Transcranial Direct Current Stimulation Ethics and Professional Conduct

  • Andrea AntalEmail author
  • Adam J. Woods
  • Helena Knotkova


Non-invasive neuromodulation, using low intensity transcranial direct current stimulation (tDCS), provides scientists and medical doctors with the ability to gain fundamental insight into brain functions and to treat several neurological and psychiatric conditions. Due to this circumstance, the use of tDCS, including the off-label applications, is rapidly expanding, without a full understanding of safety and efficacy implications. There is also a proliferation of over-the-counter (OTC) and do-it-yourself (DIY) device usage, raising severe ethical concerns. Therefore, this chapter aims to summarize and discuss the most relevant issues in the area of tDCS-ethics. In the first part, the international and national regulatory frameworks are briefly described. Different regulatory paths for tDCS devices in the USA and Europe have resulted in diverse availability of these devices around the world. In the second part, tDCS ethics are mentioned from the personnel point of view, including: professional conduct, training and responsibilities. The third part deals with ethical issues pertaining to tDCS recipients, comprising e.g. consent forms and reimbursement. The forth part of the chapter discusses ethical issues related to tDCS procedures, including protocols, monitoring and the safety of unsupervised use. Finally, in the last part, open questions are addressed, discussing the biological line between normal and better than normal functioning or treatment and enhancement. Ethical implications for involuntary or coercive uses of tDCS applied for the purpose of changing behavior or gaining compliance with socially accepted norms are also being discussed.


tDCS Ethics Regulation Safety Neuroenhancement DIY Neuromodulation Professional conduct Protection of human subjects 


