S., Meinzer, M., Trinastic, J., Fitzgerald, D., & Page, S. (2014). Language changes coincide with motor and fMRI changes following upper extremity motor therapy for hemiparesis: A brief report. Brain Imaging and Behavior, 8(3), 370–377. CrossRefGoogle Scholar
  59. Harris-Love, M. L., Chan, E., Dromerick, A. W., & Cohen, L. G. (2015). Neural substrates of motor recovery in severely impaired stroke patients with hand paralysis. Neurorehabilitation and Neural Repair, 30, 328–338. PubMedPubMedCentralCrossRefGoogle Scholar
  60. Harris-Love, M. L., Chan, E., Dromerick, A. W., & Cohen, L. G. (2016). Neural substrates of motor recovery in severely impaired stroke patients with hand paralysis. Neurorehabilitation and Neural Repair, 30(4), 328–338. PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hashemirad, F., Zoghi, M., Fitzgerald, P. B., & Jaberzadeh, S. (2016). The effect of anodal transcranial direct current stimulation on motor sequence learning in healthy individuals: A systematic review and meta-analysis. Brain and Cognition, 102, 1–12. PubMedCrossRefPubMedCentralGoogle Scholar
  62. Heise, K. F., Niehoff, M., Feldheim, J. F., Liuzzi, G., Gerloff, C., & Hummel, F. C. (2014). Differential behavioral and physiological effects of anodal transcranial direct current stimulation in healthy adults of younger and older age. Frontiers in Aging Neuroscience, 6, 146. Google Scholar
  63. Hesse, S., Waldner, A., Mehrholz, J., Tomelleri, C., Pohl, M., & Werner, C. (2011). Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: An exploratory, randomized multicenter trial. Neurorehabilitation and Neural Repair, 25(9), 838–846. CrossRefGoogle Scholar
  64. Hesse, S., Werner, C., Schonhardt, E. M., Bardeleben, A., Jenrich, W., & Kirker, S. G. B. (2007). Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: A pilot study. Restorative Neurology and Neuroscience, 25(1), 9–15. Retrieved from
  65. Hodics, T., Cohen, L. G., & Cramer, S. C. (2006). Functional imaging of intervention effects in stroke motor rehabilitation. Archives of Physical Medicine and Rehabilitation, 87(12 Suppl 2), S36–S42. Retrieved from
  66. Horvath, J., Vogrin, S. J., Carter, O., Cook, M. J., & Forte, J. D. (2016). Effects of a common transcranial direct current stimulation (tDCS) protocol on motor evoked potentials found to be highly variable within individuals over 9 testing sessions. Experimental Brain Research, 234, 2629–2642. PubMedCrossRefPubMedCentralGoogle Scholar
  67. Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W.-H. H., Gerloff, C., & Cohen, L. G. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain: A Journal of Neurology, 128(Pt 3), 490–499. Retrieved from PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hummel, F., & Cohen, L. G. (2005a). Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke. Neurorehabilitation and Neural Repair, 19(1), 14–19. Retrieved from
  69. Hummel, F. C., Celnik, P., Pascual-Leone, A., Fregni, F., Byblow, W. D., Buetefisch, C. M., … Gerloff, C. (2008). Controversy: Noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimulation, 1(4), 370–382. PubMedCrossRefPubMedCentralGoogle Scholar
  70. Hummel, F. C., & Cohen, L. G. (2005b). Drivers of brain plasticity. Current Opinion in Neurology, 18(6), 667–674. Retrieved from
  71. Hummel, F. C., & Cohen, L. G. (2006). Non-invasive brain stimulation: A new strategy to improve neurorehabilitation after stroke? Lancet Neurology, 5(8), 708–712. Retrieved from
  72. Hummel, F. C., Voller, B., Celnik, P., Floel, A., Giraux, P., Gerloff, C., & Cohen, L. G. (2006). Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neuroscience, 7(1), 73. Retrieved from PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hussey, E. K., Ward, N., Christianson, K., & Kramer, A. F. (2015). Language and memory improvements following tDCS of left lateral prefrontal cortex. PLoS One, 10(11), e0141417. PubMedPubMedCentralCrossRefGoogle Scholar
