Advertisement

Carbon-Efficient Scheduling of Blocking Flow Shop by Hybrid Quantum-Inspired Evolution Algorithm

  • You-Jie Yao
  • Bin Qian
  • Rong Hu
  • Ling Wang
  • Feng-Hong Xiang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10954)

Abstract

In this paper, a hybrid quantum-inspired evolution algorithm (HQEA) is proposed to solve the blocking flow shop scheduling problem (BFSP) with the objectives of makespan and carbon-efficient. First, depending on the characteristics of quantum, we provided a feasible coding and decoding method for HQEA. Then, a mechanism intended to update the quantum probability matrix. Meanwhile, new individuals are generated through the quantum probability matrix and have a specified probability of cataclysm. In addition, some local search operators are utilized to improve the non-dominated solutions. Finally, the effectiveness of HQEA in solving the BFSP is demonstrated by experiments and comparisons.

Keywords

Blocking flow shop scheduling problem Carbon-efficient Hybrid quantum-inspired evolution algorithm Local search 

Notes

Acknowledgements

This research is partially supported by the National Science Foundation of China (51665025), the Applied Basic Research Foundation of Yunnan Province (2015FB136), and the National Natural Science Fund for Distinguished Young Scholars of China (61525304).

References

  1. 1.
    Merchan, A.F., Maravelias, C.T.: Preprocessing and tightening methods for time-indexed MIP chemical production scheduling models. Comput. Chem. Eng. 84, 516–535 (2016)CrossRefGoogle Scholar
  2. 2.
    Gong, H., Tang, L., Duin, C.W.: A two-stage flow shop scheduling problem on a batching machine and a discrete machine with blocking and shared setup times. Comput. Oper. Res. 37(5), 960–969 (2010)CrossRefGoogle Scholar
  3. 3.
    Koren, Y., Wang, W., Gu, X.: Value creation through design for scalability of reconfigurable manufacturing systems. Int. J. Prod. Res. 55(5), 1227–1242 (2016)CrossRefGoogle Scholar
  4. 4.
    Fang, K., Uhan, N.A., Zhao, F., Sutherland, J.W.: Flow shop scheduling with peak power consumption constraints. Ann. Oper. Res. 206(1), 115–145 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Luo, H., Du, B., Huang, G.Q., Chen, H., Li, X.: Hybrid flow shop scheduling considering machine electricity consumption cost. Int. J. Prod. Econ. 146(2), 423–439 (2013)CrossRefGoogle Scholar
  6. 6.
    Liu, C.H., Huang, D.H.: Reduction of power consumption and carbon footprints by applying multi-objective optimisation via genetic algorithms. Int. J. Prod. Res. 52(2), 337–352 (2014)CrossRefGoogle Scholar
  7. 7.
    Ding, J.Y., Song, S., Wu, C.: Carbon-efficient scheduling of flow shops by multi-objective optimization. Eur. J. Oper. Res. 248(3), 758–771 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Deng, J., Wang, L., Wu, C., Wang, J., Zheng, X.: A competitive memetic algorithm for carbon-efficient scheduling of distributed flow-shop. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2016. LNCS, vol. 9771, pp. 476–488. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42291-6_48CrossRefGoogle Scholar
  9. 9.
    Wang, L.: Advances in quantum-inspired evolutionary algorithms. Control Decis. 23(12), 1321–1326 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Niu, Q., Zhou, T., Fei, M., Wang, B.: An efficient quantum immune algorithm to minimize mean flow time for hybrid flow shop problems. Math. Comput. Simul. 84(6), 1–25 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Latif, M.S., Zhou, H., Amir, M.: A hybrid Quantum Estimation of Distribution Algorithm (Q-EDA) for Flow-Shop Scheduling (2013)Google Scholar
  12. 12.
    Ma, Y., Tian, W.J., Fan, Y.Y.: Improved quantum ant colony algorithm for solving TSP problem. In: 2014 IEEE Workshop on Electronics, Computer and Applications, pp. 453–456. IEEE (2014)Google Scholar
  13. 13.
    Deng, G., Wei, M., Su, Q., Zhao, M.: An effective co-evolutionary quantum genetic algorithm for the no-wait flow shop scheduling problem. Adv. Mech. Eng. 7(12) (2015)CrossRefGoogle Scholar
  14. 14.
    Singh, M.R., Mahapatra, S.S.: A Quantum Behaved Particle Swarm Optimization for Flexible Job Shop Scheduling. Pergamon Press Inc., Tarrytown (2016)Google Scholar
  15. 15.
    Wu, X., Wu, S.: An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem. J. Intell. Manuf. 28(6), 1441–1457 (2017)CrossRefGoogle Scholar
  16. 16.
    Fang, K., Uhan, N.A., Zhao, F., Sutherland, J.W.: Flow shop scheduling with peak power consumption constraints. Ann. Oper. Res. 206(1), 115–145 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ding, J.Y., Song, S., Wu, C.: Carbon-efficient scheduling of flow shops by multi-objective optimization. Eur. J. Oper. Res. 248, 758–771 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhao, J. X., Qian, B., Hu, R., Zhang, C. S., & Li, Z. H.: An improved quantum-inspired evolution algorithm for no-wait flow shop scheduling problem to minimize makespan. In: International Conference on Intelligent Computing, pp. 536–547 (2016)CrossRefGoogle Scholar
  19. 19.
    Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans. Evol. Comput. 7(2), 204–223 (2003)CrossRefGoogle Scholar
  20. 20.
    Mokhtari, H., Hasani, A.: An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Comput. Chem. Eng. 104, 339–352 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • You-Jie Yao
    • 1
  • Bin Qian
    • 1
  • Rong Hu
    • 1
  • Ling Wang
    • 2
  • Feng-Hong Xiang
    • 3
  1. 1.School of Information Engineering and AutomationKunming University of Science and TechnologyKunmingChina
  2. 2.Department of AutomationTsinghua UniversityBeijingChina
  3. 3.Computer CenterKunming University of Science and TechnologyKunmingChina

Personalised recommendations