  1. Antal, A., Nitsche, M. A., Kruse, W., Kincses, T. Z., Hoffmann, K.-P., & Paulus, W. (2004). Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of Cognitive Neuroscience, 16, 521–527.CrossRefGoogle Scholar
  2. Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M.-F., & Nitsche, M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. The Journal of Physiology, 591, 1987–2000.CrossRefGoogle Scholar
  3. Bikson, M., Datta, A., Rahman, A., & Scaturro, J. (2010). Electrode montages for tDCS and weak transcranial electrical stimulation: Role of “ return” electrode’s position and size. Clinical Neurophysiology, 121, 1976–1978.CrossRefGoogle Scholar
  4. Boggio, P. S., Nunes, A., Rigonatti, S. P., Nitsche, M. A., Pascual-Leone, A., & Fregni, F. (2007). Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restorative Neurology and Neuroscience, 25, 123–129.PubMedGoogle Scholar
  5. Cheng, G. L., & Lee, T. M. (2016). Altering risky decision-making: Influence of impulsivity on the neuromodulation of prefrontal cortex. Social Neuroscience, 11(4), 353–356.CrossRefGoogle Scholar
  6. Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2, 201–207.e1.CrossRefGoogle Scholar
  7. Fecteau, S., Boggio, P., Fregni, F., & Pascual-Leone, A. (2013). Modulation of untruthful responses with non-invasive brain stimulation. Front Psychiatry, 3, 97.CrossRefGoogle Scholar
  8. Harris, L. J., & Almerigi, J. B. (2009). Probing the human brain with stimulating electrodes: The story of Roberts Bartholow’s (1874) experiment on Mary Rafferty. Brain and Cognition, 70, 92–115.CrossRefGoogle Scholar
  9. Kianifard, F., & Islam, M. Z. (2011). A guide to the design and analysis of small clinical studies. Pharmaceutical Statistics, 10(4), 363–368.CrossRefGoogle Scholar
  10. Kessler, S. K., Minhas, P., Woods, A. J., Rosen, A., Gorman, C., & Bikson, M. (2013). Dosage considerations for transcranial direct current stimulation in children: A computational modeling study. PLoS One, 8, e76112.CrossRefGoogle Scholar
  11. Iuculano, T., & Cohen Kadosh, R. J. (2013). The mental cost of cognitive enhancement. Neuroscience, 33, 4482–4486.CrossRefGoogle Scholar
  12. Loo, C. K., Alonzo, A., Martin, D., Mitchell, P. B., Galvez, V., & Sachdev, P. (2012). Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial. The British Journal of Psychiatry, 200, 52–59.CrossRefGoogle Scholar
  13. Maslen, H., Douglas, T., Cohen Kadosh, R., Levy, N., & Savulescu, J. (2014a). The regulation of cognitive enhancement devices: Extending the medical model. Journal of Law and the Biosciences, 1, 68–93.CrossRefGoogle Scholar
  14. Maslen, H., Douglas, T., Cohen Kadosh, R., Levy, N., & Savulescu, J. (2015). Do-it-yourself brain stimulation: A regulatory model. Journal of Medical Ethics, 41, 413–414.CrossRefGoogle Scholar
  15. Maslen, H., Earp, B. D., Cohen Kadosh, R., & Savulescu, J. (2014b). Brain stimulation for treatment and enhancement in children: An ethical analysis. Frontiers in Human Neuroscience, 8, 953.CrossRefGoogle Scholar
  16. Maslen, H., Savulescu, J., Douglas, T., Levy, N., & Cohen Kadosh, R. (2013). Regulation of devices for cognitive enhancement. Lancet, 382, 938–939.CrossRefGoogle Scholar
  17. Minhas, P., Bikson, M., Woods, A. J., Rosen, A. R., & Kessler, S. K. (2012). Transcranial direct current stimulation in pediatric brain: A computational modeling study. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, 859–862.Google Scholar
  18. Moan, C. E., & Heath, R. G. (1972). Septal stimulation for initiation of heterosexual behavior in a homosexual male. Journal of Behavior Therapy and Experimental Psychiatry, 3, 23–30.CrossRefGoogle Scholar
  19. Monte-Silva, K., Kuo, M.-F., Liebetanz, D., Paulus, W., & Nitsche, M. A. (2010). Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). Journal of Neurophysiology, 103, 1735–1740.CrossRefGoogle Scholar
  20. Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1, 206–223.CrossRefGoogle Scholar
  21. Nitsche, M. A., Doemkes, S., Karaköse, T., Antal, A., Liebetanz, D., Lang, N., … Paulus, W. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology, 97, 3109–3117.CrossRefGoogle Scholar
  22. Nitsche, M. A., Jaussi, W., Liebetanz, D., Lang, N., Tergau, F., & Paulus, W. (2004a). Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology, 29, 1573–1578.CrossRefGoogle Scholar
  23. Nitsche, M. A., Kuo, M. F., Karrasch, R., Wachter, B., Liebetanz, D., & Paulus, W. (2009). Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biological Psychiatry, 66, 503–508.CrossRefGoogle Scholar
  24. Nitsche, M. A., Liebetanz, D., Lang, N., Antal, A., Tergau, F., & Paulus, W. (2003a). Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clinical Neurophysiology, 114, 2220–2222. author reply 2222–2223.CrossRefGoogle Scholar
  25. Nitsche, M. A., Liebetanz, D., Schlitterlau, A., Henschke, U., Fricke, K., Frommann, K., … Tergau, F. (2004b). GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. The European Journal of Neuroscience, 19, 2720–2726.CrossRefGoogle Scholar
  26. Nitsche, M. A., Nitsche, M. A., Paulus, W., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(Pt 3), 633–639.CrossRefGoogle Scholar
  27. Nitsche, M. A., Nitsche, M. S., Klein, C. C., Tergau, F., Rothwell, J. C., & Paulus, W. (2003b). Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clinical Neurophysiology, 114, 600–604.CrossRefGoogle Scholar
  28. Nitsche, M. A., Seeber, A., Frommann, K., Klein, C. C., Rochford, C., Nitsche, M. S., … Tergau, F. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. The Journal of Physiology, 568, 291–303.CrossRefGoogle Scholar
  29. Palm, U., Keeser, D., Schiller, C., Fintescu, Z., Reisinger, E., Padberg, F., & Nitsche, M. (2008). Skin lesions after treatment with transcranial direct current stimulation (tDCS). Brain Stimulation, 1, 386–387.CrossRefGoogle Scholar
  30. Parent, A. (2004). Giovanni Aldini: From animal electricity to human brain stimulation. The Canadian Journal of Neurological Sciences Le journal canadien des sciences neurologiques, 31, 576–584.CrossRefGoogle Scholar
  31. Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., … Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. The Journal of Neuroscience, 29, 5202–5206.CrossRefGoogle Scholar
  32. Stagg, C. J., Lin, R. L., Mezue, M., Segerdahl, A., Kong, Y., Xie, J., & Tracey, I. (2013). Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. The Journal of Neuroscience, 33, 11425–11431.CrossRefGoogle Scholar
  33. Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17, 37–53.CrossRefGoogle Scholar
  34. Wexler, A. (2016). The practices of do-it-yourself brain stimulation: Implications for ethical considerations and regulatory proposals. Journal of Medical Ethics, 42, 211–215.CrossRefGoogle Scholar
  35. Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., … Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127, 1031–1048.CrossRefGoogle Scholar
  36. Woods, A. J., Bryant, V., Sacchetti, D., Gervits, F., & Hamilton, R. (2015). Effects of electrode drift in transcranial direct current stimulation. Brain Stimulation, 8, 515–519.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Andrea Antal
    • 1
    Email author
  • Adam J. Woods
    • 2
  • Helena Knotkova
    • 3
    • 4
  1. 1.Department of Clinical NeurophysiologyUniversity Medical Center, Georg-August University GöttingenGöttingenGermany
  2. 2.Center for Cognitive Aging and Memory (CAM), McKnight Brain Institute, Department of Clinical and Health Psychology, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleUSA
  3. 3.MJHS Institute for Innovation in Palliative CareNew YorkUSA
  4. 4.Department of Family and Social MedicineAlbert Einstein College of Medicine, BronxNYUSA

Personalised recommendations