A Computationally Grounded Model of Emotional BDI-Agents

  • Yun Su
  • Bin Hu
  • Yongqiang Dai
  • Juan Rao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10954)


This paper extends BDI (belief, desire, and intention) logic by incorporating well-being emotion modalities (joy and distress) based on Ortony, Clore, and Collins’s (OCC) theory and obtain the emotional BDI logic called BDIE (belief, desire, intention and emotions) logic. We propose a new computational model of emotion triggers for BDI agents, called the interpreted observation-based BDIE system model (or BDIE model for short). The key point of this BDIE model is to express agent’s emotions, such as joy and distress, as a set of runs (computing paths), which is exactly a system in the interpreted system model, a well-known agent-model due to Halpern et al. We present a sound and complete proof system with respect to our BDIE model and specify a simplified auction scenario to illustrate the construction of the BDIE model and the specification of multi-agent systems involving agents’ emotional states using BDIE logic.


Emotional model BDI logic OCC theory Agents 



This work is supported by the National Basic Research Program of China (973 Program, No. 2014CB744600), the National Natural Science Foundation of China (No. 61632014, No. 61210010), the Program of Beijing Municipal Science & Technology Commission (No. Z171100000117005), the Program of International S&T Cooperation of MOST (No. 2013DFA11140), and the Northwest Normal University Foundation (NWNU-LKQN-14-5).


  1. 1.
    Reisenzein, R., Hudlicka, E., Dastani, M., Gratch, J., Hindriks, K., Lorini, E., Meyer, J.-J.C.: Computational modeling of emotion: toward improving the inter-and intradisciplinary exchange. IEEE Trans. Affect. Comput. 4(3), 246–266 (2013)CrossRefGoogle Scholar
  2. 2.
    Rao, A.S., Georgeff, M.P.: The semantics of intention maintenance for rational agents. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 704–710. IJCAI, Melbourne, Australia (1995)Google Scholar
  3. 3.
    Meyer, J.-J.C., van der Hoek, W., van Linder, B.: A logical approach to the dynamics of commitments. Artif. Intell. 113(1–2), 1–40 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hu, X., Bai, K., Cheng, J., Deng, J., Guo, Y., Hu, B., Wang, F.: MeDJ: multidimensional emotion-aware music delivery for adolescent. In: Proceedings of the 26th International Conference on World Wide Web Companion (WWW 2017), pp. 793–794. ACM, Perth (2017)Google Scholar
  5. 5.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  6. 6.
    Wooldridge, M.: Computationally grounded theories of agency. In: The 4th International Conference on MultiAgent Systems Proceedings (ICMAS 2000), pp. 13–20. IEEE, Washington, DC (2000)Google Scholar
  7. 7.
    Jin, L., Li, S., Hu, B.: RNN models for dynamic matrix inversion: a control-theoretical perspective. IEEE Trans. Industr. Inf. 14(1), 189–199 (2018)CrossRefGoogle Scholar
  8. 8.
    Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1990)Google Scholar
  9. 9.
    Bagozzi, R.P., Dholakia, U.M., Basuroy, S.: How effortful decisions get enacted: the motivating role of decision processes, desires, and anticipated emotions. J. Behav. Decis. Making 16(4), 273–295 (2003)CrossRefGoogle Scholar
  10. 10.
    Chen, J., Hu, B., Moore, P., Zhang, X., Ma, X.: Electroencephalogram-based emotion assessment system using ontology and data mining techniques. Appl. Soft Comput. 30, 663–674 (2015)CrossRefGoogle Scholar
  11. 11.
    Strongman, K.T.: The Psychology of Emotion. From Everyday Life to Theory. Wiley (2003)Google Scholar
  12. 12.
    Adam, C., Herzig, A., Longin, D.: A logical formalization of the OCC theory of emotions. Synthese 168(2), 201–248 (2009)CrossRefGoogle Scholar
  13. 13.
    Steunebrink, B.R., Dastani, M., Meyer, J.-J.C.: A formal model of emotion triggers: an approach for BDI agents. Synthese 185(1), 83–129 (2012)CrossRefGoogle Scholar
  14. 14.
    Meyer, J.-J.C.: Reasoning about emotional agents. Int. J. Intell. Syst. 21(6), 601–619 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pereira, D., Oliveira, E., Moreira, N.: Formal modelling of emotions in BDI agents. In: Sadri, F., Satoh, K. (eds.) CLIMA 2007. LNCS (LNAI), vol. 5056, pp. 62–81. Springer, Heidelberg (2008). Scholar
  16. 16.
    Gluz, J., Jaques, P.A.: A probabilistic formalization of the appraisal for the OCC event-based emotions. J. Artif. Intell. Res. 58, 627–664 (2017)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Broekens, J., Bosse, T., Marsella, S.C.: Challenges in computational modeling of affective processes. IEEE Trans. Affect. Comput. 4(3), 242–245 (2013)CrossRefGoogle Scholar
  18. 18.
    Su, K., Sattar, A., Wang, K., Luo, X., Governatori, G., Padmanabhan, V.: Observation-based model for BDI-agents. In: AAAI Conference on Artificial Intelligence (AAAI 2005), pp. 190–195. AAAI, Pittsburgh (2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information Science and EngineeringLanzhou UniversityLanzhouChina
  2. 2.College of Computer Science and EngineeringNorthwest Normal UniversityLanzhouChina

Personalised recommendations