Advertisement

Transcranial Direct Current Stimulation Among Technologies for Low-Intensity Transcranial Electrical Stimulation: Classification, History, and Terminology

  • Nigel Gebodh
  • Zeinab Esmaeilpour
  • Devin Adair
  • Pedro Schestattsky
  • Felipe Fregni
  • Marom BiksonEmail author
Chapter

Abstract

This chapters traces the historical developed of transcranial direct current stimulation (tDCS). The application of direct current to modulate human cognition and treat disease dates to the development of the first batteries (circa 1800). The development of electrical devices occurred alongside early electrical medicine using direct current stimulation (circa 1900). Electrical medicine developed throughout the twentieth century with increasingly sophisticated electronics allowing for new technologies that utilized increasingly complex waveforms. The modern era of tDCS commenced in 2000 with the demonstration of polarity-specific and lasting changes in cortical excitability – this work also established a canonical dose of a few mA for tens of minutes applied with large electrodes. With the intent to modulate brain regions associated with patho-physiological excitability, modern tDCS trials have targeted neuropsychiatric disorders. With the intent to promote plasticity, trials in neuro-rehabilitation emerged in 2003. Ongoing trials have developed in breadth of indications, scale and sophistication, now including dozens of randomized controlled trials (RCTs). The safety and tolerably of tDCS has encouraged testing on cognitive function and behavior in healthy volunteers. Animal studies establishing physiological targets for direct current span decades and are consistent with polarity specific modulation of lasting excitability changes, but with nuanced state-dependency. In parallel, dozens of clinical neurophysiology trials have established biomarkers and drug-interactions of response. Over the last decade, the dose response and individual variability of tDCS has been systematically explored and has suggested new approaches to optimize response. Imaging and MRI-derived computational models of current flow have supported hypothesis testing on target engagement and have suggested new techniques such as High-Definition tDCS (HD-tDCS). This chapter introduces tDCS in the context of other transcranial electrical stimulation (tES) techniques that have been historically developed in parallel, while emphasizing the unique role of tDCS in changing the broader trajectory of tES research. Specifically, modern tDCS was developed following rigorous neuro-physiological testing in animals and humans, with behavioral and clinical trials based on specific, mechanistic hypotheses derived from this canonical work. This rigorous and incremental approach has been the foundation of outstanding tDCS studies, and has facilitated in serving as a scientific anchor for the broader (re)discovery of non-invasive electrical stimulation.

Keywords

Non-invasive electrical brain stimulation tES tDCS HD-tDCS tRNS tACS tPCS Classification History Dosage Terminology Brain stimulation 

References

  1. Al-Kaysi, A. M., Al-Ani, A., Loo, C. K., Powell, T. Y., Martin, D. M., Breakspear, M., & Boonstra, T. W. (2016). Predicting tDCS treatment outcomes of patients with major depressive disorder using automated EEG classification. Journal of Affective Disorders. Google Scholar
  2. Alam, M., Truong, D. Q., Khadka, N., & Bikson, M. (2016). Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Physics in Medicine and Biology, 61(12), 4506–4521.CrossRefGoogle Scholar
  3. Antal, A., Bikson, M., Datta, A., Lafon, B., Dechent, P., Parra, L. C., & Paulus, W. (2014). Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain. NeuroImage, 85(Pt 3), 1040–1047. CrossRefGoogle Scholar
  4. Antal, A., Boros, K., Poreisz, C., Chaieb, L., Terney, D., & Paulus, W. (2008). Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimulation, 1(2), 97–105. PubMedPubMedCentralCrossRefGoogle Scholar
  5. Antal, A., & Paulus, W. (2013). Transcranial alternating current stimulation (tACS). Frontiers in Human Neuroscience, 7:317.Google Scholar
  6. Aparicio, L. V., Guarienti, F., Razza, L. B., Carvalho, A. F., Fregni, F., & Brunoni, A. R. (2016). A systematic review on the acceptability and tolerability of transcranial direct current stimulation treatment in neuropsychiatry trials. Brain Stimulation, 9(5), 671–681. PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baker, A. (1970). Brain stem polarization in the treatment of depression. South African Medical Journal, 44(16), 473–475.Google Scholar
  8. Beekwilder, J., & Beems, T. (2010). Overview of the clinical applications of vagus nerve stimulation. Journal of Clinical Neurophysiology, 27(2), 130–138.PubMedCrossRefGoogle Scholar
  9. Bikson, M., Datta, A., Rahman, A., & Scaturro, J. (2010). Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode’s position and size. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 121(12), 1976.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., … Woods, A. J. (2016). Safety of transcranial direct current stimulation: Evidence based update 2016. Brain Stimulation, 9(5), 641–661. Google Scholar
  11. Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., & Jefferys, J. G. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. The Journal of Physiology, 557(Pt 1), 175–190. PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bikson, M., & Rahman, A. (2013). Origins of specificity during tDCS: Anatomical, activity-selective, and input-bias mechanisms. Frontiers in Human Neuroscience, 7, 688.Google Scholar
  13. Bikson, M., Rahman, A., & Datta, A. (2012a). Computational models of transcranial direct current stimulation. Clinical EEG and Neuroscience, 43(3), 176–183. CrossRefGoogle Scholar
  14. Bikson, M., Rahman, A., Datta, A., Fregni, F., & Merabet, L. (2012b). High-resolution modeling assisted design of customized and individualized transcranial direct current stimulation protocols. Neuromodulation, 15(4), 306–315. CrossRefGoogle Scholar
  15. Bindman, L. J., Lippold, O., & Redfearn, J. (1964). The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. The Journal of Physiology, 172(3), 369.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bischoff, C. H. E. (1801). Commentatio de usu galvanismi in arte medica speciatim vero in morbis nervorum paralyticis: additis tab. aeneis II, Ienae, In BibliopolioAcademico. Google Scholar
  17. Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology, 232(2), 331–356.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Boggio, P. S., Fregni, F., Valasek, C., Ellwood, S., Chi, R., Gallate, J., … Snyder, A. (2009a). Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories. PLoS One, 4(3), e4959. PubMedPubMedCentralCrossRefGoogle Scholar
  19. Boggio, P. S., Khoury, L. P., Martins, D. C., Martins, O. E., De Macedo, E., & Fregni, F. (2009b). Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. Journal of Neurology, Neurosurgery, and Psychiatry, 80(4), 444–447.CrossRefGoogle Scholar
  20. Boggio, P. S., Nunes, A., Rigonatti, S. P., Nitsche, M. A., Pascual-Leone, A., & Fregni, F. (2007). Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restorative Neurology and Neuroscience, 25(2), 123–129.Google Scholar
  21. Boggio, P. S., Zaghi, S., Lopes, M., & Fregni, F. (2008). Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. European Journal of Neurology, 15(10), 1124–1130.PubMedCrossRefGoogle Scholar
  22. Bola, M., Gall, C., Moewes, C., Fedorov, A., Hinrichs, H., & Sabel, B. A. (2014). Brain functional connectivity network breakdown and restoration in blindness. Neurology, 83(6), 542–551.PubMedCrossRefGoogle Scholar
  23. Borckardt, J. J., Bikson, M., Frohman, H., Reeves, S. T., Datta, A., Bansal, V., … George, M. S. (2012). A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception. The Journal of Pain, 13(2), 112–120. CrossRefGoogle Scholar
  24. Bortoletto, M., Rodella, C., Salvador, R., Miranda, P. C., & Miniussi, C. (2016). Reduced current spread by concentric electrodes in transcranial electrical stimulation (tES). Brain Stimulation, 9(4), 525–528. CrossRefGoogle Scholar
  25. Brelen, M. E., Vince, V., Gerard, B., Veraart, C., & Delbeke, J. (2010). Measurement of evoked potentials after electrical stimulation of the human optic nerve. Investigative Ophthalmology & Visual Science, 51(10), 5351–5355. CrossRefGoogle Scholar
  26. Brunoni, A. R., Ferrucci, R., Fregni, F., Boggio, P. S., & Priori, A. (2012a). Transcranial direct current stimulation for the treatment of major depressive disorder: A summary of preclinical, clinical and translational findings. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 39(1), 9–16.PubMedCrossRefGoogle Scholar
  27. Brunoni, A. R., Nitsche, M. A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L., … Fregni, F. (2012b). Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimulation, 5(3), 175–195. CrossRefGoogle Scholar
  28. Buch, E. R., Santarnecchi, E., Antal, A., Born, J., Celnik, P. A., Classen, J., … Cohen, L. G. (2017). Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clinical Neurophysiology, 128(4), 589–603. PubMedCrossRefGoogle Scholar
  29. Bueno, V. F., Brunoni, A. R., Boggio, P. S., Bensenor, I. M., & Fregni, F. (2011). Mood and cognitive effects of transcranial direct current stimulation in post-stroke depression. Neurocase, 17(4), 318–322.PubMedCrossRefGoogle Scholar
  30. Cabral-Calderin, Y., Anne Weinrich, C., Schmidt-Samoa, C., Poland, E., Dechent, P., Bahr, M., & Wilke, M. (2016). Transcranial alternating current stimulation affects the BOLD signal in a frequency and task-dependent manner. Human Brain Mapping, 37(1), 94–121. PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cabrera, L. Y., Evans, E. L., & Hamilton, R. H. (2014). Ethics of the electrified mind: Defining issues and perspectives on the principled use of brain stimulation in medical research and clinical care. Brain Topography, 27(1), 10.1007/s10548-10013-10296-10548. PubMedCrossRefGoogle Scholar
  32. Cameron, T. (2004). Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: A 20-year literature review. Journal of Neurosurgery. Spine, 100(3), 254–267.Google Scholar
  33. Cancelli, A., Cottone, C., Parazzini, M., Fiocchi, S., Truong, D., Bikson, M., … Parazzini, M. (2015). Transcranial direct current stimulation: Personalizing the neuromodulation. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2015, 234–237. Google Scholar
  34. Cancelli, A., Cottone, C., Tecchio, F., Truong, D. Q., Dmochowski, J., & Bikson, M. (2016). A simple method for EEG guided transcranial electrical stimulation without models. Journal of Neural Engineering, 13(3), 036022. PubMedCrossRefGoogle Scholar
  35. Cano, T., Morales-Quezada, J. L., Bikson, M., & Fregni, F. (2013). Methods to focalize noninvasive electrical brain stimulation: Principles and future clinical development for the treatment of pain. Expert Review of Neurotherapeutics, 13(5), 465–467.PubMedCrossRefGoogle Scholar
  36. Castillo-Saavedra, L., Gebodh, N., Bikson, M., Diaz-Cruz, C., Brandao, R., Coutinho, L., … Weiss, M. (2016). Clinically effective treatment of fibromyalgia pain with high-definition transcranial direct current stimulation: Phase II open-label dose optimization. The Journal of Pain, 17(1), 14–26.CrossRefGoogle Scholar
  37. Cavaliere, C., Aiello, M., Di Perri, C., Amico, E., Martial, C., Thibaut, A., … Soddu, A. (2016). Functional connectivity substrates for tDCS response in minimally conscious state patients. Frontiers in Cellular Neuroscience, 10, 257. Google Scholar
  38. Charvet, L. E., Kasschau, M., Datta, A., Knotkova, H., Stevens, M. C., Alonzo, A., … Bikson, M. (2015). Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: Guidelines for technology and protocols. Frontiers in Systems Neuroscience, 9, 26. Google Scholar
  39. Chi, R. P., Fregni, F., & Snyder, A. W. (2010). Visual memory improved by non-invasive brain stimulation. Brain Research, 1353, 168–175.PubMedCrossRefGoogle Scholar
  40. Clark, V. P., Coffman, B. A., Mayer, A. R., Weisend, M. P., Lane, T. D., Calhoun, V. D., … Wassermann, E. M. (2012). TDCS guided using fMRI significantly accelerates learning to identify concealed objects. NeuroImage, 59(1), 117–128.CrossRefGoogle Scholar
  41. Clark, V. P., Coffman, B. A., Trumbo, M. C., & Gasparovic, C. (2011). Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: A (1) H magnetic resonance spectroscopy study. Neuroscience Letters, 500(1), 67–71. PubMedCrossRefGoogle Scholar
  42. Clemens, B., Jung, S., Mingoia, G., Weyer, D., Domahs, F., & Willmes, K. (2014). Influence of anodal transcranial direct current stimulation (tDCS) over the right angular gyrus on brain activity during rest. PLoS One, 9(4), e95984. PubMedPubMedCentralCrossRefGoogle Scholar
  43. Coats, A. (1972). The sinusoidal galvanic body-sway response. Acta Oto-Laryngologica, 74(1-6), 155–162.PubMedCrossRefGoogle Scholar
  44. Cosmo, C., Ferreira, C., Miranda, J. G., do Rosario, R. S., Baptista, A. F., Montoya, P., & de Sena, E. P. (2015). Spreading effect of tDCS in individuals with attention-deficit/hyperactivity disorder as shown by functional cortical networks: A randomized, double-blind, sham-controlled trial. Frontiers in Psychiatry, 6, 111. Google Scholar
  45. D'Atri, A., De Simoni, E., Gorgoni, M., Ferrara, M., Ferlazzo, F., Rossini, P. M., & De Gennaro, L. (2015). Frequency-dependent effects of oscillatory-tDCS on EEG oscillations: A study with Better OSCillation detection method (BOSC). Archives Italiennes de Biologie, 153(2-3), 124–134. Google Scholar
  46. D'Atri, A., De Simoni, E., Gorgoni, M., Ferrara, M., Ferlazzo, F., Rossini, P. M., & De Gennaro, L. (2016). Electrical stimulation of the frontal cortex enhances slow-frequency EEG activity and sleepiness. Neuroscience, 324, 119–130. PubMedCrossRefGoogle Scholar
  47. Danilov, Y. P., Tyler, M. E., Kaczmarek, K. A., & Skinner, K. L. (2014). New approach to neurorehabilitation: cranial nerve noninvasive neuromodulation (CN-NINM) technology. InSPIE sensing technology+ applications (p. 91120L-91120L-91110). International Society for Optics and Photonics, Baltimore, Maryland, United States.Google Scholar
  48. DaSilva, A. F., Mendonca, M. E., Zaghi, S., Lopes, M., DosSantos, M. F., Spierings, E. L., … Fregni, F. (2012). tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache: The Journal of Head and Face Pain, 52(8), 1283–1295. CrossRefGoogle Scholar
  49. DaSilva, A. F., Volz, M. S., Bikson, M., & Fregni, F. (2011). Electrode positioning and montage in transcranial direct current stimulation. Journal of Visualized Experiments: JoVE, 51. Google Scholar
  50. Datta, A., Baker, J. M., Bikson, M., & Fridriksson, J. (2011). Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimulation, 4(3), 169–174. PubMedCrossRefGoogle Scholar
  51. Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201–207.e201. CrossRefGoogle Scholar
  52. Datta, A., Elwassif, M., Battaglia, F., & Bikson, M. (2008). Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. Journal of Neural Engineering, 5(2), 163–174. CrossRefGoogle Scholar
  53. Datta, A., Truong, D., Minhas, P., Parra, L. C., & Bikson, M. (2012). Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Frontiers in Psychiatry, 3, 91. Google Scholar
  54. DeGiorgio, C. M., Fanselow, E. E., Schrader, L. M., & Cook, I. A. (2011). Trigeminal nerve stimulation: Seminal animal and human studies for epilepsy and depression. Neurosurgery Clinics of North America, 22(4), 449–456.PubMedCrossRefGoogle Scholar
  55. Dimitrov, D. T., & Ralev, N. (2015). Signals and systems for electrosleep. Elektronika ir Elektrotechnika, 93(5), 95–98.Google Scholar
  56. Dmochowski, J. P., Datta, A., Bikson, M., Su, Y., & Parra, L. C. (2011). Optimized multi-electrode stimulation increases focality and intensity at target. Journal of Neural Engineering, 8(4), 046011.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Dmochowski, J. P., Datta, A., Huang, Y., Richardson, J. D., Bikson, M., Fridriksson, J., & Parra, L. C. (2013). Targeted transcranial direct current stimulation for rehabilitation after stroke. NeuroImage, 75, 12–19. PubMedPubMedCentralCrossRefGoogle Scholar
  58. Dundas, J. E., Thickbroom, G. W., & Mastaglia, F. L. (2007). Perception of comfort during transcranial DC stimulation: Effect of NaCl solution concentration applied to sponge electrodes. Clinical Neurophysiology, 118(5), 1166–1170. CrossRefGoogle Scholar
  59. Dunlop, K. A., Woodside, B., & Downar, J. (2016). Targeting neural endophenotypes of eating disorders with non-invasive brain stimulation. Frontiers in Neuroscience, 10, 30. Google Scholar
  60. Edwards, D., Cortes, M., Datta, A., Minhas, P., Wassermann, E. M., & Bikson, M. (2013). Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS. NeuroImage, 74, 266–275.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Eggert, T., Dorn, H., Sauter, C., Nitsche, M. A., Bajbouj, M., & Danker-Hopfe, H. (2013). No effects of slow oscillatory transcranial direct current stimulation (tDCS) on sleep-dependent memory consolidation in healthy elderly subjects. Brain Stimulation, 6(6), 938–945. PubMedCrossRefGoogle Scholar
  62. Elbert, T., Lutzenberger, W., Rockstroh, B., & Birbaumer, N. (1981). The influence of low-level transcortical DC-currents on response speed in humans. International Journal of Neuroscience, 14(1-2), 101–114.PubMedCrossRefGoogle Scholar
  63. Fenton, B. W., Palmieri, P. A., Boggio, P., Fanning, J., & Fregni, F. (2009). A preliminary study of transcranial direct current stimulation for the treatment of refractory chronic pelvic pain. Brain Stimulation, 2(2), 103–107.CrossRefGoogle Scholar
  64. Fernandez-Corazza, M., Turovets, S., Luu, P., Anderson, E., & Tucker, D. (2016). Transcranial electrical neuromodulation based on the reciprocity principle. Frontiers in Psychiatry, 7, 87. Google Scholar
  65. Ferrucci, R., Bortolomasi, M., Vergari, M., Tadini, L., Salvoro, B., Giacopuzzi, M., … Priori, A. (2009). Transcranial direct current stimulation in severe, drug-resistant major depression. Journal of Affective Disorders, 118(1), 215–219.PubMedCrossRefGoogle Scholar
  66. Fertonani, A., & Miniussi, C. (2016). Transcranial electrical stimulation: What we know and do not know about mechanisms. The Neuroscientist. PubMedPubMedCentralCrossRefGoogle Scholar
  67. Fitzgerald, P. B. (2014). Transcranial pulsed current stimulation: A new way forward? Clinical Neurophysiology, 125(2), 217–219.PubMedCrossRefGoogle Scholar
  68. Fitzpatrick, R. C., & Day, B. L. (2004). Probing the human vestibular system with galvanic stimulation. Journal of Applied Physiology, 96(6), 2301–2316.PubMedCrossRefGoogle Scholar
  69. Frangos, E., Ellrich, J., & Komisaruk, B. R. (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimulation, 8(3), 624–636. PubMedCrossRefGoogle Scholar
  70. Fregni, F. (2005). Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport, 16(14), 1551.PubMedCrossRefGoogle Scholar
  71. Fregni, F., Boggio, P. S., Lima, M. C., Ferreira, M. J., Wagner, T., Rigonatti, S. P., … Freedman, S. D. (2006a). A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain, 122(1), 197–209.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Fregni, F., Boggio, P. S., Nitsche, M. A., Marcolin, M. A., Rigonatti, S. P., & Pascual-Leone, A. (2006b). Treatment of major depression with transcranial direct current stimulation. Bipolar Disorders, 8(2), 203–204.PubMedCrossRefGoogle Scholar
  73. Fregni, F., Marcondes, R., Boggio, P., Marcolin, M., Rigonatti, S., Te, S., … Pascual-Leone, A. (2006c). Transient tinnitus suppression induced by repetitive transcranial magnetic stimulation and transcranial direct current stimulation. European Journal of Neurology, 13(9), 996–1001.PubMedCrossRefGoogle Scholar
  74. Furuya, S., Nitsche, M. A., Paulus, W., & Altenmuller, E. (2014). Surmounting retraining limits in musicians’ dystonia by transcranial stimulation. Annals of Neurology, 75(5), 700–707. PubMedCrossRefGoogle Scholar
  75. Gabis, L., Shklar, B., Kesner Baruch, Y., Raz, R., Gabis, E., & Geva, D. (2009). Pain reduction using transcranial electrostimulation: A double-blind. Journal of Rehabilitation Medicine, 41(4), 256–261.PubMedCrossRefGoogle Scholar
  76. Galea, J. M., & Celnik, P. (2009). Brain polarization enhances the formation and retention of motor memories. Journal of Neurophysiology, 102(1), 294–301.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Gall, C., Fedorov, A. B., Ernst, L., Borrmann, A., & Sabel, B. A. (2010). Repetitive transorbital alternating current stimulation in optic neuropathy. NeuroRehabilitation, 27(4), 335–341.PubMedGoogle Scholar
  78. Galvani, L., & Aldini, G. (1792). Aloysii Galvani … De Viribus Electricitatis In Motu Musculari Comentarius. Cum Joannis Aldini Dissertatione Et Notis. Accesserunt Epistolae ad animalis electricitatis theoriam pertinentes. Mutinæ: Apud Societatem Typographicam.Google Scholar
  79. Gartside, I. B. (1968). Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: Role of protein synthesis. Nature, 220(5165), 383–384.PubMedCrossRefGoogle Scholar
  80. Gartside, I. B., & Lippold, O. C. (1967). The production of persistent changes in the level of neuronal activity by brief local cooling of the cerebral cortex of the rat. The Journal of Physiology, 189(3), 475–487.PubMedPubMedCentralCrossRefGoogle Scholar
  81. George, M. S., & Aston-Jones, G. (2010). Noninvasive techniques for probing neurocircuitry and treating illness: Vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Neuropsychopharmacology, 35(1), 301–316.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Giordano, J., Bikson, M., Kappenman, E. S., Clark, V. P., Coslett, H. B., Hamblin, M. R., … Calabrese, E. (2017). Mechanisms and effects of transcranial direct current stimulation. Dose-Response, 15(1), 1559325816685467. CrossRefGoogle Scholar
  83. Golub, J. S., Ling, L., Nie, K., Nowack, A., Shepherd, S. J., Bierer, S. M., … Rubinstein, J. T. (2014). Prosthetic implantation of the human vestibular system. Otology & Neurotology: Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 35(1), 136–147. CrossRefGoogle Scholar
  84. Gonzalez-Rosa, J. J., Soto-Leon, V., Real, P., Carrasco-Lopez, C., Foffani, G., Strange, B. A., & Oliviero, A. (2015). Static magnetic field stimulation over the visual cortex increases alpha oscillations and slows visual search in humans. The Journal of Neuroscience, 35(24), 9182–9193. PubMedCrossRefGoogle Scholar
  85. Groppa, S., Bergmann, T. O., Siems, C., Molle, M., Marshall, L., & Siebner, H. R. (2010). Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans. Neuroscience, 166(4), 1219–1225. PubMedCrossRefGoogle Scholar
  86. Guleyupoglu, B., Schestatsky, P., Edwards, D., Fregni, F., & Bikson, M. (2013). Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. Journal of Neuroscience Methods, 219(2), 297–311. PubMedCrossRefGoogle Scholar
  87. Hahn, C., Rice, J., Macuff, S., Minhas, P., Rahman, A., & Bikson, M. (2013). Methods for extra-low voltage transcranial direct current stimulation: Current and time dependent impedance decreases. Clinical Neurophysiology, 124(3), 551–556. PubMedPubMedCentralCrossRefGoogle Scholar
  88. Halko, M. A., Datta, A., Plow, E. B., Scaturro, J., Bikson, M., & Merabet, L. B. (2011). Neuroplastic changes following rehabilitative training correlate with regional electrical field induced with tDCS. NeuroImage, 57(3), 885–891. PubMedPubMedCentralCrossRefGoogle Scholar
  89. Hein, E., Nowak, M., Kiess, O., Biermann, T., Bayerlein, K., Kornhuber, J., & Kraus, T. (2013). Auricular transcutaneous electrical nerve stimulation in depressed patients: A randomized controlled pilot study. Journal of Neural Transmission, 120(5), 821–827.PubMedCrossRefGoogle Scholar
  90. Hill, A. T., Rogasch, N. C., Fitzgerald, P. B., & Hoy, K. E. (2017). Effects of prefrontal bipolar and high-definition transcranial direct current stimulation on cortical reactivity and working memory in healthy adults. NeuroImage, 152, 142–157. PubMedPubMedCentralCrossRefGoogle Scholar
  91. Huang, Y., Liu, A. A., Lafon, B., Friedman, D., Dayan, M., Wang, X., … Parra, L. C. (2017). Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. eLife, 6. Google Scholar
  92. Hunter, M. A., Coffman, B. A., Trumbo, M. C., & Clark, V. P. (2013). Tracking the neuroplastic changes associated with transcranial direct current stimulation: A push for multimodal imaging. Frontiers in Human Neuroscience, 7, 495. Google Scholar
  93. Ilyukhina, V. A., Kozhushko, N. Y., Matveev, Y. K., Ponomareva, E. A., Chernysheva, E. M., & Shaptilei, M. A. (2005). Transcranial micropolarization in the combined therapy of speech and general psychomotor retardation in children of late preschool age. Neuroscience and Behavioral Physiology, 35(9), 969–976. PubMedCrossRefGoogle Scholar
  94. Jackson, M. P., Rahman, A., Lafon, B., Kronberg, G., Ling, D., Parra, L. C., & Bikson, M. (2016). Animal models of transcranial direct current stimulation: Methods and mechanisms. Clinical Neurophysiology, 127(11), 3425–3454. PubMedPubMedCentralCrossRefGoogle Scholar
  95. Jamil, A., Batsikadze, G., Kuo, H. I., Labruna, L., Hasan, A., Paulus, W., & Nitsche, M. A. (2017). Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. The Journal of Physiology, 595(4), 1273–1288. PubMedPubMedCentralCrossRefGoogle Scholar
  96. Jang, S. H., Ahn, S. H., Byun, W. M., Kim, C. S., Lee, M. Y., & Kwon, Y. H. (2009). The effect of transcranial direct current stimulation on the cortical activation by motor task in the human brain: An fMRI study. Neuroscience Letters, 460(2), 117–120. CrossRefGoogle Scholar
  97. Jog, M. V., Smith, R. X., Jann, K., Dunn, W., Lafon, B., Truong, D., … Wang, D. J. (2016). In-vivo imaging of magnetic fields induced by transcranial direct current stimulation (tdcs) in human brain using mri. Scientific Reports, 6, 34385. Google Scholar
  98. Kalkman, C. J., Drummond, J. C., Kennelly, N. A., Patel, P. M., & Partridge, B. L. (1992). Intraoperative monitoring of tibialis anterior muscle motor evoked responses to transcranial electrical stimulation during partial neuromuscular blockade. Anesthesia and Analgesia, 75(4), 584-589.CrossRefGoogle Scholar
  99. Kalu, U., Sexton, C., Loo, C., & Ebmeier, K. (2012). Transcranial direct current stimulation in the treatment of major depression: A meta-analysis. Psychological Medicine, 42(09), 1791–1800.PubMedCrossRefGoogle Scholar
  100. Kasschau, M., Sherman, K., Haider, L., Frontario, A., Shaw, M., Datta, A., … Charvet, L. (2015). A protocol for the use of remotely-supervised transcranial direct current stimulation (tDCS) in multiple sclerosis (MS). Journal of Visualized Experiments : JoVE, 106, e53542. Google Scholar
  101. Kayser, S., Bewernick, B., Matusch, A., Hurlemann, R., Soehle, M., & Schlaepfer, T. E. (2015). Magnetic seizure therapy in treatment-resistant depression: Clinical, neuropsychological and metabolic effects. Psychological Medicine, 45(05), 1073–1092.PubMedCrossRefGoogle Scholar
  102. Keeser, D., Meindl, T., Bor, J., Palm, U., Pogarell, O., Mulert, C., … Padberg, F. (2011). Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. The Journal of Neuroscience, 31(43), 15284–15293. PubMedCrossRefPubMedCentralGoogle Scholar
  103. Kim, J. H., Kim, D. W., Chang, W. H., Kim, Y. H., & Im, C. H. (2013). Inconsistent outcomes of transcranial direct current stimulation (tDCS) may be originated from the anatomical differences among individuals: A simulation study using individual MRI data. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2013, 823–825. Google Scholar
  104. Kim, M. S., Koo, H., Han, S. W., Paulus, W., Nitsche, M. A., Kim, Y. H., … Shin, Y. I. (2017). Repeated anodal transcranial direct current stimulation induces neural plasticity-associated gene expression in the rat cortex and hippocampus. Restorative Neurology and Neuroscience. Google Scholar
  105. Kincses, T. Z., Antal, A., Nitsche, M. A., Bártfai, O., & Paulus, W. (2004). Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia, 42(1), 113–117.PubMedCrossRefGoogle Scholar
  106. Knotkova, H., Riggs, A., Patel, V., Troung, D., Arce, D., Bernstein, H., … Bikson, M. (2017a). Processing #24 a novel approach to determining M1 tDCS montage without neuronavigational measurements, suitable for patients in home settings. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 10(4), e78–e80.CrossRefGoogle Scholar
  107. Knotkova, H., Riggs, A., & Portenoy, R. K. (2017b). Proceedings #23 a patient-tailored protocol of tDCS stimulation paired with telehealth support for at-home symptom management in seriously ill patients with multiple chronic symptoms. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 10(4), e77–e78.CrossRefGoogle Scholar
  108. Knutson, R. C., Tichy, F. Y., & Reitman, J. H. (1956). The use of electrical current as an anesthetic agent. The Journal of the American Society of Anesthesiologists, 17(6), 815–825.Google Scholar
  109. Kraus, T., Kiess, O., Hösl, K., Terekhin, P., Kornhuber, J., & Forster, C. (2013). CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal – a pilot study. Brain Stimulation, 6(5), 798–804. PubMedCrossRefGoogle Scholar
  110. Kronberg, G., & Bikson, M. (2012). Electrode assembly design for transcranial direct current stimulation: A FEM modeling study. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, 891–895. Google Scholar
  111. Kronberg, G., Bridi, M., Abel, T., Bikson, M., & Parra, L. C. (2017). direct current stimulation modulates LTP and LTD: Activity dependence and dendritic effects. Brain Stimulation, 10(1), 51–58. CrossRefGoogle Scholar
  112. Kuo, H.-I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M.-F., & Nitsche, M. A. (2013). Comparing cortical plasticity induced by conventional and high-definition 4× 1 ring tDCS: A neurophysiological study. Brain Stimulation, 6(4), 644–648.CrossRefGoogle Scholar
  113. Leduc, S. (1914). Cerebral electrization. Archives of the Roentgen Ray, 19(5), 160–162.CrossRefGoogle Scholar
  114. Leduc, S., & Rouxeau, A. (1903). Influence du rythme et de la period sur la production de l’inhibition par les courants intermittents de basse tension. CR Seances Soc Biology, 55, 899–901.Google Scholar
  115. Lefaucheur, J.-P., André-Obadia, N., Antal, A., Ayache, S. S., Baeken, C., Benninger, D. H., … Garcia-Larrea, L. (2014). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clinical Neurophysiology, 125(11), 2150–2206. PubMedCrossRefGoogle Scholar
  116. Lefaucheur, J. P., Antal, A., Ahdab, R., Ciampi de Andrade, D., Fregni, F., Khedr, E. M., … Paulus, W. (2008). The use of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) to relieve pain. Brain Stimulation, 1(4), 337–344. PubMedCrossRefGoogle Scholar
  117. Lefaucheur, J. P., Antal, A., Ayache, S. S., Benninger, D. H., Brunelin, J., Cogiamanian, F., … Paulus, W. (2017). Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clinical Neurophysiology, 128(1), 56–92. PubMedCrossRefGoogle Scholar
  118. Legon, W., Sato, T. F., Opitz, A., Mueller, J., Barbour, A., Williams, A., & Tyler, W. J. (2014). Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nature Neuroscience, 17(2), 322–329.PubMedCrossRefGoogle Scholar
  119. Leite, J., Carvalho, S., Fregni, F., Boggio, P. S., & Goncalves OF. (2013). The effects of cross-hemispheric dorsolateral prefrontal cortex transcranial direct current stimulation (tDCS) on task switching. Brain Stimulation, 6(4), 660–667. PubMedCrossRefGoogle Scholar
