Advertisement

Earprint Based Mobile User Authentication Using Convolutional Neural Network and SIFT

  • Mudit Maheshwari
  • Sanchita Arora
  • Akhilesh M. Srivastava
  • Aditi Agrawal
  • Mahak Garg
  • Surya Prakash
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10954)

Abstract

Biometric verification techniques are increasingly being used in mobile devices these days with the aim of keeping private data secure and impregnable. In our approach, we propose to use the inbuilt capacitive touchscreen of mobile devices as an image sensor to collect the image of ear (earprint) and use it as biometrics. The technique produces a precision of 0.8761 and recall of 0.596 on the acquired data. Since most of the touch screens are capacitive sensing, our proposed technique presents a reliable biometric solution for a vast number of mobile devices.

Keywords

Mobile biometrics Earprint Convolutional neural network SIFT 

References

  1. 1.
    Goode, A.: Bring your own finger how mobile is bringing biometrics to consumers. Biometric Technol. Today 5, 5–9 (2014)CrossRefGoogle Scholar
  2. 2.
    Burge, M., Burger, W.: Ear biometrics. In: Jain, A.K., Bolle, R., Pankanti, S. (eds.) biometrics. Springer, Boston (1996).  https://doi.org/10.1007/0-306-47044-6_13CrossRefGoogle Scholar
  3. 3.
    Okumura, F., Kubota, A., Hatori, Y., Matsuo, K., Hashimoto, M., Koike, A.: A study on biometric authentication based on arm sweep action with acceleration sensor. In: Proceedings of International Symposium on Intelligent Signal Processing and Communication, pp. 219–222 (2006)Google Scholar
  4. 4.
    Tresadern, P., Cootes, T.F., Poh, N., Matejka, P., Hadid, A., Lvy, C., McCool, C., Marcel, S.: Mobile biometrics: combined face and voice verification for a mobile platform. IEEE Pervasive Comput. 12(1), 79–87 (2013)CrossRefGoogle Scholar
  5. 5.
    Jillela, R.R., Ross, A.: Segmenting iris images in the visible spectrum with applications in mobile biometrics. Pattern Recogn. Lett. 57, 4–16 (2015)CrossRefGoogle Scholar
  6. 6.
    Holz, C., Buthpitiya, S., Knaust, M.: Bodyprint: biometric user identification on mobile devices using the capacitive touchscreen to scan body parts. In: Proceedings of Annual Conference on Human Factors in Computing systems, pp. 3011–3014 (2015)Google Scholar
  7. 7.
  8. 8.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  9. 9.
    Li, Y., Huang, J.-B., Ahuja, N., and Yang, M.-H.: Joint image filtering with deep convolutional Networks ArXiv e-prints, arXiv:1710.04200 (2017)

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mudit Maheshwari
    • 1
  • Sanchita Arora
    • 1
  • Akhilesh M. Srivastava
    • 1
  • Aditi Agrawal
    • 1
  • Mahak Garg
    • 1
  • Surya Prakash
    • 1
  1. 1.Discipline of Computer Science and EngineeringIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations