Advertisement

Transcranial Direct Current Stimulation Integration with Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy, Near Infrared Spectroscopy Imaging, and Electroencephalography

  • Adam J. WoodsEmail author
  • Marom Bikson
  • Kenneth Chelette
  • Jacek Dmochowski
  • Anirban Dutta
  • Zeinab Esmaeilpour
  • Nigel Gebodh
  • Michael A. Nitsche
  • Charlotte Stagg
Chapter

Abstract

Transcranial direct current stimulation provides researchers and clinicians with the ability to non-invasively modulate the firing rate of neurons. However, the focality and overall consequences of tDCS for neural systems is often unclear based on tDCS alone. When tDCS is paired with state-of-the-art neurophysiology, neuroimaging and spectroscopic techniques, researchers and clinicians can gain important insight into the neural underpinnings of tDCS effects, as well as gain novel insight into brain-behaviour relationships. In this chapter, we will consider approaches for integration of tDCS with magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), near infrared spectroscopy (NIRS) imaging, and electroencephalography (EEG). We will discuss technical considerations, benefits, limitations, and optimal application strategies for the integration of each methodology with transcranial direct current stimulation. This chapter will provide an important foundation for understanding “how” to integrate these technologies, as well as “when” integration can be of benefit for researchers and clinicians.

Keywords

Transcranial direct current stimulation Functional magnetic resonance imaging Magnetic resonance spectroscopy Functional near infrared spectroscopy Electroencephalography Event-related potentials Technology integration Methodology Neuroimaging Technical guidance 

References

  1. Aasted, C. M., Yücel, M. A., Cooper, R. J., Dubb, J., Tsuzuki, D., Becerra, L., … Boas, D. A. (2015). Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial. Neurophotonics, 2, 20801.Google Scholar
  2. Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Astrocyte–endothelial interactions at the blood–brain barrier. Nature Reviews. Neuroscience, 7, 41–53.Google Scholar
  3. Al-Kaysi, A. M., Al-Ani, A., Loo, C. K., Powell, T. Y., Martin, D. M., Breakspear, M., & Boonstra, T. W. (2016). Predicting tDCS treatment outcomes of patients with major depressive disorder using automated EEG classification. Journal of Affective Disorders, 208, 597–603.Google Scholar
  4. Allen, P. J., Josephs, O., & Turner, R. (2000). A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage, 12, 230–239.Google Scholar
  5. Alschuler, D. M., Tenke, C. E., Bruder, G. E., & Kayser, J. (2014). Identifying electrode bridging from electrical distance distributions: A survey of publicly-available EEG data using a new method. Clinical Neurophysiology, 125, 484–490.Google Scholar
  6. Amadi, U., Ilie, A., Johansen-Berg, H., & Stagg, C. J. (2014). Polarity-specific effects of motor transcranial direct current stimulation on fMRI resting state networks. NeuroImage, 88, 155–161.Google Scholar
  7. Antal, A., Bikson, M., Datta, A., Lafon, B., Dechent, P., Parra, L. C., & Paulus, W. (2014). Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain. NeuroImage, 85(Pt 3), 1040–1047.Google Scholar
  8. Antal, A., Polania, R., Schmidt-Samoa, C., Dechent, P., & Paulus, W. (2011). Transcranial direct current stimulation over the primary motor cortex during fMRI. NeuroImage, 55, 590–596.Google Scholar
  9. Aroniadou, V. A., & Keller, A. (1995). Mechanisms of LTP induction in rat motor cortex in vitro. Cerebral Cortex, 5, 353–362.Google Scholar
  10. Attwell, D., Buchan, A. M., Charpak, S., Lauritzen, M., MacVicar, B. A., & Newman, E. A. (2010). Glial and neuronal control of brain blood flow. Nature, 468, 232–243.Google Scholar
  11. Bachtiar, V., Near, J., Johansen-Berg, H., & Stagg, C. J. (2015). Modulation of GABA and resting state functional connectivity by transcranial direct current stimulation. eLife, 4, e08789.Google Scholar
  12. Barlow, J. S. (1985). A general-purpose automatic multichannel electronic switch for EEG artifact elimination. Electroencephalography and Clinical Neurophysiology, 60, 174–176.Google Scholar
  13. Baudewig, J., Nitsche, M. A., Paulus, W., & Frahm, J. (2001a). Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magnetic Resonance in Medicine, 45, 196–201.Google Scholar
  14. Baudewig, J., Siebner, H. R., Bestmann, S., Tergau, F., Tings, T., Paulus, W., & Frahm, J. (2001b). Functional MRI of cortical activations induced by transcranial magnetic stimulation (TMS). Neuroreport, 12, 3543–3548.Google Scholar