  120. Lifshitz, K., & Harper, P. (1968). A trial of transcranial polarization in chronic schizophrenics. The British Journal of Psychiatry: the Journal of Mental Science, 114(510), 635.CrossRefGoogle Scholar
  121. Limoge, A., Robert, C., & Stanley, T. H. (1999). Transcutaneous cranial electrical stimulation (TCES): A review 1998. Neuroscience and Biobehavioral Reviews, 23(4), 529–538. CrossRefGoogle Scholar
  122. Lin, R. L., Douaud, G., Filippini, N., Okell, T. W., Stagg, C. J., & Tracey, I. (2017). Structural connectivity variances underlie functional and behavioral changes during pain relief induced by neuromodulation. Scientific Reports, 7, 41603. Google Scholar
  123. Lisanby, S. H., Luber, B., Schlaepfer, T. E., & Sackeim, H. A. (2003). Safety and feasibility of magnetic seizure therapy (MST) in major depression: Randomized within-subject comparison with electroconvulsive therapy. Neuropsychopharmacology, 28(10), 1852.PubMedCrossRefGoogle Scholar
  124. Lopez-Quintero, S. V., Datta, A., Amaya, R., Elwassif, M., Bikson, M., & Tarbell, J. M. (2010). DBS-relevant electric fields increase hydraulic conductivity of in vitro endothelial monolayers. Journal of Neural Engineering, 7(1), 16005. CrossRefGoogle Scholar
  125. Mancini, M., Brignani, D., Conforto, S., Mauri, P., Miniussi, C., & Pellicciari, M. C. (2016). Assessing cortical synchronization during transcranial direct current stimulation: A graph-theoretical analysis. NeuroImage, 140, 57–65. PubMedCrossRefGoogle Scholar
  126. Marshall, L., Molle, M., Hallschmid, M., & Born, J. (2004). Transcranial direct current stimulation during sleep improves declarative memory. The Journal of Neuroscience, 24(44), 9985–9992. PubMedCrossRefGoogle Scholar
  127. McIntyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition. Journal of Neurophysiology, 91(4), 1457–1469. PubMedCrossRefGoogle Scholar
  128. Merrill, D. R., Bikson, M., & Jefferys, J. G. (2005). Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. Journal of Neuroscience Methods, 141(2), 171–198. PubMedPubMedCentralCrossRefGoogle Scholar
  129. Merton, P., & Morton, H. (1980). Stimulation of the cerebral cortex in the intact human subject. Nature, 285(5762), 227–227.PubMedCrossRefGoogle Scholar
  130. Minhas, P., Bansal, V., Patel, J., Ho, J. S., Diaz, J., Datta, A., & Bikson, M. (2010). Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. Journal of Neuroscience Methods, 190(2), 188–197.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Miranda, P. C., Lomarev, M., & Hallett, M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clinical Neurophysiology, 117(7), 1623–1629.CrossRefGoogle Scholar
  132. Monai, H., Ohkura, M., Tanaka, M., Oe, Y., Konno, A., Hirai, H., … Hirase, H. (2016). Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nature Communications, 7, 11100. Google Scholar
  133. Monte-Silva, K., Kuo, M.-F., Liebetanz, D., Paulus, W., & Nitsche, M. A. (2010). Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). Journal of Neurophysiology, 103(4), 1735–1740.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Morales-Quezada, L., Cosmo, C., Carvalho, S., Leite, J., Castillo-Saavedra, L., Rozisky, J., & Fregni, F. (2015). Cognitive effects and autonomic responses to transcranial pulsed current stimulation. Experimental Brain Research, 233(3), 701–709. PubMedCrossRefGoogle Scholar
  135. Mulquiney, P. G., Hoy, K. E., Daskalakis, Z. J., & Fitzgerald, P. B. (2011). Improving working memory: Exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clinical Neurophysiology, 122(12), 2384–2389.PubMedCrossRefGoogle Scholar
  136. Nair, D. G., Renga, V., Lindenberg, R., Zhu, L., & Schlaug, G. (2011). Optimizing recovery potential through simultaneous occupational therapy and non-invasive brain-stimulation using tDCS. Restorative Neurology and Neuroscience, 29(6), 411–420.PubMedPubMedCentralGoogle Scholar
  137. Naro, A., Milardi, D., Russo, M., Terranova, C., Rizzo, V., Cacciola, A., … Quartarone, A. (2016). Non-invasive brain stimulation, a tool to revert maladaptive plasticity in neuropathic pain. Frontiers in Human Neuroscience, 10, 376. Google Scholar
  138. Newth, A. (1873). The galvanic current applied in the treatment of insanity. The Journal of Mental Science, 1874(19), 79–86.CrossRefGoogle Scholar
  139. Nikolin, S., Loo, C. K., Bai, S., Dokos, S., & Martin, D. M. (2015). Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning. NeuroImage, 117, 11–19. CrossRefGoogle Scholar
  140. Nitsche, M., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633–639.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Nitsche, M. A., Doemkes, S., Karakose, T., Antal, A., Liebetanz, D., Lang, N., … Paulus, W. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology, 97(4), 3109–3117. PubMedPubMedCentralCrossRefGoogle Scholar
  142. Nitsche, M. A., Seeber, A., Frommann, K., Klein, C. C., Rochford, C., Nitsche, M. S., … Tergau, F. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. The Journal of Physiology, 568(Pt 1), 291–303. PubMedPubMedCentralCrossRefGoogle Scholar
  143. Nizard, J., Lefaucheur, J.-P., Helbert, M., de Chauvigny, E., & Nguyen, J.-P. (2012). Non-invasive stimulation therapies for the treatment of refractory pain. Discovery Medicine, 14(74), 21–31.PubMedGoogle Scholar
  144. Noury, N., Hipp, J. F., & Siegel, M. (2016). Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation. NeuroImage, 140, 99–109. PubMedCrossRefGoogle Scholar
  145. Oh, M. Y., Ortega, J., Bellotte, J. B., Whiting, D. M., & Aló, K. (2004). Peripheral nerve stimulation for the treatment of occipital neuralgia and transformed migraine using a C1-2-3 subcutaneous paddle style electrode: A technical report. Neuromodulation: Technology at the Neural Interface, 7(2), 103–112.CrossRefGoogle Scholar
  146. Ohn, S. H., Park, C.-I., Yoo, W.-K., Ko, M.-H., Choi, K. P., Kim, G.-M., … Kim, Y.-H. (2008). Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport, 19(1), 43–47.PubMedCrossRefGoogle Scholar
  147. Opitz, A., Paulus, W., Will, S., Antunes, A., & Thielscher, A. (2015). Determinants of the electric field during transcranial direct current stimulation. NeuroImage, 109, 140–150. CrossRefGoogle Scholar
