Advertisement

On Bessel Structure Moment for Images Retrieval

  • Zi-ping Ma
  • Jin-lin Ma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10954)

Abstract

This paper proposed a new Bessel Structure moments for image retrieval. The proposed method has rotation invariance and performs better than orthogonal Fourier-Mellin and Zernike moments in terms of represent global features. The experiments show that the feature descriptors extracting from the proposed algorithm perform better for image retrieval than conventional descriptors by comparing the retrieval accuracy with the same order.

Keywords

Image retrieval Bessel Structure moments Invariant descriptor 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China under grant nos. 61462002 and 61261043, Higher School Scientific Research Projects of Ningxia Province (No. NGY2016144), Education and Teaching Reform Project of North University of Nationalities (Nos. 2016JY0805 and 2016JY1205), Initial Scientific Research Fund of North University of Nationalities. The authors would like to thank the anonymous referees for their valuable comments and suggestions.

References

  1. 1.
    Hu, M.K.: Visual pattern recognition by moment invariants. IEEE Trans. Inf. Theory 8, 179–182 (1962)zbMATHGoogle Scholar
  2. 2.
    Stéphane, D., Mohamed, D., Ghorbel, F.: Invariant content-based image retrieval using a complete set of Fourier-Mellin descriptors. Int. J. Comput. Sci. Netw. Secur. 9(7), 240–247 (2009)Google Scholar
  3. 3.
    Yadav, R.B., Nishchal, N.K., Gupta, A.K., Rastogi, V.K.: Retrieval and classification of objects using generic Fourier, Legendre moments and Wavelet Zernike moment descriptors and recognition using joint transform correlator. Opt. Laser Technol. 40(3), 517–527 (2008)CrossRefGoogle Scholar
  4. 4.
    Sim, D.-G., Kim, H.-K., Park, R.-H.: Invariant texture retrieval using modified Zernike moments. Image Vis. Comput. 22(4), 331–342 (2004)CrossRefGoogle Scholar
  5. 5.
    Papakostas, G.A., Karakasis, E.G., Koulouriotisb, D.E.: Accurate and speedy computation of image Legendre moments for computer vision applications. Image Vis. Comput. 28(3), 414–423 (2010)CrossRefGoogle Scholar
  6. 6.
    Xiao, B., Ma, J.-F., Wang, X.: Image analysis by Bessel-Fourier moments. Pattern Recogn. 43(8), 2620–2629 (2010)CrossRefGoogle Scholar
  7. 7.
    Mukundan, R., Ong, S.H., Lee, P.A.: Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yap, P., Paramedran, R., Ong, S.H.: Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 12(11), 1367–1377 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zhu, H.Q., Shu, H.Z., Liang, J., Luo, L.M., Coatrieux, J.L.: Image analysis by discrete orthogonal dual-Hahn moments. Pattern Recogn. Lett. 28(13), 1688–1794 (2007)CrossRefGoogle Scholar
  10. 10.
    Hoang, T.V., Tabbone, S.: Invariant pattern recognition using the RFM descriptor. Pattern Recogn. 45(1), 271–284 (2012)CrossRefGoogle Scholar
  11. 11.
    Dominguez, S.: Image analysis by moment invariants using a set of step-like basis functions. Pattern Recogn. Lett. 34(16), 2065–2070 (2013)CrossRefGoogle Scholar
  12. 12.
    Wang, X., Guo, F.-x., Xiao, B., Ma, J.-f.: Rotation invariant analysis and orientation estimation method for texture classification based on Radon transform and correlation analysis. J. Vis. Commun. Image Represent. 21(1), 29–32 (2010)CrossRefGoogle Scholar
  13. 13.
    Toharia, P., Robles, O.D., Rodríguez, Á., Pastor, L.: A study of Zernike invariants for content-based image retrieval. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 944–957. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77129-6_79CrossRefGoogle Scholar
  14. 14.
    Sheng, Y., Shen, L.: Orthogonal Fourier-Mellin moments for invariant pattern recognition. Opt. Soc. Am. 11(6), 1748–1757 (1994)CrossRefGoogle Scholar
  15. 15.
    Novotni, M., Klein, R.: Shape retrieval using 3D Zernike descriptors. Comput. Aided Des. 36(11), 1047–1062 (2004)CrossRefGoogle Scholar
  16. 16.
    Yang, B., Kostková, J., Flusser, J., Suk, T.: Scale invariants from Gaussian-Hermite moments. Sig. Process. 132, 77–84 (2017)CrossRefGoogle Scholar
  17. 17.
    Xiao, B., Gang, L., Zhao, T., Xie, L.: Rotation, scaling and translation invariant texture recognition by Bessel-Fourier moments. Pattern Recogn. Image Anal. 26(2), 302–308 (2016)CrossRefGoogle Scholar
  18. 18.
    Xiao, B., Cui, J.-T., Qin, H.-X., Li, W.-S., Wang, G.-Y.: Moments and moment invariants in the Radon space. Pattern Recogn. 48, 2772–2784 (2015)CrossRefGoogle Scholar
  19. 19.
    Hai-tao, H., Zhang, Y.-d., Shao, C., Quan, J.: Orthogonal moments based on exponent functions: Exponent-Fouriermoments. Pattern Recogn. 47(8), 2596–2606 (2014)CrossRefGoogle Scholar
  20. 20.
    Xiao, B., Li, W.-s., et al.: Errata and comments on orthogonal moments based on exponent functions: Exponent–Fourier moments. Pattern Recogn. 48, 1571–1573 (2015)CrossRefGoogle Scholar
  21. 21.
    Hai-tao, H., Quan, J., Shao, C.: Errata and comments on “Errata and comments on Orthogonal moments based on exponent functions: Exponent-Fourier moments”. Pattern Recogn. 52, 471–476 (2016)CrossRefGoogle Scholar
  22. 22.
    Ana, M.B., Beigi, I., Benitez, A.B., Chang, S.: MetaSEEk: a content-based meta-search engine for images. In: Proceedings of SPIE Storage and Retrieval for Image and Video Databases, vol. 3312, 118–128 (1997)Google Scholar
  23. 23.
    Li, Z., Zhang, Y., Hou, K., Li, H.: 3D polar-radius invariant moments and structure moment invariants. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 483–492. Springer, Heidelberg (2005).  https://doi.org/10.1007/11539117_70CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Information and Computational ScienceNorth Minzu UniversityYinchuanChina

Personalised recommendations