  15. Bazargani, N., & Attwell, D. (2016). Astrocyte calcium signaling: The third wave. Nature Neuroscience, 19, 182–189.Google Scholar
  16. Beckmann, C. F., Deluca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 1001–1013.Google Scholar
  17. Berg, P., & Scherg, M. (1991). Dipole models of eye movements and blinks. Electroencephalography and Clinical Neurophysiology, 79, 36–44.Google Scholar
  18. Beyer, L., Batsikadze, G., Timmann, D., & Gerwig, M. (2017). Cerebellar tDCS effects on conditioned Eyeblinks using different electrode placements and stimulation protocols. Frontiers in Human Neuroscience, 11, 23.Google Scholar
  19. Binkofski, F., Loebig, M., Jauch-Chara, K., Bergmann, S., Melchert, U. H., Scholand-Engler, H. G., … Oltmanns, K. M. (2011). Brain energy consumption induced by electrical stimulation promotes systemic glucose uptake. Biological Psychiatry, 70, 690–695.Google Scholar
  20. Boas, D. A., Culver, J., Stott, J., & Dunn, A. (2002). Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Optics Express, 10, 159–170.Google Scholar
  21. Boggio, P. S., Ferrucci, R., Rigonatti, S. P., Covre, P., Nitsche, M., Pascual-Leone, A., & Fregni, F. (2006). Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. Journal of the Neurological Sciences, 249, 31–38.Google Scholar
  22. Bonnet, P., Rusch, N. J., & Harder, D. R. (1991). Characterization of an outward K+ current in freshly dispersed cerebral arterial muscle cells. Pflügers Archiv European Journal of Physiology, 418, 292–296.Google Scholar
  23. Bottomley, P. A., Edelstein, W. A., Foster, T. H., & Adams, W. A. (1985). In vivo solvent-suppressed localized hydrogen nuclear magnetic resonance spectroscopy: A window to metabolism? Proceedings of the National Academy of Sciences of the United States of America, 82, 2148–2152.Google Scholar
  24. Bozzo, L., Puyal, J., & Chatton, J.-Y. (2013). Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway. PLoS One, 8, e71721.Google Scholar
  25. Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and motivation I: Defensive and appetitive reactions in picture processing. Emotion, 1, 276–298.Google Scholar
  26. Brayden, J. E. (1996). Potassium channels in vascular smooth muscle. Clinical and Experimental Pharmacology & Physiology, 23, 1069–1076.Google Scholar
  27. Brunoni, A. R., Nitsche, M. A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L., … Fregni, F. (2012). Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimulation, 5, 175–195.Google Scholar
  28. Buch, E. R., Santarnecchi, E., Antal, A., Born, J., Celnik, P. A., Classen, J., … Cohen, L. G. (2017). Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clinical Neurophysiology, 128, 589–603.Google Scholar
  29. Cabib, C., Cipullo, F., Morales, M., & Valls-Sole, J. (2016). Transcranial direct current stimulation (tDCS) enhances the excitability of Trigemino-facial reflex circuits. Brain Stimulation, 9, 218–224.Google Scholar
  30. Cancelli, A., Cottone, C., Tecchio, F., Truong, D. Q., Dmochowski, J., & Bikson, M. (2016). A simple method for EEG guided transcranial electrical stimulation without models. Journal of Neural Engineering, 13, 36022.Google Scholar
  31. Castro-Alamancos, M. A., Donoghue, J. P., & Connors, B. W. (1995). Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. The Journal of Neuroscience, 15, 5324–5333.Google Scholar
  32. Charvet, L. E., Kasschau, M., Datta, A., Knotkova, H., Stevens, M. C., Alonzo, A., … Bikson, M. (2015). Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: Guidelines for technology and protocols. Frontiers in Systems Neuroscience, 9, 26.Google Scholar
  33. Chhabria, K., & Chakravarthy, V. S. (2016). Low-dimensional models of “neuro-Glio-vascular unit” for describing neural dynamics under normal and energy-starved conditions. Stroke, 7, 24.Google Scholar
  34. Clancy, J. A., Johnson, R., Raw, R., Deuchars, S. A., & Deuchars, J. (2014). Anodal transcranial direct current stimulation (tDCS) over the motor cortex increases sympathetic nerve activity. Brain Stimulation, 7, 97–104.Google Scholar
  35. Clark, V. P., Coffman, B. A., Trumbo, M. C., & Gasparovic, C. (2011). Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: A 1H magnetic resonance spectroscopy study. Neuroscience Letters, 500, 67–71.Google Scholar
  36. Coan, J. A., & Allen, J. J. B. (2003). Varieties of emotional experience during voluntary emotional facial expressions. Annals of the New York Academy of Sciences, 1000, 375–379.Google Scholar
  37. Cole, D. M., Smith, S. M., & Beckmann, C. F. (2010). Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers in Systems Neuroscience, 4, 8.Google Scholar