  148. Otal, B., Dutta, A., Foerster, A., Ripolles, O., Kuceyeski, A., Miranda, P. C., … Ruffini, G. (2016). Opportunities for guided multichannel non-invasive transcranial current stimulation in poststroke rehabilitation. Frontiers in Neurology, 7, 21. Google Scholar
  149. Paneri, B., Adair, D., Thomas, C., Khadka, N., Patel, V., Tyler, W. J., … Bikson, M. (2016). Tolerability of repeated application of transcranial electrical stimulation with limited outputs to healthy subjects. Brain Stimulation, 9(5), 740–754. PubMedPubMedCentralCrossRefGoogle Scholar
  150. Parent, A. (2004). Giovanni Aldini: from animal electricity to human brain stimulation. The Canadian Journal of Neurological Sciences, 31(04), 576–584.PubMedCrossRefGoogle Scholar
  151. Paulus, W. (2011). Transcranial electrical stimulation (tES–tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation, 21(5), 602–617.PubMedCrossRefGoogle Scholar
  152. Paulus, W., Peterchev, A. V., & Ridding, M. (2013). Transcranial electric and magnetic stimulation: Technique and paradigms. Handb Clinical Neurology, 116, 329–342. Google Scholar
  153. Peterchev, A. V., Wagner, T. A., Miranda, P. C., Nitsche, M. A., Paulus, W., Lisanby, S. H., … Bikson, M. (2012). Fundamentals of transcranial electric and magnetic stimulation dose: Definition, selection, and reporting practices. Brain Stimulation, 5(4), 435–453.CrossRefGoogle Scholar
  154. Priori, A. (2003). Brain polarization in humans: A reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clinical Neurophysiology, 114(4), 589–595. PubMedCrossRefGoogle Scholar
  155. Radman, T., Ramos, R. L., Brumberg, J. C., & Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulation, 2(4), 215–228.e213. CrossRefGoogle Scholar
  156. Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L. C., & Bikson, M. (2013). Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. The Journal of Physiology, 591(10), 2563–2578.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Reato, D., Rahman, A., Bikson, M., & Parra, L. C. (2013). Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Frontiers in Human Neuroscience, 7, 687. Google Scholar
  158. Redfearn, J., Lippold, O., & Costain, R. (1964). Preliminary account of the clinical effects of polarizing the brain in certain psychiatric disorders. The British Journal of Psychiatry, 110(469), 773–785.PubMedCrossRefGoogle Scholar
  159. Reis, J., Fischer, J. T., Prichard, G., Weiller, C., Cohen, L. G., & Fritsch, B. (2015). Time- but not sleep-dependent consolidation of tdcs-enhanced visuomotor skills. Cerebral Cortex, 25(1), 109–117. CrossRefGoogle Scholar
  160. Robertson, V. J., Low, J., Ward, A., & Reed, A. (2006). Electrotherapy explained: Principles and practice. Elsevier Health Sciences.Google Scholar
  161. Robinovitch, L. (1914). Electrical analgesia, sleep and resuscitation. Anesthesia. New York, NY: Appleton.Google Scholar
  162. Rohan, M., Parow, A., Stoll, A. L., Demopulos, C., Friedman, S., Dager, S., … Renshaw, P. F. (2004). Low-field magnetic stimulation in bipolar depression using an MRI-based stimulator. The American Journal of Psychiatry, 161(1), 93–98.PubMedCrossRefGoogle Scholar
  163. Roy, A., Baxter, B., & He, B. (2014). High-definition transcranial direct current stimulation induces both acute and persistent changes in broadband cortical synchronization: A simultaneous tDCS-EEG study. IEEE Transactions on Biomedical Engineering, 61(7), 1967–1978. PubMedPubMedCentralCrossRefGoogle Scholar
  164. Ruffini, G., Wendling, F., Merlet, I., Molaee-Ardekani, B., Mekonnen, A., Salvador, R., … Miranda, P. C. (2013). Transcranial current brain stimulation (tCS): Models and technologies. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(3), 333–345. CrossRefGoogle Scholar
  165. Russo, C., Souza Carneiro, M. I., Bolognini, N., & Fregni, F. (2017). Safety review of transcranial direct current stimulation in stroke. Neuromodulation. Google Scholar
  166. Salvador, R., Mekonnen, A., Ruffini, G., & Miranda, P. C. (2010). Modeling the electric field induced in a high resolution realistic head model during transcranial current stimulation. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, 2073–2076. Google Scholar
  167. Samoudi, G., Nissbrandt, H., Dutia, M. B., & Bergquist, F. (2012). Noisy galvanic vestibular stimulation promotes GABA release in the substantia nigra and improves locomotion in hemiparkinsonian rats. PLoS One, 7(1), e29308. PubMedPubMedCentralCrossRefGoogle Scholar
  168. Schlaug, G., Renga, V., & Nair, D. (2008). Transcranial direct current stimulation in stroke recovery. Archives of Neurology, 65(12), 1571–1576.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Schmitt, R., Capo, T., & Boyd, E. (1986). Cranial electrotherapy stimulation as a treatment for anxiety in chemically dependent persons. Alcoholism: Clinical and Experimental Research, 10(2), 158–160.CrossRefGoogle Scholar
  170. Schoenen, J., Vandersmissen, B., Jeangette, S., Herroelen, L., Vandenheede, M., Gérard, P., & Magis, D. (2013). Migraine prevention with a supraorbital transcutaneous stimulator A randomized controlled trial. Neurology, 80(8), 697–704.PubMedCrossRefGoogle Scholar
  171. Shekhawat, G. S., Sundram, F., Bikson, M., Truong, D., De Ridder, D., Stinear, C. M., … Searchfield, G. D. (2015). Intensity, duration, and location of high-definition transcranial direct current stimulation for tinnitus relief. Neurorehabilitation and Neural Repair, 30(4), 349–359. PubMedCrossRefGoogle Scholar
  172. Shelyakin, A., Preobrazhenskaya, I., Pisar’kova, E., Pakhomova, Z. M., & Bogdanov, O. (1998). Effects of transcranial micropolarization of the frontal cortex on the state of motor and cognitive functions in extrapyramidal pathology. Neuroscience and Behavioral Physiology, 28(4), 468–471.PubMedCrossRefGoogle Scholar
  173. Shen, B., Yin, Y., Wang, J., Zhou, X., McClure, S. M., & Li, J. (2016). High-definition tDCS alters impulsivity in a baseline-dependent manner. NeuroImage, 143, 343–352. CrossRefGoogle Scholar
  174. Shiozawa, P., da Silva, M. E., Raza, R., Uchida, R. R., Cordeiro, Q., Fregni, F., & Brunoni, A. R. (2013). Safety of repeated transcranial direct current stimulation in impaired skin: A case report. The Journal of ECT, 29(2), 147–148. PubMedCrossRefPubMedCentralGoogle Scholar