  74. Jeffery, D. T., Norton, J. A., Roy, F. D., & Gorassini, M. A. (2007). Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Experimental Brain Research, 182(2), 281–287. CrossRefGoogle Scholar
  75. Johansen-Berg, H., Rushworth, M. F., Bogdanovic, M. D., Kischka, U., Wimalaratna, S., & Matthews, P. M. (2002). The role of ipsilateral premotor cortex in hand movement after stroke. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14518–14523. Retrieved from CrossRefGoogle Scholar
  76. Kang, E. K., Kim, Y. K., Sohn, H. M., Cohen, L. G., & Paik, N. J. (2011). Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca’s homologue area. Restorative Neurology and Neuroscience, 29(3), 141–152. Google Scholar
  77. Kang, N., Summers, J. J., & Cauraugh, J. H. (2016). Transcranial direct current stimulation facilitates motor learning post-stroke: A systematic review and meta-analysis. Journal of Neurology, Neurosurgery & Psychiatry, 87(4), 345–355. CrossRefGoogle Scholar
  78. Kaplan, R. M., & Irvin, V. L. (2015). Likelihood of null effects of large NHLBI clinical trials has increased over time. PLoS One, 10(8), e0132382. PubMedPubMedCentralCrossRefGoogle Scholar
  79. Khedr, E. M., Shawky, O. A., El-Hammady, D. H., Rothwell, J. C., Darwish, E. S., Mostafa, O. M., & Tohamy, A. M. (2013). Effect of anodal versus cathodal transcranial direct current stimulation on stroke rehabilitation: A pilot randomized controlled trial. Neurorehabilitation and Neural Repair, 27(7), 592–601. CrossRefGoogle Scholar
  80. Kim, D.-Y., Lim, J.-Y., Kang, E., You, D., Oh, M.-K., Oh, B.-M., & Paik, N.-J. (2010). Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke. American Journal of Physical Medicine & Rehabilitation, 89(11), 879–886. CrossRefGoogle Scholar
  81. Kim, D. Y., Ohn, S. H., Yang, E. J., Park, C.-I. I., & Jung, K. J. (2009). Enhancing motor performance by anodal transcranial direct current stimulation in subacute stroke patients. American Journal of Physical Medicine & Rehabilitation/Association of Academic Physiatrists, 88(10), 829–836. CrossRefGoogle Scholar
  82. Kincses, T. Z., Antal, A., Nitsche, M. A., Bartfai, O., & Paulus, W. (2004). Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia, 42(1), 113–117. Retrieved from PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kinsbourne, M. (1977). Hemi-neglect and hemisphere rivalry. Advances in Neurology, 18, 41–49. Retrieved from
  84. Kinsbourne, M. (1980). Dichotic imbalance due to isolated hemisphere occlusion or directional rivalry? Brain and Language, 11(1), 221–224. Retrieved from
  85. Kirton, A., Deveber, G., Gunraj, C., & Chen, R. (2010). Cortical excitability and interhemispheric inhibition after subcortical pediatric stroke: Plastic organization and effects of rTMS. Clinical Neurophysiology, 121(11), 1922–1929. S1388-2457(10)00374-3 [pii]. PubMedCrossRefPubMedCentralGoogle Scholar
  86. Ko, M.-H. H., Han, S.-H. H., Park, S.-H. H., Seo, J.-H. H., & Kim, Y.-H. H. (2008). Improvement of visual scanning after DC brain polarization of parietal cortex in stroke patients with spatial neglect. Neuroscience Letters, 448(2), 171–174. PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kumar, S., Wagner, C. W., Frayne, C., Zhu, L., Selim, M., Feng, W., & Schlaug, G. (2011). Noninvasive brain stimulation may improve stroke-related dysphagia a pilot study. Stroke, 42(4), 1035–1040. PubMedPubMedCentralCrossRefGoogle Scholar
  88. Làdavas, E., Giulietti, S., Avenanti, A., Bertini, C., Lorenzini, E., Quinquinio, C., & Serino, A. (2015). a-tDCS on the ipsilesional parietal cortex boosts the effects of prism adaptation treatment in neglect. Restorative Neurology and Neuroscience, 33(5), 647–662. PubMedCrossRefPubMedCentralGoogle Scholar
  89. Lang, N., Nitsche, M. A., Paulus, W., Rothwell, J. C., & Lemon, R. N. (2004). Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Experimental Brain Research, 156(4), 439–443. Retrieved from PubMedPubMedCentralCrossRefGoogle Scholar
  90. Langhorne, P., Bernhardt, J., & Kwakkel, G. (2011). Stroke rehabilitation. The Lancet, 377(9778), 1693–1702. CrossRefGoogle Scholar
  91. Lauer, M. S., Krumholz, H. M., & Topol, E. J. (2015). Time for a prepublication culture in clinical research? Lancet, 386(10012), 2447–2449. CrossRefGoogle Scholar
  92. Lazar, R. M., Minzer, B., Antoniello, D., Festa, J. R., Krakauer, J. W., & Marshall, R. S. (2010). Improvement in aphasia scores after stroke is well predicted by initial severity. Stroke, 41(7), 1485–1488. PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lee, K., Lim, S., Kim, K., Kim, K., Kim, Y., Chang, W., … Hwang, B. (2015). Six-month functional recovery of stroke patients: A multi-time-point study. International Journal of Rehabilitation Research, 38(2), 173–180. PubMedCrossRefPubMedCentralGoogle Scholar
  94. Lefebvre, S., Laloux, P., Peeters, A., Desfontaines, P., Jamart, J., & Vandermeeren, Y. (2013). Dual-tDCS enhances online motor skill learning and long-term retention in chronic stroke patients. Frontiers in Human Neuroscience, 6, 343. Google Scholar
  95. Lefebvre, S., Thonnard, J.-L., Laloux, P., Peeters, A., Jamart, J., & Vandermeeren, Y. (2014). Single session of dual-tDCS transiently improves precision grip and dexterity of the paretic hand after stroke. Neurorehabilitation and Neural Repair, 28(2), 100–110. PubMedCrossRefPubMedCentralGoogle Scholar
  96. Lindenberg, R., Renga, V., Zhu, L. L., Nair, D., & Schlaug, G. (2010). Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology, 75(24), 2176–2184. PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lindenberg, R., Zhu, L. L., & Schlaug, G. (2012). Combined central and peripheral stimulation to facilitate motor recovery after stroke: The effect of number of sessions on outcome. Neurorehabilitation and Neural Repair, 26(5), 479–483. PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lohse, K. R., Lang, C. E., & Boyd, L. A. (2014). Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke, 45(7), 2053–2058. PubMedPubMedCentralCrossRefGoogle Scholar
  99. Lotze, M., Markert, J., Sauseng, P., Hoppe, J., Plewnia, C., & Gerloff, C. (2006). The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. The Journal of Neuroscience, 26(22), 6096–6102. Retrieved from PubMedCrossRefPubMedCentralGoogle Scholar
  100. Madhavan, S., & Shah, B. (2012). Enhancing motor skill learning with transcranial direct current stimulation – A concise review with applications to stroke. Frontiers in Psychiatry, 3, 66. Google Scholar
  101. Madhavan, S., & Stinear, J. W. (2010). Focal and bidirectional modulation of lower limb motor cortex using anodal transcranial direct current stimulation. Brain Stimulation, 3(1), 42–50. PubMedPubMedCentralCrossRefGoogle Scholar
  102. Madhavan, S., Weber, K. A., & Stinear, J. W. (2010). Non-invasive brain stimulation enhances fine motor control of the hemiparetic ankle: Implications for rehabilitation. Experimental Brain Research, 209(1), 9–17. PubMedCrossRefPubMedCentralGoogle Scholar
  103. Mahmoudi, H., Haghighi, A., Petramfar, P., Jahanshahi, S., Salehi, Z., & Fregni, F. (2011). Transcranial direct current stimulation: Electrode montage in stroke. Disability and Rehabilitation, 33(15–16), 1383–1388. PubMedCrossRefPubMedCentralGoogle Scholar
  104. Mancuso, L. E., Ilieva, I. P., Hamilton, R. H., & Farah, M. J. (2016). Does transcranial direct current stimulation improve healthy working memory?: A meta-analytic review. Journal of Cognitive Neuroscience, 28, 1–27. PubMedCrossRefPubMedCentralGoogle Scholar
  105. Mansur, C. G., Fregni, F., Boggio, P. S., Riberto, M., Gallucci-Neto, J., Santos, C. M., … Pascual-Leone, A. (2005). A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology, 64(10), 1802–1804. PubMedCrossRefPubMedCentralGoogle Scholar
  106. Marangolo, P., Fiori, V., Cipollari, S., Campana, S., Razzano, C., Paola, M., … Caltagirone, C. (2013). Bihemispheric stimulation over left and right inferior frontal region enhances recovery from apraxia of speech in chronic aphasia. European Journal of Neuroscience, 38(9), 3370–3377. PubMedCrossRefPubMedCentralGoogle Scholar