  38. Corby, J. C., Roth, W. T., & Kopell, B. S. (1974). Prevalence and methods of control of the cephalic skin potential EEG artifact. Psychophysiology, 11, 350–360.Google Scholar
  39. Cunillera, T., Brignani, D., Cucurell, D., Fuentemilla, L., & Miniussi, C. (2015). The right inferior frontal cortex in response inhibition: A tDCS-ERP co-registration study. NeuroImage, 140, 66–75.Google Scholar
  40. Datta, A., Baker, J. M., Bikson, M., & Fridriksson, J. (2011). Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimulation, 4, 169–174.Google Scholar
  41. Delpy, D. T., Arridge, S. R., Cope, M., Edwards, D., Reynolds, E. O. R., Richardson, C. E., … van der Zee, P. (1989). Quantitation of pathlength in optical spectroscopy (pp. 41–46). Boston, MA: Springer.Google Scholar
  42. Dinteren, R., Arns, M., Jongsma, M. L. A., & Kessels, R. P. C. (2014). P300 development across the lifespan: A systematic review and meta-analysis. PLoS One, 9, e87347.Google Scholar
  43. Dutta, A. (2015). Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS): Challenges for brain-state dependent tDCS. Frontiers in Systems Neuroscience, 9, 1–7.Google Scholar
  44. Dutta, A., Jacob, A., Chowdhury, S. R., Das, A., & Nitsche, M. A. (2015). EEG-NIRS based assessment of neurovascular coupling during anodal transcranial direct current stimulation – a stroke case series. Journal of Medical Systems, 39, 205.Google Scholar
  45. Edwards, G., & Weston, A. H. (1993). The pharmacology of ATP-sensitive potassium channels. Annual Review of Pharmacology and Toxicology, 33, 597–637.Google Scholar
  46. Faehling, F., & Plewnia, C. (2016). Controlling the emotional bias: Performance, late positive potentials, and the effect of anodal transcranial direct current stimulation (tDCS). Frontiers in Cellular Neuroscience, 10, 159.Google Scholar
  47. Fang, Q. (2010). Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates. Biomedical Optics Express, 1, 165–175.Google Scholar
  48. Fantini, S. (2014). Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: Implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS). NeuroImage, 85(Pt 1), 202–221.Google Scholar
  49. Faria, P., Fregni, F., Sebastião, F., Dias, A. I., & Leal, A. (2012). Feasibility of focal transcranial DC polarization with simultaneous EEG recording: Preliminary assessment in healthy subjects and human epilepsy. Epilepsy & Behavior, 25, 417–425.Google Scholar
  50. Fernández-Corazza, M., Turovets, S., Luu, P., Anderson, E., & Tucker, D. (2016). Transcranial electrical neuromodulation based on the reciprocity principle. Frontiers in Psychiatry, 7, 87.Google Scholar
  51. Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., … Mackay, C. E. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of America, 106, 7209–7214.Google Scholar
  52. Fischl, B. (2012). FreeSurfer. NeuroImage, 62, 774–781.Google Scholar
  53. Fornito, A., Zalesky, A., & Breakspear, M. (2013). Graph analysis of the human connectome: Promise, progress, and pitfalls. NeuroImage, 80, 426–444.Google Scholar
  54. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8, 700–711.Google Scholar
  55. Giordano, J., Bikson, M., Kappenman, E. S., Clark, V. P., Coslett, H. B., Hamblin, M. R., … Calabrese, E. (2017). Mechanisms and effects of transcranial direct current stimulation. Dose Response, 15, 1559325816685467.Google Scholar
  56. Girouard, H., & Iadecola, C. (2006). Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. Journal of Applied Physiology, 100, 328–335.Google Scholar
  57. Goncharova, I. I., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2003). EMG contamination of EEG: Spectral and topographical characteristics. Clinical Neurophysiology, 114, 1580–1593.Google Scholar
  58. Greischar, L. L., Burghy, C. A., Van Reekum, C. M., Jackson, D. C., Pizzagalli, D. A., Mueller, C., & Davidson, R. J. (2004). Effects of electrode density and electrolyte spreading in dense array electroencephalographic recording. Clinical Neurophysiology, 115, 710–720.Google Scholar
  59. Guhathakurta, D., & Dutta, A. (2016). Computational pipeline for NIRS-EEG joint imaging of tDCS-evoked cerebral responses-an application in ischemic stroke. Frontiers in Neuroscience, 10, 261.Google Scholar
  60. Hahn, C., Rice, J., Macuff, S., Minhas, P., Rahman, A., & Bikson, M. (2013). Methods for extra-low voltage transcranial direct current stimulation: Current and time dependent impedance decreases. Clinical Neurophysiology, 124, 551–556.Google Scholar
  61. Hamel, E. (2006). Perivascular nerves and the regulation of cerebrovascular tone. Journal of Applied Physiology, 100, 1059–1064.Google Scholar
  62. Helfrich, R. F., Knepper, H., Nolte, G., Strüber, D., Rach, S., Herrmann, C. S., … Engel, A. K. (2014). Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biology, 12, e1002031.Google Scholar
  63. Hess, G., Aizenman, C. D., & Donoghue, J. P. (1996). Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. Journal of Neurophysiology, 75, 1765–1778.Google Scholar
  64. Holland, R., Leff, A. P., Josephs, O., Galea, J. M., Desikan, M., Price, C. J., … Crinion, J. (2011). Speech facilitation by left inferior frontal cortex stimulation. Current Biology, 21, 1403–1407.Google Scholar
  65. Holmes, C. J., Hoge, R., Collins, L., Woods, R., Toga, A. W., & Evans, A. C. (2015). Enhancement of MR images using registration for signal averaging. Journal of Computer Assisted Tomography, 22, 324–333.Google Scholar
  66. Huneau, C., Benali, H., & Chabriat, H. (2015). Investigating human neurovascular coupling using functional neuroimaging: A critical review of dynamic models. Frontiers in Neuroscience, 9, 467.Google Scholar
  67. Hunter, M. A., Coffman, B. A., Gasparovic, C., Calhoun, V. D., Trumbo, M. C., & Clark, V. P. (2015). Baseline effects of transcranial direct current stimulation on glutamatergic neurotransmission and large-scale network connectivity. Brain Research, 1594, 92–107.Google Scholar
  68. Hunter, M. A., Coffman, B. A., Trumbo, M. C., & Clark, V. P. (2013). Tracking the neuroplastic changes associated with transcranial direct current stimulation: A push for multimodal imaging. Frontiers in Human Neuroscience, 7, 495.Google Scholar
  69. Iwasaki, M., Kellinghaus, C., Alexopoulos, A. V., Burgess, R. C., Kumar, A. N., Han, Y. H., … Leigh, R. J. (2005). Effects of eyelid closure, blinks, and eye movements on the electroencephalogram. Clinical Neurophysiology, 116, 878–885.Google Scholar
  70. Jasper, H. H. (1958). Report of the committee on methods of clinical examination in electroencephalography. Electroencephalography and Clinical Neurophysiology. Supplement, 10, 370–375.Google Scholar
  71. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62, 782–790.Google Scholar
  72. Jindal, U., Sood, M., Dutta, A., & Chowdhury, S. R. (2015). Development of point of care testing device for neurovascular coupling from simultaneous recording of EEG and NIRS during anodal transcranial direct current stimulation. IEEE Journal of Translational Engineering in Health and Medicine, 3, 1–12.Google Scholar
  73. Johansen-Berg, H. (2013). Human connectomics – What will the future demand? NeuroImage, 80, 541–544.Google Scholar
  74. Jolivet, R., Coggan, J. S., Allaman, I., & Magistretti, P. J. (2015). Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble. PLoS Computational Biology, 11, e1004036.Google Scholar
  75. Kim, S., Stephenson, M. C., Morris, P. G., & Jackson, S. R. (2014). TDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: A 7T magnetic resonance spectroscopy study. NeuroImage, 99, 237–243.Google Scholar
  76. Kirilina, E., Jelzow, A., Heine, A., Niessing, M., Wabnitz, H., Brühl, R., … Tachtsidis, I. (2012). The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy. NeuroImage, 61, 70–81.Google Scholar
  77. Kitazono, T., Faraci, F. M., Taguchi, H., & Heistad, D. D. (1995). Role of potassium channels in cerebral blood vessels. Stroke, 26, 1713–1723.Google Scholar
  78. Klass, D. W. (1995). The continuing challenge of artifacts in the EEG. The American Journal of EEG Technology, 35, 239–269.Google Scholar
  79. Komssi, S., Aronen, H. J., Huttunen, J., Kesäniemi, M., Soinne, L., Nikouline, V. V., … Ilmoniemi, R. J. (2002). Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation. Clinical Neurophysiology, 113, 175–184.Google Scholar
  80. Kwon, Y. H., Ko, M.-H., Ahn, S. H., Minhas, P., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2008). Primary motor cortex activation by transcranial direct current stimulation in the human brain. Neuroscience Letters, 435, 56–59. S0304-3940(08)00180-8 [pii].Google Scholar
  81. Lee, S., & Buchsbaum, M. S. (1987). Topographic mapping of EEG artifacts. Clinical Electroencephalography, 18, 61–67.Google Scholar
  82. Lemke, C., Hess, A., Clare, S., Bachtiar, V., Stagg, C., Jezzard, P., & Emir, U. (2015). Two-voxel spectroscopy with dynamic B<inf>0</inf> shimming and flip angle adjustment at 7 T in the human motor cortex. NMR in Biomedicine, 28, 852–860.Google Scholar
  83. Leybaert, L., Paemeleire, K., Strahonja, A., & Sanderson, M. J. (1998). Inositol-trisphosphate-dependent intercellular calcium signaling in and between astrocytes and endothelial cells. Glia, 24, 398–407.Google Scholar
  84. Light, G. A., Williams, L. E., Minow, F., Sprock, J., Rissling, A., Sharp, R., Swerdlow, N. R., & Braff, D. L. (2010). Electroencephalography (EEG) and event-related potentials (ERPs) with human participants. Current Protocols in Neuroscience, 52, 6.25.1–6.25.24.Google Scholar
  85. Lindenberg, R., Nachtigall, L., Meinzer, M., Sieg, M. M., & Flöel, A. (2013). Differential effects of dual and unihemispheric motor cortex stimulation in older adults. The Journal of Neuroscience, 33, 9176–9183.Google Scholar
  86. List, J., Lesemann, A., Kübke, J. C., Külzow, N., Schreiber, S. J., & Flöel, A. (2015). Impact of tDCS on cerebral autoregulation in aging and in patients with cerebrovascular diseases. Neurology, 84, 626–628.Google Scholar
  87. Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453, 869–878.Google Scholar
  88. Luft, C. D. B., & Bhattacharya, J. (2015). Aroused with heart: Modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates. Scientific Reports, 5, 15717.Google Scholar
  89. Mancini, M., Pellicciari, M. C., Brignani, D., Mauri, P., De Marchis, C., Miniussi, C., & Conforto, S. (2015). Automatic artifact suppression in simultaneous tDCS-EEG using adaptive filtering. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. pp. 2729–2732Google Scholar
  90. Mangia, A. L., Pirini, M., & Cappello, A. (2014). Transcranial direct current stimulation and power spectral parameters: A tDCS/EEG co-registration study. Frontiers in Human Neuroscience, 8, 601.Google Scholar
  91. Mathiisen, T. M., Lehre, K. P., Danbolt, N. C., & Ottersen, O. P. (2010). The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction. Glia, 58, 1094–1103.Google Scholar
  92. Maudsley, A. A., Darkazanli, A., Alger, J. R., Hall, L. O., Schuff, N., Studholme, C., … Zhu, X. (2006). Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging. NMR in Biomedicine, 19, 492–503.Google Scholar
  93. Meinzer, M., Lindenberg, R., Sieg, M. M., Nachtigall, L., Ulm, L., & Flöel, A. (2014). Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults. Frontiers in Aging Neuroscience, 6, 253.Google Scholar
  94. Minhas, P., Bansal, V., Patel, J., Ho, J. S., Diaz, J., Datta, A., & Bikson, M. (2010). Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. Journal of Neuroscience Methods, 190, 188–197.Google Scholar
  95. Mintun, M. A., Vlassenko, A. G., Rundle, M. M., & Raichle, M. E. (2004). Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proceedings of the National Academy of Sciences of the United States of America, 101, 659–664.Google Scholar
  96. Monai, H., Ohkura, M., Tanaka, M., Oe, Y., Konno, A., Hirai, H., … Hirase, H. (2016). Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nature Communications, 7, 11100.Google Scholar
  97. Mulligan, S. J., & MacVicar, B. A. (2004). Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature, 431, 195–199.Google Scholar
  98. Muthalib, M., Besson, P., Rothwell, J., Ward, T., & Perrey, S. (2016). Effects of anodal high-definition transcranial direct current stimulation on bilateral sensorimotor cortex activation during sequential finger movements: An fnirs study. Advances in Experimental Medicine and Biology, 876, 351–359.Google Scholar
  99. Muthalib, M., Ferrari, M., Quaresima, V., Kerr, G., & Perrey, S. (2017). Functional near‐infrared spectroscopy to probe sensorimotor region activation during electrical stimulation‐evoked movement. Clinical Physiology and Functional Imaging. Google Scholar
  100. Nelson, M. T., Patlak, J. B., Worley, J. F., & Standen, N. B. (1990). Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. The American Journal of Physiology, 259, C3–C18.Google Scholar
  101. Niazy, R. K., Beckmann, C. F., Iannetti, G. D., Brady, J. M., & Smith, S. M. (2005). Removal of FMRI environment artifacts from EEG data using optimal basis sets. NeuroImage, 28, 720–737.Google Scholar
  102. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(Pt 3), 633–639.Google Scholar
  103. Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15, 619–626.Google Scholar
  104. Noetscher, G. M., Yanamadala, J., Makarov, S. N., & Pascual-Leone, A. (2014). Comparison of cephalic and extracephalic montages for transcranial direct current stimulation – A numerical study. IEEE Transactions on Biomedical Engineering, 61, 2488–2498.Google Scholar
  105. Noury, N., Hipp, J. F., & Siegel, M. (2016). Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation. NeuroImage, 140, 99–109.Google Scholar
  106. Obrig, H. (2014). NIRS in clinical neurology – A “promising” tool? NeuroImage, 85, 535–546.Google Scholar
