Advertisement

Energy-Efficient Single Machine Total Weighted Tardiness Problem with Sequence-Dependent Setup Times

  • M. Fatih Tasgetiren
  • Hande Öztop
  • Uğur Eliiyi
  • Deniz Türsel Eliiyi
  • Quan-Ke Pan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10954)

Abstract

Most of the problems defined in the scheduling literature do not yet take into account the energy consumption of manufacturing processes, as in most of the variants with tardiness objectives. This study handles scheduling of jobs with due dates and sequence-dependent setup times (SMWTSD), while minimizing total weighted tardiness and total energy consumed in machine operations. The trade-off between total energy consumption (TEC) and total weighted tardiness is examined in a single machine environment, where different jobs can be operated at varying speed levels. A bi-objective mixed integer linear programming model is formulated including this speed-scaling plan. Moreover, an efficient multi-objective block insertion heuristic (BIH) and a multi-objective iterated greedy (IG) algorithm are proposed for this NP-hard problem. The performances of the proposed BIH and IG algorithms are compared with each other. The preliminary computational results on a benchmark suite consisting of instances with 60 jobs reveal that, the proposed BIH algorithm is very promising in terms of providing good Pareto frontier approximations for the problem.

Keywords

Energy efficient scheduling Multi-objective optimization Heuristic optimization Sequence-dependent setup times Weighted tardiness 

References

  1. 1.
    Fang, K., Uhan, N., Zhao, F., Sutherland, J.W.: A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. J. Manuf. Syst. 30(4), 234–240 (2011)CrossRefGoogle Scholar
  2. 2.
    Mouzon, G., Yildirim, M.B., Twomey, J.: Operational methods for the minimization of energy consumption of manufacturing equipment. Int. J. Prod. Res. 45(18–19), 4247–4271 (2007)CrossRefGoogle Scholar
  3. 3.
    Mouzon, G., Yildirim, M.B.: A framework to minimise total energy consumption and total tardiness on a single machine. Int. J. Sustain. Eng. 1(2), 105–116 (2008)CrossRefGoogle Scholar
  4. 4.
    Liu, G.S., Zhang, B.X., Yang, H.D., Chen, X., Huang, G.Q.: A branch-and-bound algorithm for minimizing the energy consumption in the PFS problem. Math. Probl. Eng. 1–6 (2013) MathSciNetMATHGoogle Scholar
  5. 5.
    Nawaz, M., Enscore Jr., E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job flowshop sequencing problem. OMEGA 11(1), 91–95 (1983)CrossRefGoogle Scholar
  6. 6.
    Diaz, N., Redelsheimer, E., Dornfeld, D.: Energy consumption characterization and reduction strategies for milling machine tool use. In: Hesselbach, J., Herrmann, C. (eds.) Glocalized Solutions for Sustainability in Manufacturing, pp. 263–267. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19692-8_46CrossRefGoogle Scholar
  7. 7.
    Fang, K.T., Lin, B.M.T.: Parallel-machine scheduling to minimize tardiness penalty and power cost. Comput. Ind. Eng. 64(1), 224–234 (2013)CrossRefGoogle Scholar
  8. 8.
    Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Afshin Mansouri, S., Aktas, E., Besikci, U.: Green scheduling of a two-machine flowshop: trade-off between makespan and energy consumption. Eur. J. Oper. Res. 248(3), 772–788 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lenstra, J., Rinnooy Kan, A., Brucker, P.: Complexity of machine scheduling problems. Ann. Discret. Math. 1, 343–362 (1977)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tanaka, S., Araki, M.: An exact algorithm for the single-machine total weighted tardiness problem with sequence-dependent setup times. Comput. Oper. Res. 40(1), 344–352 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cicirello, V.A., Smith, S.F.: Enhancing stochastic search performance by value-biased randomization of heuristics. J. Heuristics 11(1), 5–34 (2005)CrossRefGoogle Scholar
  13. 13.
    Ruiz, T., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049 (2007)CrossRefGoogle Scholar
  14. 14.
    Osman, I., Potts, C.: Simulated annealing for permutation flow-shop scheduling. OMEGA 17(6), 551–557 (1989)CrossRefGoogle Scholar
  15. 15.
    Dubois-Lacoste, J., Pagnozzi, F., Stützle, T.: An iterated greedy algorithm with optimization of partial solutions for the makespan permutation flowshop problem. Comput. Oper. Res. 81, 160–166 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Subramanian, A., Battarra, M., Potts, C.: An iterated local search heuristic for the single machine total weighted tardiness scheduling problem with sequence-dependent setup times. Int. J. Prod. Res. 52(9), 2729–2742 (2014)CrossRefGoogle Scholar
  17. 17.
    Xu, H., Lu, Z., Cheng, T.: Iterated local search for single-machine scheduling with sequence-dependent setup times to minimize total weighted tardiness. J. Sched. 17(3), 271–287 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    González, M.A., Palacios, J.J., Vela, C.R., Hernández-Arauzo, A.: Scatter search for minimizing weighted tardiness in a single machine scheduling with setups. J. Heuristics 23(2–3), 81–110 (2017)CrossRefGoogle Scholar
  19. 19.
    Tasgetiren, M.F., Pan, Q.-K., Ozturkoglu, Y., Chen, A.H.L.: A memetic algorithm with a variable block insertion heuristic for single machine total weighted tardiness problem with sequence dependent setup times. IEEE Congr. Evol. Comput. CEC 2016, 2911–2918 (2016)Google Scholar
  20. 20.
    Lee, Y.H., Bhaskaran, K., Pinedo, M.: A heuristic to minimize the total weighted tardiness with sequence-dependent setups. IIE Trans. 29(1), 45–52 (1997)CrossRefGoogle Scholar
  21. 21.
    Tan, K.C., Goh, C.K., Yang, Y., Lee, T.H.: Evolving better population distribution and exploration in evolutionary multi-objective optimization. Eur. J. Oper. Res. 171, 463–495 (2006)CrossRefGoogle Scholar
  22. 22.
    Zitzler, E.: Evolutionary Algorithms for Multi Objective Optimization: Methods and Applications. Shaker, Ithaca (1999)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • M. Fatih Tasgetiren
    • 1
  • Hande Öztop
    • 2
  • Uğur Eliiyi
    • 3
  • Deniz Türsel Eliiyi
    • 2
  • Quan-Ke Pan
    • 4
  1. 1.Department of International Logistics ManagementYasar UniversityBornovaTurkey
  2. 2.Department of Industrial EngineeringYasar UniversityBornovaTurkey
  3. 3.Department of Computer ScienceDokuz Eylül UniversityİzmirTurkey
  4. 4.State Key LaboratoryHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations