Advertisement

An Mutational Multi-Verse Optimizer with Lévy Flight

  • Jingxin Liu
  • Dengxu He
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10954)

Abstract

This paper proposes a mutational Multi-Verse Optimizer (MVO) algorithm based on Lévy flight and called LMVO algorithm. The random steps of Lévy flight enhances the ability of the search individual to escape the local optimum, and promotes the balance of exploration and exploitation for MVO algorithm. For investigate the availability of LMVO, add basic MVO algorithm and other four mainstream algorithms to compare with it on six high dimensional test functions and two fixed-dimensional test functions. Furthermore, apply it to cantilever beam design problem. These final results proved that LMVO has good convergence accuracy and stability.

Keywords

Lévy flight Multi-Verse Optimizer Test functions Cantilever beam design problem 

Notes

Acknowledgment

This work is supported by Innovation Project of Guangxi Graduate Education under Grant No. gxun-chxzs2017135.

References

  1. 1.
    Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016)CrossRefGoogle Scholar
  2. 2.
    Faris, H., Aljarah, I., Mirjalili, S.: Training feedforward neural networks using multi-verse optimizer for binary classification problems. Appl. Intell. 45(2), 1–11 (2016)CrossRefGoogle Scholar
  3. 3.
    Ali, E.E., El-Hameed, M.A., El-Fergany, A.A., El-Arini, M.M.: Parameter extraction of photovoltaic generating units using multi-verse optimizer. Sustain. Energy Technol. Assess. 17, 68–76 (2016)Google Scholar
  4. 4.
    Fathy, A., Rezk, H.: Multi-verse optimizer for identifying the optimal parameters of PEMFC model. Energy 143, 634–644 (2018)CrossRefGoogle Scholar
  5. 5.
    Karthikeyan, K., Dhal, P.K., Karthikeyan, K., Dhal, P.K.: Multi verse optimization (MVO) technique based voltage stability analysis through continuation power flow in IEEE 57 bus. Energy Procedia 117, 583–591 (2017)CrossRefGoogle Scholar
  6. 6.
    Faris, H., Hassonah, M.A., Al-Zoubi, A.M., Mirjalili, S., Aljarah, I.: A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Comput. Appl., 1–15 (2017)Google Scholar
  7. 7.
    Ewees, A.A., Aziz, M.A.E., Hassanien, A.E.: Chaotic multi-verse optimizer-based feature selection. Neural Comput. Appl. 1, 1–16 (2017)Google Scholar
  8. 8.
    Jangir, P., Parmar, S.A., Trivedi, I.N., Bhesdadiya, R.H.: A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem. Eng. Sci. Technol. Int. J. 20(2), 570–586 (2016)CrossRefGoogle Scholar
  9. 9.
    Mirjalili, S., Jangir, P., Mirjalili, S.Z., Saremi, S., Trivedi, I.N.: Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl. Based Syst. 134, 50–71 (2017)CrossRefGoogle Scholar
  10. 10.
    Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murphy, E.J., Prince, P.A., Stanley, H.E.: Lévy flight search patterns of wandering albatrosses. Nature 381(6581), 413–415 (1996)CrossRefGoogle Scholar
  11. 11.
    Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: World Congress on Nature & Biologically Inspired Computing, NaBIC 2009, vol. 71, pp. 210–214. IEEE (2010)Google Scholar
  12. 12.
    Haklı, H., Uğuz, H.: A novel particle swarm optimization algorithm with levy flight. Appl. Soft Comput. J. 23(5), 333–345 (2014)CrossRefGoogle Scholar
  13. 13.
    Kalantzis, G., Shang, C., Lei, Y., Leventouri, T.: Investigations of a gpu-based levy-firefly algorithm for constrained optimization of radiation therapy treatment planning. Swarm Evol. Comput. 26, 191–201 (2016)CrossRefGoogle Scholar
  14. 14.
    Hussein, W.A., Sahran, S., Abdullah, S.N.H.S.: Patch-levy-based initialization algorithm for bees algorithm. Appl. Soft Comput. J. 23(5), 104–121 (2014)CrossRefGoogle Scholar
  15. 15.
    Chickermane, H., Gea, H.C.: Structural optimization using a new local approximation method. Int. J. Numer. Meth. Eng. 39(5), 829–846 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Coello, C.A.C.: Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 41, 113–127 (2000)CrossRefGoogle Scholar
  17. 17.
    Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(2), 245 (2013)CrossRefGoogle Scholar
  18. 18.
    Cheng, M.Y., Prayogo, D.: Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput. Struct. 139, 98–112 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceGuangxi University for NationalitiesNanningChina

Personalised recommendations