  107. Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., … Dan, I. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. NeuroImage, 21, 99–111.Google Scholar
  108. Oomagari, K., Buisson, B., Dumuis, A., Bockaert, J., & Pin, J. P. (1991). Effect of glutamate and lonomycin on the release of arachidonic acid, prostaglandins and HETEs from cultured neurons and astrocytes. The European Journal of Neuroscience, 3, 928–939.Google Scholar
  109. Parra, L. C., Spence, C. D., Gerson, A. D., & Sajda, P. (2005). Recipes for the linear analysis of EEG. Neuroimage, 28, 326–341Google Scholar
  110. Paulson, O. B., & Newman, E. A. (1987). Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science, 237, 896–898.Google Scholar
  111. Picton, T. W., & Hillyard, S. A. (1972). Cephalic skin potentials in electroencephalography. Electroencephalography and Clinical Neurophysiology, 33, 419–424.Google Scholar
  112. Pievani, M., de Haan, W., Wu, T., Seeley, W. W., & Frisoni, G. B. (2011). Functional network disruption in the degenerative dementias. Lancet Neurology, 10, 829–843.Google Scholar
  113. Pievani, M., Filippini, N., Van Den Heuvel, M. P., Cappa, S. F., & Frisoni, G. B. (2014). Brain connectivity in neurodegenerative diseases – From phenotype to proteinopathy. Nature Reviews. Neurology, 10, 620–633.Google Scholar
  114. Polanía, R., Nitsche, M. A., Korman, C., Batsikadze, G., & Paulus, W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Current Biology, 22, 1314–1318.Google Scholar
  115. Polanía, R., Nitsche, M. A., & Paulus, W. (2011a). Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Human Brain Mapping, 32, 1236–1249.Google Scholar
  116. Polanía, R., Paulus, W., Antal, A., & Nitsche, M. A. (2011b). Introducing graph theory to track for neuroplastic alterations in the resting human brain: A transcranial direct current stimulation study. NeuroImage, 54, 2287–2296.Google Scholar
  117. Pulgar, V. M. (2015). Direct electric stimulation to increase cerebrovascular function. Frontiers in Systems Neuroscience, 9, 54.Google Scholar
  118. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682.Google Scholar
  119. Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., … Krakauer, J. W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America, 106, 1590–1595.Google Scholar
  120. Roy, A., Baxter, B., & He, B. (2014). High-definition transcranial direct current stimulation induces both acute and persistent changes in broadband cortical synchronization: A simultaneous tDCS-EEG study. IEEE Transactions on Biomedical Engineering, 61, 1967–1978.Google Scholar
  121. Roy, C. S., & Sherrington, C. S. (1890). On the regulation of the blood-supply of the brain. The Journal of Physiology, 11, 85–158.17.Google Scholar
  122. Rubin, D., & Daube, J. (2016). Adult EEG: Artifacts and the EEG. Clinical Neurophysiology. Oxford University Press.Google Scholar
  123. Schestatsky, P., Simis, M., Freeman, R., Pascual-Leone, A., & Fregni, F. (2013). Non-invasive brain stimulation and the autonomic nervous system. Clinical Neurophysiology, 124, 1716–1728.Google Scholar
  124. Schmitt, S. (2017). Artifacts resembling seizures. In Continuous EEG monitoring (pp. 153–171). Cham, Switzerland: Springer International Publishing.Google Scholar
  125. Scholkmann, F., Kleiser, S., Metz, A. J., Zimmermann, R., Mata Pavia, J., Wolf, U., & Wolf, M. (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage, 85, 6–27.Google Scholar
  126. Schroeder, P. A., Ehlis, A. C., Wolkenstein, L., Fallgatter, A. J., & Plewnia, C. (2015). Emotional distraction and bodily reaction: Modulation of autonomous responses by anodal tDCS to the prefrontal cortex. Frontiers in Cellular Neuroscience, 9, 482.Google Scholar
  127. Sehm, B., Kipping, J., Schäfer, A., Villringer, A., & Ragert, P. (2013). A comparison between Uni- and bilateral tDCS effects on functional connectivity of the human motor cortex. Frontiers in Human Neuroscience, 7, 183.Google Scholar
  128. Sehm, B., Schäfer, A., Kipping, J., Margulies, D., Conde, V., Taubert, M., … Ragert, P. (2012). Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation. Journal of Neurophysiology, 108, 3253–3263.Google Scholar
  129. Shackman, A. J., McMenamin, B. W., Slagter, H. A., Maxwell, J. S., Greischar, L. L., & Davidson, R. J. (2009). Electromyogenic artifacts and electroencephalographic inferences. Brain Topography, 22, 7–12.Google Scholar
  130. Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., … Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences, 106, 13040–13045.Google Scholar