  107. Marangolo, P., Fiori, V., Sabatini, U., Pasquale, G., Razzano, C., Caltagirone, C., & Gili, T. (2016). Bilateral transcranial direct current stimulation language treatment enhances functional connectivity in the left hemisphere: Preliminary data from aphasia. Journal of Cognitive Neuroscience, 28(5), 1–15. PubMedCrossRefPubMedCentralGoogle Scholar
  108. Marshall, R. S. (2009). Rehabilitation approaches to Hemineglect. The Neurologist, 15(4), 185–192. PubMedCrossRefPubMedCentralGoogle Scholar
  109. Mead, G., Bernhardt, J., & Kwakkel, G. (2012). Stroke: Physical fitness, exercise, and fatigue. Stroke Research and Treatment, 2012, 632531. Google Scholar
  110. Meinzer, M., Lindenberg, R., Antonenko, D., Flaisch, T., & Floel, A. (2013). Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. The Journal of Neuroscience, 33(30), 12470–12478. PubMedPubMedCentralCrossRefGoogle Scholar
  111. Meinzer, M., Lindenberg, R., Sieg, M. M., Nachtigall, L., Ulm, L., & Floel, A. (2014). Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults. Frontiers in Aging Neuroscience, 6, 253. Google Scholar
  112. Mello, E. A., Cohen, L. G., Monteiro Dos Anjos, S., Conti, J., Andrade, K. N., Tovar Moll, F., … Conforto, A. B. (2015). Increase in short-interval Intracortical facilitation of the motor cortex after low-frequency repetitive magnetic stimulation of the unaffected hemisphere in the subacute phase after stroke. Neural Plasticity, 2015, 407320. Google Scholar
  113. Monti, A., Cogiamanian, F., Marceglia, S., Ferrucci, R., Mameli, F., Mrakic-Sposta, S., … Priori, A. (2008). Improved naming after transcranial direct current stimulation in aphasia. Journal of Neurology, Neurosurgery & Psychiatry, 79(4), 451–453. CrossRefGoogle Scholar
  114. Morey, R. D., Chambers, C. D., Etchells, P. J., Harris, C. R., Hoekstra, R., Lakens, D., … Zwaan, R. A. (2016). The peer reviewers’ openness initiative: Incentivizing open research practices through peer review. Royal Society Open Science, 3(1), 150547. PubMedPubMedCentralCrossRefGoogle Scholar
  115. Mortensen, J., Figlewski, K., & Andersen, H. (2015). Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage: A double-blind randomized controlled trial. Disability and Rehabilitation, 38(7), 637–643. CrossRefPubMedPubMedCentralGoogle Scholar
  116. Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., … Subcommittee, A. (2015). Heart disease and stroke statistics—2016 update. Circulation, 133(4), e38–e360. Google Scholar
  117. Murase, N., Duque, J., Mazzocchio, R., & Cohen, L. G. (2004). Influence of interhemispheric interactions on motor function in chronic stroke. Annals of Neurology, 55(3), 400–409. Retrieved from PubMedCrossRefPubMedCentralGoogle Scholar
  118. Müri, R., Cazzoli, D., Nef, T., Mosimann, U. P., Hopfner, S., & Nyffeler, T. (2013). Non-invasive brain stimulation in neglect rehabilitation: An update. Frontiers in Human Neuroscience, 7. Google Scholar
  119. Mylius, V., Ayache, S. S., Zouari, H. G., Aoun-Sebaïti, M., Farhat, W. H., & Lefaucheur, J. -P. (2012). Stroke rehabilitation using noninvasive cortical stimulation: Hemispatial neglect. Expert Review of Neurotherapeutics, 12(8), 983–991. Retrieved from PubMedCrossRefPubMedCentralGoogle Scholar
  120. Nair, D. G., Hutchinson, S., Fregni, F., Alexander, M., Pascual-Leone, A., & Schlaug, G. (2006). Imaging correlates of motor recovery from cerebral infarction and their physiological significance in well-recovered patients. NeuroImage Retrieved from
  121. Nair, D. G., Hutchinson, S., Fregni, F., Alexander, M., Pascual-Leone, A., & Schlaug, G. (2007). Imaging correlates of motor recovery from cerebral infarction and their physiological significance in well-recovered patients. NeuroImage 34(1), 253–263. Retrieved from Documents%20and%20Settings/cohenl1/Local%20Settings/Application%20Data/Quosa/Data/My%20Citations/a1a7nvmt52dkf8usi7407m7aig.qpw. PubMedCrossRefPubMedCentralGoogle Scholar
  122. Nair, D. G., Renga, V., Lindenberg, R., Zhu, L., & Schlaug, G. (2011). Optimizing recovery potential through simultaneous occupational therapy and non-invasive brain-stimulation using tDCS. Restorative Neurology and Neuroscience, 29(6), 411–420. Google Scholar
  123. Nitsche, M. A., Liebetanz, D., Tergau, F., & Paulus, W. (2002). Modulation of cortical excitability by transcranial direct current stimulation. Nervenarzt, 73(4), 332–335. Retrieved from
  124. Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler, S. J., … Yarkoni, T. (2015). Scientific standards. Promoting an open research culture. Science, 348(6242), 1422–1425. PubMedPubMedCentralCrossRefGoogle Scholar
  125. Nowak, D. A., Grefkes, C., Ameli, M., & Fink, G. R. (2009). Interhemispheric competition after stroke: Brain stimulation to enhance recovery of function of the affected hand. Neurorehabilitation and Neural Repair 1545968309336661 [pii], 23, 641–656. PubMedCrossRefPubMedCentralGoogle Scholar
  126. Nudo, R. J., Wise, B. M., SiFuentes, F., & Milliken, G. W. (1996). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science (New York, NY), 272(5269), 1791–1794. PubMedCrossRefPubMedCentralGoogle Scholar
  127. Open Science, C. (2015). Psychology. Estimating the reproducibility of psychological science. Science, 349(6251), aac4716. Google Scholar
  128. Otal, B., Dutta, A., Foerster, Á., Ripolles, O., Kuceyeski, A., Miranda, P. C., … Ruffini, G. (2016). Opportunities for guided multichannel non-invasive transcranial current stimulation in poststroke rehabilitation. Frontiers in Neurology, 7, 21. Google Scholar
  129. Paci, M., Nannetti, L., Casavola, D., & Lombardi, B. (2016). Differences in motor recovery between upper and lower limbs: Does stroke subtype make the difference? International Journal of Rehabilitation Research. Internationale Zeitschrift fur Rehabilitationsforschung. Revue internationale de recherches de readaptation., 39, 185–187. PubMedCrossRefPubMedCentralGoogle Scholar
  130. Park, S., Kim, J., & Song, H. (2015). Effect of application of transcranial direct current stimulation during task-related training on gait ability of patients with stroke. Journal of Physical Therapy Science, 27(3), 623–625. PubMedPubMedCentralCrossRefGoogle Scholar
  131. Pedersen, P. M., Jørgensen, H. S., Nakayama, H., Raaschou, H. O., & Olsen, T. S. (1997). Hemineglect in acute stroke--incidence and prognostic implications. The Copenhagen Stroke Study. American Journal of Physical Medicine & Rehabilitation/Association of Academic Physiatrists, 76(2), 122–127. Retrieved from CrossRefGoogle Scholar
  132. Perceval, G., Floel, A., & Meinzer, M. (2016). Can transcranial direct current stimulation counteract age-associated functional impairment? Neuroscience and Biobehavioral Reviews, 65, 157–172. CrossRefGoogle Scholar
  133. Perez, M. A., & Cohen, L. G. (2008). Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand. The Journal of Neuroscience, 28(22), 5631–5640. 28/22/5631 [pii]. PubMedCrossRefPubMedCentralGoogle Scholar
  134. Perez, M. A., & Cohen, L. G. (2009). Interhemispheric inhibition between primary motor cortices: What have we learned? The Journal of Physiology, 587(Pt 4), 725–726. jphysiol.2008.166926 [pii]. PubMedPubMedCentralCrossRefGoogle Scholar
  135. Pisegna, J. M., Kaneoka, A., Pearson, W. G., Kumar, S., & Langmore, S. E. (2016). Effects of non-invasive brain stimulation on post-stroke dysphagia: A systematic review and meta-analysis of randomized controlled trials. Clinical Neurophysiology, 127(1), 956–968. PubMedCrossRefPubMedCentralGoogle Scholar
  136. Primaßin, A., Scholtes, N., Heim, S., Huber, W., Neuschäfer, M., Binkofski, F., & Werner, C. J. (2015). Determinants of concurrent motor and language recovery during intensive therapy in chronic stroke patients: Four single-case studies. Frontiers in Neurology, 6. Google Scholar
  137. Qu, Y. P., Wu, D. Y., Tu, X. Q., Quian, L., Yang, Y. B., & Geng, H. (2009). Effect of transcranial direct current stimulation on relieving upper-limb spasticity after stroke (in Chinese). Chinese Journal of Cerebrovascular Disease, 6, 586–589.Google Scholar