  175. Slavin, K. V., Colpan, M. E., Munawar, N., Wess, C., & Nersesyan, H. (2006). Trigeminal and occipital peripheral nerve stimulation for craniofacial pain: A single-institution experience and review of the literature. Neurosurgical Focus, 21(6), 1–5.CrossRefGoogle Scholar
  176. Smith, R., Tatsuno, J., & Zouhar, R. (1967). Electroanesthesia: A review-1966. Anesthesia and Analgesia, 46(1), 109.PubMedCrossRefGoogle Scholar
  177. Smith, R. B. (2006). Cranial electrotherapy stimulation: Its first fifty years, plus three. Washington DC: A Monograph.Google Scholar
  178. Spagnolo, P. A., & Goldman, D. (2017). Neuromodulation interventions for addictive disorders: Challenges, promise, and roadmap for future research. Brain. Google Scholar
  179. Spellman, T., Peterchev, A. V., & Lisanby, S. H. (2009). Focal electrically administered seizure therapy: A novel form of ECT illustrates the roles of current directionality, polarity, and electrode configuration in seizure induction. Neuropsychopharmacology, 34(8), 2002–2010.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17(1), 37–53.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Teichmann, M., Lesoil, C., Godard, J., Vernet, M., Bertrand, A., Levy, R., … Valero-Cabre, A. (2016). Direct current stimulation over the anterior temporal areas boosts semantic processing in primary progressive aphasia. Annals of Neurology, 80(5), 693–707. PubMedCrossRefGoogle Scholar
  182. Terney, D., Chaieb, L., Moliadze, V., Antal, A., & Paulus, W. (2008). Increasing human brain excitability by transcranial high-frequency random noise stimulation. The Journal of Neuroscience, 28(52), 14147–14155.CrossRefGoogle Scholar
  183. Truong, D. Q., Huber, M., Xie, X., Datta, A., Rahman, A., Parra, L. C., … Bikson, M. (2014). Clinician accessible tools for GUI computational models of transcranial electrical stimulation: BONSAI and SPHERES. Brain Stimulation, 7(4), 521–524. PubMedPubMedCentralCrossRefGoogle Scholar
  184. Truong, D. Q., Magerowski, G., Blackburn, G. L., Bikson, M., & Alonso-Alonso, M. (2013). Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines. NeuroImage Clinical, 2, 759–766. CrossRefGoogle Scholar
  185. Villamar, M. F., Volz, M. S., Bikson, M., Datta, A., DaSilva, A. F., & Fregni, F. (2013a). Technique and considerations in the use of 4x1 ring high-definition transcranial direct current stimulation (HD-tDCS). JoVE: Journal of Visualized Experiments, (77), e50309–e50309.Google Scholar
  186. Villamar, M. F., Wivatvongvana, P., Patumanond, J., Bikson, M., Truong, D. Q., Datta, A., & Fregni, F. (2013b). Focal modulation of the primary motor cortex in fibromyalgia using 4x1-ring high-definition transcranial direct current stimulation (HD-tDCS): Immediate and delayed analgesic effects of cathodal and anodal stimulation. The Journal of Pain, 14(4), 371–383. PubMedPubMedCentralCrossRefGoogle Scholar
  187. Volta, A. (1800). On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, FRS Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. KBPRS. Philosophical Transactions of the Royal Society of London, 403–431.Google Scholar
  188. Wagner, S., Lucka, F., Vorwerk, J., Herrmann, C. S., Nolte, G., Burger, M., & Wolters, C. H. (2016). Using reciprocity for relating the simulation of transcranial current stimulation to the EEG forward problem. NeuroImage, 140, 163–173. Google Scholar
  189. Wagner, T., Fregni, F., Fecteau, S., Grodzinsky, A., Zahn, M., & Pascual-Leone, A. (2007). Transcranial direct current stimulation: A computer-based human model study. NeuroImage, 35(3), 1113–1124.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Wilson, A. S., Sances, A., & Larson, S. J. (1968). Effect of electroanesthesia on timing behavior. Anesthesia and Analgesia, 47(6), 663-667.Google Scholar
  191. Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., … Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031–1048. PubMedPubMedCentralCrossRefGoogle Scholar
  192. Yamamoto, Y., Struzik, Z. R., Soma, R., Ohashi, K., & Kwak, S. (2005). Noisy vestibular stimulation improves autonomic and motor responsiveness in central neurodegenerative disorders. Annals of Neurology, 58(2), 175–181.PubMedCrossRefGoogle Scholar
  193. Zaghi, S., Acar, M., Hultgren, B., Boggio, P. S., & Fregni, F. (2009). Noninvasive brain stimulation with low-intensity electrical currents: Putative mechanisms of action for direct and alternating current stimulation. The Neuroscientist, 16(3), 285–307.PubMedCrossRefGoogle Scholar
  194. Zaghi, S., Acar, M., Hultgren, B., Boggio, P. S., & Fregni, F. (2010). Noninvasive brain stimulation with low-intensity electrical currents: Putative mechanisms of action for direct and alternating current stimulation. The Neuroscientist, 16(3), 285–307.PubMedCrossRefGoogle Scholar
  195. Zaghi, S., Thiele, B., Pimentel, D., Pimentel, T., & Fregni, F. (2011). Assessment and treatment of pain with non-invasive cortical stimulation. Restorative Neurology and Neuroscience, 29(6), 439–451.PubMedGoogle Scholar
  196. Zentner, J., Kiss, I., & Ebner, A. (1989). Influence of anesthetics-nitrous oxide in particular-on electromyographic response evoked by transcranial electrical stimulation of the cortex. Neurosurgery, 24(2), 253–256.PubMedCrossRefGoogle Scholar
  197. Zhu, C. E., Yu, B., Zhang, W., Chen, W. H., Qi, Q., & Miao, Y. (2017). Effiectiveness and safety of transcranial direct current stimulation in fibromyalgia: A systematic review and meta-analysis. Journal of Rehabilitation Medicine, 49(1), 2–9. PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nigel Gebodh
    • 1
  • Zeinab Esmaeilpour
    • 1
  • Devin Adair
    • 2
  • Pedro Schestattsky
    • 3
    • 4
  • Felipe Fregni
    • 5
  • Marom Bikson
    • 6
    Email author
  1. 1.Department of Biomedical EngineeringThe City College of the City University of New YorkNew YorkUSA
  2. 2.The Graduate Center of the City University of New York, Department of PsychologyNew YorkUSA
  3. 3.Neurology Service, Hospital de Clínicas de Porto Alegre, Department of Internal MedicineUFRGSBrazil
  4. 4.Hospital Moinhos de VentoPorto AlegreBrazil
  5. 5.Spaulding Neuromodulation Center, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital, Harvard Medical SchoolBostonUSA
  6. 6.Department of Biomedical EngineeringThe City College of New YorkNew YorkUSA

Personalised recommendations