  131. Snyder, A. Z., & Raichle, M. E. (2012). A brief history of the resting state: The Washington University perspective. NeuroImage, 62, 902–910.Google Scholar
  132. Sood, M., Besson, P., Muthalib, M., Jindal, U., Perrey, S., Dutta, A., & Hayashibe, M. (2016). NIRS-EEG joint imaging during transcranial direct current stimulation: Online parameter estimation with an autoregressive model. Journal of Neuroscience Methods, 274, 71–80.Google Scholar
  133. Sood, M., Jindal, U., Chowdhury, S. R., Das, A., Kondziella, D., & Dutta, A. (2015). Anterior temporal artery tap to identify systemic interference using short-separation NIRS measurements: A NIRS/EEG-tDCS study. Conf proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2015, 1239–1242.Google Scholar
  134. Stagg, C. J., Bachtiar, V., & Johansen-Berg, H. (2011a). The role of GABA in human motor learning. Current Biology, 21, 480–484.Google Scholar
  135. Stagg, C. J., Best, J. G., Stephenson, M. C., O'Shea, J., Wylezinska, M., Kincses, Z. T., … Johansen-Berg, H. (2009a). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. The Journal of Neuroscience, 29, 5202–5206.Google Scholar
  136. Stagg, C. J., Jayaram, G., Pastor, D., Kincses, Z. T., Matthews, P. M., & Johansen-Berg, H. (2011b). Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia, 49, 800–804.Google Scholar
  137. Stagg, C. J., Lin, R. L., Mezue, M., Segerdahl, A., Kong, Y., Xie, J., & Tracey, I. (2013). Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. The Journal of Neuroscience, 33, 11425–11431.Google Scholar
  138. Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17, 37–53.Google Scholar
  139. Stagg, C. J., O’Shea, J., Kincses, Z. T., Woolrich, M., Matthews, P. M., & Johansen-Berg, H. (2009b). Modulation of movement-associated cortical activation by transcranial direct current stimulation. The European Journal of Neuroscience, 30, 1412–1423.Google Scholar
  140. Stagg, C. J., Wylezinska, M., Matthews, P. M., Johansen-Berg, H., Jezzard, P., Rothwell, J. C., & Bestmann, S. (2009c). Neurochemical effects of Theta burst stimulation as assessed by magnetic resonance spectroscopy. Journal of Neurophysiology, 101, 2872–2877.Google Scholar
  141. Strangman, G. E., Li, Z., & Zhang, Q. (2013). Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template. PLoS One, 8, e66319.Google Scholar
  142. Stucht, D., Danishad, K. A., Schulze, P., Godenschweger, F., Zaitsev, M., & Speck, O. (2015). Highest resolution in vivo human brain MRI using prospective motion correction. PLoS One, 10, e0133921.Google Scholar
  143. Tachtsidis, I., & Scholkmann, F. (2016). False positives and false negatives in functional near-infrared spectroscopy: Issues, challenges, and the way forward. Neurophotonics, 3, 31405.Google Scholar
  144. Takai, H., Tsubaki, A., Sugawara, K., Miyaguchi, S., Oyanagi, K., Matsumoto, T., … Yamamoto, N. (2016). Effect of transcranial direct current stimulation over the primary motor cortex on cerebral blood flow: A time course study using near-infrared spectroscopy. Advances in Experimental Medicine and Biology, 876, 335–341.Google Scholar
  145. Tassinary, L. G., Cacioppo, J. T., & Vanman, E. J. (2007). The skeletomotor system. In G. Berntson, J. T. Cacioppo, & L. G. Tassinary (Eds.), Handbook of psychophysiology (pp. 267–300). Cambridge: Cambridge University Press.Google Scholar
  146. Tenke, C. E., & Kayser, J. (2001). A convenient method for detecting electrolyte bridges in multichannel electroencephalogram and event-related potential recordings. Clinical Neurophysiology, 112, 545–550.Google Scholar
  147. Torricelli, A., Contini, D., Pifferi, A., Caffini, M., Re, R., Zucchelli, L., & Spinelli, L. (2014). Time domain functional NIRS imaging for human brain mapping. NeuroImage, 85, 28–50.Google Scholar
  148. Trepel, C., & Racine, R. J. (1998). Long-term potentiation in the neocortex of the adult, freely moving rat. Cerebral Cortex, 8, 719–729.Google Scholar
  149. Trepel, C., & Racine, R. J. (2000). GABAergic modulation of neocortical long-term potentiation in the freely moving rat. Synapse, 35, 120–128.Google Scholar
  150. Tsytsarev, V., Hu, S., Yao, J., Maslov, K., Barbour, D. L., & Wang, L. V. (2011). Photoacoustic microscopy of microvascular responses to cortical electrical stimulation. Journal of Biomedical Optics, 16, 76002.Google Scholar
  151. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.Google Scholar
  152. Vaishnavi, S. N., Vlassenko, A. G., Rundle, M. M., Snyder, A. Z., Mintun, M. A., & Raichle, M. E. (2010). Regional aerobic glycolysis in the human brain. Proceedings of the National Academy of Sciences, 107, 17757–17762.Google Scholar