  138. Reis, J., Robertson, E. M., Krakauer, J. W., Rothwell, J., Marshall, L., Gerloff, C., … Cohen, L. G. (2008). Consensus: Can transcranial direct current stimulation and transcranial magnetic stimulation enhance motor learning and memory formation? Brain Stimulation, 1(4), 363–369. S1935-861X(08)00325-2 [pii]. PubMedPubMedCentralCrossRefGoogle Scholar
  139. Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., … Krakauer, J. W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1590–1595. 0805413106 [pii]. Google Scholar
  140. Rocha, S., Silva, E., Foerster, Á., Wiesiolek, C., Chagas, A. P., Machado, G., … Monte-Silva, K. (2016). The impact of transcranial direct current stimulation (tDCS) combined with modified constraint-induced movement therapy (mCIMT) on upper limb function in chronic stroke: A double-blind randomized controlled trial. Disability and Rehabilitation, 38(7), 653–660. PubMedCrossRefPubMedCentralGoogle Scholar
  141. Rossi, C., Sallustio, F., Legge, D. S., Stanzione, P., & Koch, G. (2013). Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients. European Journal of Neurology, 20(1), 202–204. PubMedCrossRefPubMedCentralGoogle Scholar
  142. Rosso, C., Valabregue, R., Arbizu, C., Ferrieux, S., Vargas, P., Humbert, F., … Lehéricy, S. (2014). Connectivity between right inferior frontal gyrus and supplementary motor area predicts after-effects of right frontal cathodal tDCS on picture naming speed. Brain Stimulation, 7(1), 122–129. PubMedCrossRefPubMedCentralGoogle Scholar
  143. Saeys, W., Vereeck, L., Lafosse, C., Truijen, S., Wuyts, F. L., & Heyning, P. (2015). Transcranial direct current stimulation in the recovery of postural control after stroke: A pilot study. Disability and Rehabilitation, 37(20), 1857–1863. CrossRefGoogle Scholar
  144. Sattler, V., Acket, B., Raposo, N., Albucher, F. J., Thalamas, C., Loubinoux, I., … Simonetta-Moreau, M. (2015). Anodal tDCS combined with radial nerve stimulation promotes hand motor recovery in the acute phase after ischemic stroke. Neurorehabilitation and Neural Repair, 29(8), 743–754. CrossRefGoogle Scholar
  145. Saur, D., & Hartwigsen, G. (2012). Neurobiology of language recovery after stroke: Lessons from neuroimaging studies. Archives of Physical Medicine and Rehabilitation, 93((1), S15–S25. PubMedCrossRefPubMedCentralGoogle Scholar
  146. Schambra, H. M., Abe, M., Luckenbaugh, D. A., Reis, J., Krakauer, J. W., & Cohen, L. G. (2011). Probing for hemispheric specialization for motor skill learning: A transcranial direct current stimulation study. Journal of Neurophysiology, 106(2), 652–661. jn.00210.2011 [pii]. PubMedPubMedCentralCrossRefGoogle Scholar
  147. Schambra, H. M., Ogden, T. R., Martínez-Hernández, I. E., Lin, X., Chang, B. Y., Rahman, A., … Krakauer, J. W. (2015). The reliability of repeated TMS measures in older adults and in patients with subacute and chronic stroke. Frontiers in Cellular Neuroscience, 9, 335. Google Scholar
  148. Schlaug, G., & Cohen, L. G. (2010). Brain repair after stroke (pp. 207–218). Cambridge. Google Scholar
  149. Schlaug, G., & Renga, V. (2008). Transcranial direct current stimulation: A noninvasive tool to facilitate stroke recovery. Expert Review of Medical Devices, 5(6), 759–768. PubMedPubMedCentralCrossRefGoogle Scholar
  150. Shigematsu, T., Fujishima, I., & Ohno, K. (2013). Transcranial direct current stimulation improves swallowing function in stroke patients. Neurorehabilitation and Neural Repair, 27(4), 363–369. PubMedCrossRefPubMedCentralGoogle Scholar
  151. Shiozawa, P., Fregni, F., Benseñor, I. M., Lotufo, P. A., Berlim, M. T., Daskalakis, J. Z., … Brunoni, A. R. (2014). Transcranial direct current stimulation for major depression: An updated systematic review and meta-analysis. The International Journal of Neuropsychopharmacology/Official Scientific Journal of the Collegium Internationale Neuropsychopharmacologicum (CINP), 17(9), 1443–1452. PubMedCrossRefPubMedCentralGoogle Scholar
