PASA: Identifying More Credible Structural Variants of Hedou12

  • Huiqiang Jia
  • Haichao Wei
  • Daming ZhuEmail author
  • Ruizhi Wang
  • Haodi Feng
  • Xiangzhong Feng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10954)


In this paper, we devote to find structural variants including deletions, insertions, and inversions which occur in Hedou12 genome in constrast to Williams82 genome. To find as many as possible potential structural variants, we try to develop new principles to detect discordant and split read map sets supporting structural variants. Aiming to enhance the precision of structural variant detection, we propose two new sequencing characteristic based models, which use the sequencing parameters of Hedou12 paired-end reads, as well as the parameters for Hedou12 paired-end reads to be aligned onto Williams82, to evaluate the probability a potential structural variant can occur in. To remove those false members from the potential structural variants, we propose a integer linear program to describe formally on which potential structural variants it should accept to achieve as high as possible a probability summation, whose solution can help predict more credible structural variants. The feasibility and precision of our algorithm are verified by comparing with DELLY version 0.5.8 and LUMPY version The software is available for download at


Algorithm Deletion Insertion Inversion Structural variant 



This paper is supported by National natural science foundation of China, No. 61472222, 61732009, 61672325, 61761136017.


  1. 1.
    Jiang, Y., Wang, Y., Brudno, M.: PRISM: pair-read informed split-read mapping for base-pair level detection of insertion, deletion and structural variants. Bioinformatics 28(20), 2576–2583 (2012)CrossRefGoogle Scholar
  2. 2.
    Korbel, J., Abyzov, A., Mu, X., Carriero, N., Cayting, P., Zhang, Z., Snyder, M., Gerstein, M.: PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol. 10(2), R23 (2009)CrossRefGoogle Scholar
  3. 3.
    Abyzov, A., Urban, A., Snyder, M., Gerstein, M.: CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21(6), 974–984 (2011)CrossRefGoogle Scholar
  4. 4.
    Chen, K., Wallis, J., McLellan, M., Larson, D., Kalicki, J., Poh, C., McGrath, S., Wendl, M., Zhang, Q., Locke, D., Shi, X., Fulton, R., Ley, T., Wilson, R., Ding, L., Mardis, E.: BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 6(9), 677–681 (2009)CrossRefGoogle Scholar
  5. 5.
    Fan, X., Abbott, T., Larson, D., Chen, K.: BreakDancer: identification of genomic structural variation from paired-end read mapping. Curr. Protoc. Bioinf. 45, 15.6.1–15.6.11 (2014)CrossRefGoogle Scholar
  6. 6.
    Karakoc, E., Alkan, C., O’Roak, B., Dennis, M., Vives, L., Mark, K., Rieder, M., Nickerson, D., Eichler, E.: Detection of structural variants and indels within exome data. Nat. Methods 9(2), 176–178 (2012)CrossRefGoogle Scholar
  7. 7.
    Medvedev, P., Fiume, M., Dzamba, M., Smith, T., Brudno, M.: Detecting copy number variation with mated short reads. Genome Res. 20(11), 1613–1622 (2010)CrossRefGoogle Scholar
  8. 8.
    Rausch, T., Zichner, T., Schlattl, A., Stütz, A., Benes, V., Korbel, J.: DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28(18), i333–i339 (2012)CrossRefGoogle Scholar
  9. 9.
    Layer, R., Chiang, C., Quinlan, A., Hall, I.: LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 15(6), R84 (2014)CrossRefGoogle Scholar
  10. 10.
    Song, X., Wei, H., Cheng, W., Yang, S., Zhao, Y., Zhang, H., Feng, X.: Development of INDEL markers for genetic mapping based on whole genome resequencing in soybean. G3 (Bethesda, Md) 5(12), 2793–2799 (2015)CrossRefGoogle Scholar
  11. 11.
    Gao, J., Yang, S., Cheng, W., Fu, Y., Leng, J., Yuan, X., Jiang, N., Ma, J., Feng, X.: GmILPA1, encoding an APC8-like protein, controls leaf petiole angle in soybean. J. Am. Soc. Plant Biologists 174(2), 1167–11176 (2017)Google Scholar
  12. 12.
    Li, H., Durbin, R.: Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14), 1754–1760 (2009)CrossRefGoogle Scholar
  13. 13.
    Hach, F., Hormozdiari, F., Alkan, C., Hormozdiari, F., Birol, I., Eichler, E., Sahinalp, S.: mrsFAST: a cache-oblivious algorithm for short-read mapping. Nat. Methods 7(8), 576–577 (2010)CrossRefGoogle Scholar
  14. 14.
    Ewing, B., Green, P.: Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res. 8(3), 186–194 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Huiqiang Jia
    • 1
  • Haichao Wei
    • 2
  • Daming Zhu
    • 1
    Email author
  • Ruizhi Wang
    • 1
  • Haodi Feng
    • 1
  • Xiangzhong Feng
    • 2
  1. 1.School of Computer Science and TechnologyShandong UniversityJinanChina
  2. 2.Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina

Personalised recommendations