Advertisement

Finding Potential RNA Aptamers for a Protein Target Using Sequence and Structure Features

  • Wook Lee
  • Jisu Lee
  • Kyungsook Han
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10954)

Abstract

Aptamers are single-stranded DNA or RNA sequences that tightly bind to a specific target molecule. This paper presents a computational method for generating potential protein-binding RNA aptamers using a random forest based on several features of protein and RNA sequences and RNA secondary structures. The results of cross validation and independent testing showed that our method can significantly reduce the initial pool of RNA sequences and that the top 10 candidates of RNA aptamers have similar secondary structures and protein-binding structures as actual RNA aptamers for a protein target. Although preliminary, our approach will be useful for constructing an initial pool of RNA sequences for experimental selection of aptamers.

Keywords

RNA aptamer Random forest RNA-protein interaction 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grants (2015R1A1A3A04001243, 2017R1E1A1A03069921) funded by the Ministry of Science and ICT.

References

  1. 1.
    Tuerk, C., Gold, L.: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968), 505–510 (1990)CrossRefGoogle Scholar
  2. 2.
    Osborne, S.E., Ellington, A.D.: Nucleic acid selection and the challenge of combinatorial chemistry. Chem. Rev. 97(2), 349–370 (1997)CrossRefGoogle Scholar
  3. 3.
    Chushak, Y., Stone, M.O.: In silico selection of RNA aptamers. Nucleic Acids Res. 37(12), e87 (2009)CrossRefGoogle Scholar
  4. 4.
    Li, B.Q., Zhang, Y.C., Huang, G.H., Cui, W.R., Zhang, N., Cai, Y.D.: Prediction of aptamer-target interacting pairs with pseudo-amino acid composition. PLoS ONE 9(1), e86729 (2014)CrossRefGoogle Scholar
  5. 5.
    Zhang, L., Zhang, C., Gao, R., Yang, R., Song, Q.: Prediction of aptamer-protein interacting pairs using an ensemble classifier in combination with various protein sequence attributes. BMC Bioinformatics 17, 225 (2016)CrossRefGoogle Scholar
  6. 6.
    Hu, W.P., Kumar, J.V., Huang, C.J., Chen, W.Y.: Computational selection of RNA aptamer against angiopoietin-2 and experimental evaluation. Biomed. Res. Int. 2015, 658712 (2015)Google Scholar
  7. 7.
    Shcherbinin, D.S., Gnedenko, O.V., Khmeleva, S.A., Usanov, S.A., Gilep, A.A., Yantsevich, A.V., Shkel, T.V., Yushkevich, I.V., Radko, S.P., Ivanov, A.S., Veselovsky, A.V., Archakov, A.I.: Computer-aided design of aptamers for cytochrome p450. J. Struct. Biol. 191(2), 112–119 (2015)CrossRefGoogle Scholar
  8. 8.
    Ahirwar, R., Nahar, S., Aggarwal, S., Ramachandran, S., Maiti, S., Nahar, P.: In silico selection of an aptamer to estrogen receptor alpha using computational docking employing estrogen response elements as aptamer-alike molecules. Sci. Rep. 6, 21285 (2016)CrossRefGoogle Scholar
  9. 9.
    Rabal, O., Pastor, F., Villanueva, H., Soldevilla, M.M., Hervas-Stubbs, S., Oyarzabal, J.: In silico aptamer docking studies: from a retrospective validation to a prospective case study-TIM3 aptamers binding. Mol. Therapy-Nucleic Acids 5, e376 (2016)CrossRefGoogle Scholar
  10. 10.
    Cruz-Toledo, J., McKeague, M., Zhang, X., Giamberardino, A., McConnell, E., Francis, T., DeRosa, M.C., Dumontier, M.: Aptamer base: a collaborative knowledge base to describe aptamers and SELEX experiments. Database (Oxford) (2012)Google Scholar
  11. 11.
    Choi, S., Han, K.: Prediction of RNA-binding amino acids from protein and RNA sequences. BMC Bioinformatics 12(Suppl. 13), S7 (2011)CrossRefGoogle Scholar
  12. 12.
    Choi, S., Han, K.: Predicting protein-binding RNA nucleotides using the feature-based removal of data redundancy and the interaction propensity of nucleotide triplets. Comput. Biol. Med. 43(11), 1687–1697 (2013)CrossRefGoogle Scholar
  13. 13.
    Tuvshinjargal, N., Lee, W., Park, B., Han, K.: Predicting protein-binding RNA nucleotides with consideration of binding partners. Comput. Methods Programs Biomed. 120(1), 3–15 (2015)CrossRefGoogle Scholar
  14. 14.
    Chen, W., Feng, P.M., Deng, E.Z., Lin, H., Chou, K.C.: iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal. Biochem. 462, 76–83 (2014)CrossRefGoogle Scholar
  15. 15.
    Dubchak, I., Muchnik, I., Holbrook, S.R., Kim, S.H.: Prediction of protein folding class using global description of amino acid sequence. Proc. Natl. Acad. Sci. U.S.A. 92(19), 8700–8704 (1995)CrossRefGoogle Scholar
  16. 16.
    Shen, H.B., Chou, K.C.: PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition. Anal. Biochem. 373(2), 386–388 (2008)CrossRefGoogle Scholar
  17. 17.
    Ruckman, J., Green, L.S., Beeson, J., Waugh, S., Gillette, W.L., Henninger, D.D., Claesson-Welsh, L., Janjic, N.: 2′-fluoropyrimidine rna-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and vegf-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273, 20556–20567 (1998)CrossRefGoogle Scholar
  18. 18.
    Tasset, D.M., Kubik, M.F., Steiner, W.: Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J. Mol. Biol. 272, 688–698 (1997)CrossRefGoogle Scholar
  19. 19.
    Lorenz, R., Bernhart, S.H., Zu Siederdissen, C.H., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L.: ViennaRNA Package 2.0. Algorithms Mol. Biol. 6(1), 26 (2011)CrossRefGoogle Scholar
  20. 20.
    Yan, Y., Zhang, D., Zhou, P., Li, B., Huang, S.Y.: HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 45(W1), W365–W373 (2017)CrossRefGoogle Scholar
  21. 21.
    Popenda, M., Szachniuk, M., Antczak, M., Purzycka, K.J., Lukasiak, P., Bartol, N., Blazewicz, J., Adamiak, R.W.: Automated 3D structure composition for large RNAs. Nucleic Acids Res. 40(14), e112 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer EngineeringInha UniversityIncheonSouth Korea

Personalised recommendations