  152. Sohn, M., Jee, S., & Kim, Y. (2013). Effect of transcranial direct current stimulation on postural stability and lower extremity strength in hemiplegic stroke patients. Annals of Rehabilitation Medicine, 37(6), 759–765. PubMedPubMedCentralCrossRefGoogle Scholar
  153. Sparing, R., Thimm, M., Hesse, M. D., Küst, J., Karbe, H., & Fink, G. R. (2009). Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain: A Journal of Neurology, 132(Pt 11), 3011–3020. PubMedCrossRefPubMedCentralGoogle Scholar
  154. Spielmans, G. I., & Kirsch, I. (2014). Drug approval and drug effectiveness. Annual Review of Clinical Psychology, 10(1), 741–766. PubMedCrossRefPubMedCentralGoogle Scholar
  155. Stagg, C., Bachtiar, V., O’Shea, J., Allman, C., Bosnell, R., Kischka, U., … Johansen-Berg, H. (2012). Cortical activation changes underlying stimulation-induced behavioural gains in chronic stroke. Brain, 135(1), 276–284. PubMedPubMedCentralCrossRefGoogle Scholar
  156. Stagg, C. J., Jayaram, G., Pastor, D., Kincses, Z. T., Matthews, P. M., & Johansen-Berg, H. (2011). Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia, 49(5), 800–804. S0028-3932(11)00071-6 [pii]. PubMedPubMedCentralCrossRefGoogle Scholar
  157. Stinear, C., Barber, A., Petoe, M., Answar, S., & Byblow, W. (2012). Predicting potential for motor recovery after stroke. Annals of Physical and Rehabilitation Medicine, 55. Google Scholar
  158. Stinear, C. M., Byblow, W. D., & Ward, S. H. (2014). An update on predicting motor recovery after stroke. Annals of Physical and Rehabilitation Medicine, 57(8), 489–498. PubMedCrossRefPubMedCentralGoogle Scholar
  159. Straudi, S., Fregni, F., Martinuzzi, C., Pavarelli, C., Salvioli, S., & Basaglia, N. (2016). tDCS and robotics on upper limb stroke rehabilitation: Effect modification by stroke duration and type of stroke. BioMed Research International, 2016, 1–8. CrossRefGoogle Scholar
  160. Sunwoo, H., Kim, Y.-H., Chang, W., Noh, S., Kim, E.-J., & Ko, M.-H. (2013). Effects of dual transcranial direct current stimulation on post-stroke unilateral visuospatial neglect. Neuroscience Letters, 554, 94–98. PubMedCrossRefPubMedCentralGoogle Scholar
  161. Tahtis, V., Kaski, D., & Seemungal, B. M. (2014). The effect of single session bi-cephalic transcranial direct current stimulation on gait performance in sub-acute stroke: A pilot study. Restorative Neurology and Neuroscience, 32(4), 527–532. Google Scholar
  162. Tanaka, S., Sandrini, M., & Cohen, L. G. (2011). Modulation of motor learning and memory formation by non-invasive cortical stimulation of the primary motor cortex. Neuropsychological Rehabilitation, 21(5), 650–675. PubMedCrossRefPubMedCentralGoogle Scholar
  163. Triccas, T. L., Burridge, J. H., Hughes, A. M., Pickering, R. M., Desikan, M., Rothwell, J. C., & Verheyden, G. (2016). Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: A review and meta-analysis. Clinical Neurophysiology, 127(1), 946–955. CrossRefGoogle Scholar
  164. Triccas, T. L., Burridge, J. H., Hughes, A., Verheyden, G., Desikan, M., & Rothwell, J. (2015). A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robot therapy for the impaired upper limb in sub-acute and chronic stroke. NeuroRehabilitation, 37(2), 181–191. PubMedCrossRefPubMedCentralGoogle Scholar
  165. Turkeltaub, P. E., Messing, S., Norise, C., & Hamilton, R. H. (2011). Are networks for residual language function and recovery consistent across aphasic patients? Neurology, 76(20), 1726–1734. PubMedPubMedCentralCrossRefGoogle Scholar
  166. Turner, E. H., Matthews, A. M., Linardatos, E., Tell, R. A., & Rosenthal, R. (2008). Selective publication of antidepressant trials and its influence on apparent efficacy. The New England Journal of Medicine, 358(3), 252–260. PubMedCrossRefPubMedCentralGoogle Scholar
  167. Turner, E. H., & Rosenthal, R. (2008). Efficacy of antidepressants. BMJ (Clinical Research Ed.), 336(7643), 516–517. PubMedPubMedCentralCrossRefGoogle Scholar
  168. Vallar, G. (1998). Spatial hemineglect in humans. Trends in Cognitive Sciences, 2(3), 87–97. PubMedCrossRefPubMedCentralGoogle Scholar
