DTAST: A Novel Radical Framework for de Novo Transcriptome Assembly Based on Suffix Trees

  • Jin Zhao
  • Haodi FengEmail author
  • Daming Zhu
  • Chi Zhang
  • Ying Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10954)


In this article, we develop a novel radical framework for de novo transcriptome assembly based on suffix trees, called DTAST. DTAST extends contigs by reads that have the longest overlaps with the contigs’ terminuses. These reads can be found in linear time of the length of the reads through a well-designed suffix tree structure. Besides, DTAST proposes two strategies to extract transcript-representing paths: a depth-first enumeration strategy and a hybrid strategy based on length and coverage. Experimental results showed that DTAST performs more competitive than the other compared state-of-the-art de novo assemblers. The software with choice for either strategy is available at


  1. 1.
    Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., Pachter, L.: Transcript assembly and abundance estimation from RNA-seq reveals thousands of new transcripts and switching among isoforms. Nat. Biotechnol. 28(5), 511 (2010)CrossRefGoogle Scholar
  2. 2.
    Chang, Z., Li, G., Liu, J., Zhang, Y., Ashby, C., Liu, D., Cramer, C.L., Huang, X.: Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biol. 16(1), 30 (2015)CrossRefGoogle Scholar
  3. 3.
    Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., Salzberg, S.L.: Stringtie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33(3), 290–295 (2015)CrossRefGoogle Scholar
  4. 4.
    Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., et al.: Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29(7), 644–652 (2011)CrossRefGoogle Scholar
  5. 5.
    Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. 98(17), 9748–9753 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., Huang, W., He, G., Gu, S., Li, S., et al.: Soapdenovo-trans: de novo transcriptome assembly with short RNA-seq reads. Bioinformatics 30(12), 1660–1666 (2014)CrossRefGoogle Scholar
  7. 7.
    Schulz, M.H., Zerbino, D.R., Vingron, M., Birney, E.: Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28(8), 1086–1092 (2012)CrossRefGoogle Scholar
  8. 8.
    Peng, Y., Leung, H.C., Yiu, S.M., Lv, M.J., Zhu, X.G., Chin, F.Y.: IDBA-tran: a more robust de novo de bruijn graph assembler for transcriptomes with uneven expression levels. Bioinformatics 29(13), i326–i334 (2013)CrossRefGoogle Scholar
  9. 9.
    Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S.D., Mungall, K., Lee, S., Okada, H.M., Qian, J.Q., et al.: De novo assembly and analysis of RNA-seq data. Nat. Methods 7(11), 909–912 (2010)CrossRefGoogle Scholar
  10. 10.
    Liu, J., Li, G., Chang, Z., Yu, T., Liu, B., McMullen, R., Chen, P., Huang, X.: Binpacker: packing-based de novo transcriptome assembly from RNA-seq data. PLoS Comput. Biol. 12(2), e1004772 (2016)CrossRefGoogle Scholar
  11. 11.
    Zhao, J., Feng, H., Zhu, D., Zhang, C., Xu, Y.: IsoTree: de novo transcriptome assembly from RNA-Seq reads. In: Cai, Z., Daescu, O., Li, M. (eds.) ISBRA 2017. LNCS, vol. 10330, pp. 71–83. Springer, Cham (2017). Scholar
  12. 12.
    Heber, S., Alekseyev, M., Sze, S.H., Tang, H., Pevzner, P.A.: Splicing graphs and EST assembly problem. Bioinformatics 18(suppl 1), S181–S188 (2002)CrossRefGoogle Scholar
  13. 13.
    Griebel, T., Zacher, B., Ribeca, P., Raineri, E., Lacroix, V., Guigó, R., Sammeth, M.: Modelling and simulating generic RNA-seq experiments with the flux simulator. Nucleic Acids Res. 40(20), 10073–10083 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jin Zhao
    • 1
  • Haodi Feng
    • 1
    Email author
  • Daming Zhu
    • 1
  • Chi Zhang
    • 2
  • Ying Xu
    • 3
  1. 1.School of Computer Science and TechnologyShandong UniversityJinanChina
  2. 2.Department of Medical and Molecular GeneticsIndiana UniversityIndianapolisUSA
  3. 3.Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensUSA

Personalised recommendations