  153. Vandermeeren, Y., Jamart, J., & Ossemann, M. (2010). Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions. BMC Neuroscience, 11, 38.Google Scholar
  154. Vernieri, F., Assenza, G., Maggio, P., Tibuzzi, F., Zappasodi, F., Altamura, C., … Rossini, P. M. (2010). Cortical neuromodulation modifies cerebral vasomotor reactivity. Stroke, 41, 2087–2090.Google Scholar
  155. Villamar, M. F., Volz, M. S., Bikson, M., Datta, A., Dasilva, A. F., & Fregni, F. (2013). Technique and considerations in the use of 4x1 ring high-definition transcranial direct current stimulation (HD-tDCS). Journal of Visualized Experiments, e50309.Google Scholar
  156. Wachter, D., Wrede, A., Schulz-Schaeffer, W., Taghizadeh-Waghefi, A., Nitsche, M. A., Kutschenko, A., … Liebetanz, D. (2011). Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Experimental Neurology, 227, 322–327.Google Scholar
  157. Wagner, S., Lucka, F., Vorwerk, J., Herrmann, C. S., Nolte, G., Burger, M., & Wolters, C. H. (2016). Using reciprocity for relating the simulation of transcranial current stimulation to the EEG forward problem. NeuroImage, 140, 163–173.Google Scholar
  158. Waterink, W., & van Boxtel, A. (1994). Facial and jaw-elevator EMG activity in relation to changes in performance level during a sustained information processing task. Biological Psychology, 37, 183–198.Google Scholar
  159. Westmoreland, B. F. (1996). Periodic patterns in the EEG. American Journal of Electroneurodiagnostic Technology, 36, 1–17.Google Scholar
  160. Whitham, E. M., Pope, K. J., Fitzgibbon, S. P., Lewis, T., Clark, C. R., Loveless, S., … Willoughby, J. O. (2007). Scalp electrical recording during paralysis: Quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clinical Neurophysiology, 118, 1877–1888.Google Scholar
  161. Willis, J., Nelson, A., Rice, J., & Black, F. W. (1993). The topography of muscle activity in quantitative EEG. Clinical Electroencephalography, 24, 123–126.Google Scholar
  162. Windhoff, M., Opitz, A., & Thielscher, A. (2013). Electric field calculations in brain stimulation based on finite elements: An optimized processing pipeline for the generation and usage of accurate individual head models. Human Brain Mapping, 34, 923–935.Google Scholar
  163. Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., … Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127, 1031–1048.Google Scholar
  164. Woods, A. J., Hamilton, R. H., Kranjec, A., Minhaus, P., Bikson, M., Yu, J., & Chatterjee, A. (2014). Space, time, and causality in the human brain. NeuroImage, 92, 285–297.Google Scholar
  165. Yang, J., Ruchti, E., Petit, J.-M., Jourdain, P., Grenningloh, G., Allaman, I., & Magistretti, P. J. (2014). Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proceedings of the National Academy of Sciences of the United States of America, 111, 12228–12233.Google Scholar
  166. Zheng, X., Alsop, D. C., & Schlaug, G. (2011). Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. NeuroImage, 58, 26–33.Google Scholar
  167. Zuchowski, M. L., Timmann, D., & Gerwig, M. (2014). Acquisition of conditioned eyeblink responses is modulated by cerebellar tDCS. Brain Stimulation, 7, 525–531.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Adam J. Woods
    • 1
    Email author
  • Marom Bikson
    • 2
  • Kenneth Chelette
    • 3
  • Jacek Dmochowski
    • 4
  • Anirban Dutta
    • 5
  • Zeinab Esmaeilpour
    • 6
  • Nigel Gebodh
    • 6
  • Michael A. Nitsche
    • 7
    • 8
  • Charlotte Stagg
    • 9
    • 10
  1. 1.Center for Cognitive Aging and Memory (CAM), McKnight Brain Institute, Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of FloridaGainesvilleUSA
  2. 2.Department of Biomedical EngineeringThe City College of New YorkNew YorkUSA
  3. 3.ANT Neuro North AmericaPhiladelphiaUSA
  4. 4.Neural Engineering Laboratory, Department of Biomedical EngineeringGrove School of Engineering, The City College of the City University of New YorkNew YorkUSA
  5. 5.Neuroengineering and Informatics for Rehabilitation Laboratory, Jacobs School of Medicine & Biomedical Sciences, Department of Biomedical EngineeringUniversity at Buffalo SUNYBuffaloUSA
  6. 6.Department of Biomedical EngineeringThe City College of the City University of New YorkNew YorkUSA
  7. 7.Department of Psychology and NeurosciencesLeibniz Research Centre for Working Environment and Human FactorsDortmundGermany
  8. 8.University Medical Hospital BergmannsheilBochumGermany
  9. 9.Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
  10. 10.Oxford Centre for Human Brain Activity, Department of PsychiatryUniversity of OxfordOxfordUK

Personalised recommendations