  169. van Asseldonk, E., & Boonstra, T. A. (2016). Transcranial direct current stimulation of the leg motor cortex enhances coordinated motor output during walking with a large inter-individual variability. Brain Stimulation, 9(2), 182–190. PubMedCrossRefPubMedCentralGoogle Scholar
  170. Vannorsdall, T. D., van Steenburgh, J. J., Schretlen, D. J., Jayatillake, R., Skolasky, R. L., & Gordon, B. (2016). Reproducibility of tDCS results in a randomized trial: Failure to replicate findings of tDCS-induced enhancement of verbal fluency. Cognitive and Behavioral Neurology, 29(1), 11–17. PubMedCrossRefPubMedCentralGoogle Scholar
  171. Viana, R. T., Laurentino, G. E. C., Souza, R. J. P., Fonseca, J. B., Filho, S. E. M., Dias, S. N., … Monte-Silva, K. K. (2014). Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: A pilot randomized controlled trial. NeuroRehabilitation, 34(3), 437–446. Google Scholar
  172. Vines, B. W., Nair, D. G., & Schlaug, G. (2006). Contralateral and ipsilateral motor effects after transcranial direct current stimulation. Neuroreport, 17(6), 671–674. Retrieved from
  173. Vines, B. W., Norton, A. C., & Schlaug, G. (2011). Non-invasive brain stimulation enhances the effects of melodic intonation therapy. Frontiers in Psychology, 2, 230. Google Scholar
  174. Wade, D. T., Hewer, R. L., David, R. M., & Enderby, P. M. (1986). Aphasia after stroke: Natural history and associated deficits. Journal of Neurology, Neurosurgery & Psychiatry, 49(1), 11–16. CrossRefGoogle Scholar
  175. Ward, N. S. (2016). Non-invasive brain stimulation for stroke recovery: Ready for the big time? Journal of Neurology, Neurosurgery, and Psychiatry, 87(4), 343–344. CrossRefGoogle Scholar
  176. Ward, N. S., & Cohen, L. G. (2004). Mechanisms underlying recovery of motor function after stroke. Archives of Neurology, 61(12), 1844–1848. Retrieved from
  177. Winstein, C. J., Stein, J., Arena, R., Bates, B., Cherney, L. R., Cramer, S. C., … Zorowitz, R. D. (2016). Guidelines for adult stroke rehabilitation and recovery. Stroke, 47, e98–e169. Google Scholar
  178. Wirth, M., Rahman, R., Kuenecke, J., Koenig, T., Horn, H., Sommer, W., & Dierks, T. (2011). Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production. Neuropsychologia, 49(14), 3989–3998. CrossRefGoogle Scholar
  179. Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., … Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031–1048. PubMedPubMedCentralCrossRefGoogle Scholar
  180. Wu, D., Qian, L., Zorowitz, R. D., Zhang, L., Qu, Y., & Yuan, Y. (2013). Effects on decreasing upper-limb poststroke muscle tone using transcranial direct current stimulation: A randomized sham-controlled study. Archives of Physical Medicine and Rehabilitation, 94(1), 1–8. PubMedCrossRefPubMedCentralGoogle Scholar
  181. Yang, E., Baek, S.-R., Shin, J., Lim, J., Jang, H., Kim, Y., & Paik, N.-J. (2012). Effects of transcranial direct current stimulation (tDCS) on post-stroke dysphagia. Restorative Neurology and Neuroscience, 30(4), 303–311. Google Scholar
  182. You, D., Kim, D.-Y., Chun, M., Jung, S., & Park, S. (2011). Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients. Brain and Language, 119(1), 1–5. CrossRefGoogle Scholar
  183. Zimerman, M., Heise, K. F., Hoppe, J., Cohen, L. G., Gerloff, C., & Hummel, F. C. (2012). Modulation of training by single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand. Stroke; a Journal of Cerebral Circulation, 43(8), 2185–2191. PubMedPubMedCentralCrossRefGoogle Scholar
  184. Zimerman, M., Nitsch, M., Giraux, P., Gerloff, C., Cohen, L. G., & Hummel, F. C. (2013). Neuroenhancement of the aging brain: Restoring skill acquisition in old subjects. Annals of Neurology, 73(1), 10–15. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Human Cortical Physiology and Stroke Neurorehabilitation SectionNational Institutes of HealthBethesdaUSA
  2. 2.Department of Neurology and Rehabilitation MedicineUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations