Applications of Magnetoencephalography in Epilepsy and Tumor Surgery

  • Panagiotis G. Simos
  • Roozbeh Rezaie
  • Andrew C. Papanicolaou


Magnetoencephalography (MEG), which represents the most novel example of noninvasive functional mapping techniques, has contributed to the surgical management of epilepsy and brain tumors in two ways. First, in the case of epilepsy, MEG localization of interictal activity has facilitated placement of subdural (grid, strip, and depth) electrodes that are necessary for accurately localizing the ictal onset zone. Second, MEG has emerged as a reliable and accurate tool for localizing motor, somatosensory, and language-specific cortexes as well as determining hemispheric dominance for language in surgical candidates. In this chapter, we first present a general description of MEG, including background on instrumentation, underlying neurophysiology, and its applications in contemporary clinical practice. Subsequently, we review evidence demonstrating the utility of MEG as a noninvasive tool for approximating the ictal onset zone in addition to localizing eloquent cortex and determining the spatial relation of this cortex to epileptogenic tissue and mass lesions. Furthermore, the utility of MEG in presurgical mapping is discussed in light of some methodologic caveats, with recommendations on optimizing its contributions in clinical practice.


Magneoencephalography Epilepsy Brain tumor Eloquent cortex Ictal onset 


  1. 1.
    Papanicolaou AC. Fundamentals of functional brain imaging. The Netherlands: Swets & Zeitlinger; 1998.Google Scholar
  2. 2.
    Knowlton RC, Laxer KD, Aminoff MJ, Roberts TP, Wong ST, Rowley HA. Magnetoencephalography in partial epilepsy: clinical yield and localization accuracy. Ann Neurol. 1997;42:622–31. Scholar
  3. 3.
    Pataraia E, Simos PG, Castillo EM, Billingsley RL, Sarkari S, Wheless JW, et al. Does magnetoencephalography add to scalp video-EEG as a diagnostic tool in epilepsy surgery? Neurology. 2004b;62:943–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Ebersole JS. Classification of MEG spikes in temporal lobe epilepsy. In: Yoshimoto T, Kotani M, Kuriki S, Karibe H, Nakasato N, editors. Recent advances in biomagnetism. Sendai: Tohoku University Press; 1999. p. 758–61.Google Scholar
  5. 5.
    Tenney JR, Fujiwara H, Horn PS, Rose DF. Comparison of magnetic source estimation to intracranial EEG, resection area, and seizure outcome. Epilepsia. 2014;55:1854–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Jung J, Bouet R, Delpuech C, Ryvlin P, Isnard J, Guenot M, et al. The value of magnetoencephalography for seizure-onset zone localization in magnetic resonance imaging-negative partial epilepsy. Brain. 2013;136:3176–86.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kanamori Y, Shigeto H, Hironaga N, Hagiwara K, Uehara T, Chatani H, et al. Minimum norm estimates in MEG can delineate the onset of interictal epileptic discharges: a comparison with ECoG findings. Neuroimage Clin. 2013;2:663–9.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Englot DJ, Nagarajan SS, Imber BS, Raygor KP, Honma SM, Mizuiri D, et al. Epileptogenic zone localization using magnetoencephalography predicts seizure freedom in epilepsy surgery. Epilepsia. 2015;56:949–58. Scholar
  9. 9.
    Rubinger L, Chan C, D’Arco F, Moineddin R, Muthaffar O, Rutka JT, et al. Change in presurgical diagnostic imaging evaluation affects subsequent pediatric epilepsy surgery outcome. Epilepsia. 2016;57:32–40.PubMedCrossRefGoogle Scholar
  10. 10.
    Brockhaus A, Lehnertz K, Wienbruch C, Kowalik A, Burr W, Elbert T, et al. Possibilities and limitations of magnetic source imaging of methohexital-induced epileptiform patterns in temporal lobe epilepsy patients. Electroencephalogr Clin Neurophysiol. 1997;102:423–36.PubMedCrossRefGoogle Scholar
  11. 11.
    Butz M, Gross J, Timmermann L, Moll M, Freund HJ, Witte OW, Schnitzler A. Perilesional pathological oscillatory activity in the magnetoencephalogram of patients with cortical brain lesions. Neurosci Lett. 2004;355:93–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Englot DJ, Nagarajan SS, Wang DD, Rolston JD, Mizuiri D, Honma SM, et al. The sensitivity and significance of lateralized interictal slow activity on magnetoencephalography in focal epilepsy. Epilepsy Res. 2016;121:21–8. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fernandez A, de Sola RG, Amo C, Turrero A, Zuluaga P, Maestu F, et al. Dipole density of low-frequency and spike magnetic activity: a reliable procedure in presurgical evaluation of temporal lobe epilepsy. J Clin Neurophysiol. 2004;21:254–66.PubMedCrossRefGoogle Scholar
  14. 14.
    Gallen CC, Tecoma E, Iragui V, Sobel DF, Schwartz BJ, Bloom FE. Magnetic source imaging of abnormal low-frequency magnetic activity in presurgical evaluations of epilepsy. Epilepsia. 1997;38:452–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Ishibashi H, Simos PG, Castillo EM, Maggio WW, Wheless JW, Kim HL, et al. Detection and significance of focal, interictal, slow-wave activity visualized by magnetoencephalography for localization of a primary epileptogenic region. J Neurosurg. 2002a;96:724–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Kamada K, Saguer M, Moller M, Wicklow K, Katenhauser M, Kober H, Vieth J. Functional and metabolic analysis of cerebral ischemia using magnetoencephalography and proton magnetic resonance spectroscopy. Ann Neurol. 1997;42:554–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Assaf BA, Karkar KM, Laxer KD, Garcia PA, Austin EJ, Barbaro NM, Aminoff MJ. Ictal magnetoencephalography in temporal and extratemporal lobe epilepsy. Epilepsia. 2003;44:1320–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Eliashiv DS, Elsas S, Squires M, Fried K, Engel IJ. Ictal magnetic source imaging as a localizing tool in partial epilepsy. Neurology. 2002;59:1600–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Oishi M, Otsubo H, Kameyama S, Wachi M, Tanaka K, Masuda H, Tanaka R. Ictal magnetoencephalographic discharges from elementary visual hallucinations of status epilepticus. J Neurol Neurosurg Psychiatry. 2003a;74:525–7.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Stefan H, Schneider S, Feistel H, Pawlik G, Schuler P, Abraham-Fuchs K, et al. Ictal and interictal activity in partial epilepsy recorded with multichannel magnetoelectroencephalography: correlation of electroencephalography/electrocorticography, magnetic resonance imaging, single photon emission computed tomography, and positron emission tomography findings. Epilepsia. 1992;33:874–87.PubMedCrossRefGoogle Scholar
  21. 21.
    Tilz C, Hummel C, Kettenmann B, Stefan H. Ictal onset localization of epileptic seizures by magnetoencephalography. Acta Neurol Scand. 2002;106:190–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Yoshinaga H, Ohtsuka Y, Watanabe Y, Inutsuka M, Kitamura Y, Kinugasa K, Ok E. Ictal MEG in two children with partial seizures. Brain and Development. 2004;26:403–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Almubarak S, Alexopoulos A, Von-Podewils F, Wang ZI, Kakisaka Y, Mosher JC, et al. The correlation of magnetoencephalography to intracranial EEG in localizing the epileptogenic zone: a study of the surgical resection outcome. Epilepsy Res. 2014;108:1581–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Papanicolaou AC, Pataraia E, Billingsley-Marshall R, Castillo EM, Wheless JW, Swank P, et al. Toward the substitution of invasive electroencephalography in epilepsy surgery. J Clin Neurophysiol. 2005;22:231–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Bennett-Back O, Ochi A, Widjaja E, Nambu S, Kamiya A, Go C, et al. Magnetoencephalography helps delineate the extent of the epileptogenic zone for surgical planning in children with intractable epilepsy due to porencephalic cyst/encephalomalacia. J Neurosurg Pediatr. 2014;14:271–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Mohamed IS, Gibbs SA, Robert M, Bouthillier A, Leroux JM, Khoa Nguyen D. The utility of magnetoencephalography in the presurgical evaluation of refractory insular epilepsy. Epilepsia. 2013;54:1950–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Iwasaki M, Nakasato N, Shamoto H, Nagamatsu K, Kanno A, Hatanaka K, et al. Surgical implications of neuromagnetic spike localization in temporal lobe epilepsy. Epilepsia. 2002;43:415–24.PubMedCrossRefGoogle Scholar
  28. 28.
    Stefan H, Schuler P, Abraham-Fuchs K, Schneider S, Gebhardt M, Neubauer U, et al. Magnetic source localization and morphological changes in temporal lobe epilepsy: comparison of MEG/EEG, ECoG and volumetric MRI in presurgical evaluation of operated patients. Acta Neurol Scand Suppl. 1994;152:83–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Mamelak AN, Lopez N, Akhtari M, Sutherling WW. Magnetoencephalography-directed surgery in patients with neocortical epilepsy. J Neurosurg. 2002;97:865–73. Scholar
  30. 30.
    Otsubo H, Ochi A, Elliott I, Chuang SH, Rutka JT, Jay V, et al. MEG predicts epileptic zone in lesional extrahippocampal epilepsy: 12 pediatric surgery cases. Epilepsia. 2001;42:1523–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Shiraishi H, Watanabe Y, Watanabe M, Inoue Y, Fujiwara T, Yagi K. Interictal and ictal magnetoencephalographic study in patients with medial frontal lobe epilepsy. Epilepsia. 2001;42:875–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Stefan H, Hummel C, Hopfengartner R, Pauli E, Tilz C, Ganslandt O, et al. Magnetoencephalography in extratemporal epilepsy. J Clin Neurophysiol. 2000;17:190–200.PubMedCrossRefGoogle Scholar
  33. 33.
    Baumgartner C, Pataraia E, Lindinger G, Deecke L. Neuromagnetic recordings in temporal lobe epilepsy. J Clin Neurophysiol. 2000;17:177–89.PubMedCrossRefGoogle Scholar
  34. 34.
    Bast T, Oezkan O, Rona S, Stippich C, Seitz A, Rupp A, et al. EEG and MEG source analysis of single and averaged interictal spikes reveals intrinsic epileptogenicity in focal cortical dysplasia. Epilepsia. 2004;45:621–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Burneo JG, Bebin M, Kuzniecky RI, Knowlton RC. Electroclinical and magnetoencephalographic studies in epilepsy patients with polymicrogyria. Epilepsy Res. 2004a;62:125–33.PubMedCrossRefGoogle Scholar
  36. 36.
    Ishibashi H, Simos PG, Wheless JE, Zhang W, Baumgartner JE, Castillo EM, Papanicolaou AC. Somatosensory evoked magnetic fields in hemimegalencephaly. Neurol Res. 2002c;24:459–62.PubMedCrossRefGoogle Scholar
  37. 37.
    Minami T, Tasaki K, Yamamoto T, Gondo K, Yanai S, Ueda K. Magneto-encephalographical analysis of focal cortical heterotopia. Dev Med Child Neurol. 1996;38:945–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Morioka T, Nishio S, Ishibashi H, Muraishi M, Hisada K, Shigeto H, et al. Intrinsic epileptogenicity of focal cortical dysplasia as revealed by magnetoencephalography and electrocorticography. Epilepsy Res. 1999;33:177–87.PubMedCrossRefGoogle Scholar
  39. 39.
    Otsubo H, Iida K, Oishi M, Okuda C, Ochi A, Pang E, et al. Neurophysiologic findings of neuronal migration disorders: intrinsic epileptogenicity of focal cortical dysplasia on electroencephalography, electrocorticography, and magnetoencephalography. J Child Neurol. 2005;20:357–63.PubMedCrossRefGoogle Scholar
  40. 40.
    Taniguchi M, Yoshimine T, Kato A, Maruno M, Hirabuki N, Nakamura H, et al. Dysembryoplastic neuroepithelial tumor in the insular cortex. Three dimensional magnetoencephalographic localization of epileptic discharges. Neurol Res. 1998;20:433–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Toulouse P, Agulhon C, Taussig D, Napuri S, Biraben A, Jannin P, et al. Magnetoencephalographic studies of two cases of diffuse subcortical laminar heterotopia or so-called double cortex. NeuroImage. 2003;19:1251–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang W, Simos PG, Ishibashi H, Wheless JW, Castillo EM, Kim HL, et al. Multimodality neuroimaging evaluation improves the detection of subtle cortical dysplasia in seizure patients. Neurol Res. 2003;25:53–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Iida K, Otsubo H, Mohamed IS, Okuda C, Ochi A, Weiss SK, et al. Characterizing magnetoencephalographic spike sources in children with tuberous sclerosis complex. Epilepsia. 2005;46:1510–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Jansen FE, Huiskamp G, van Huffelen AC, Bourez-Swart M, Boere E, Gebbink T, et al. Identification of the epileptogenic tuber in patients with tuberous sclerosis: a comparison of high-resolution EEG and MEG. Epilepsia. 2006;47:108–14.PubMedCrossRefGoogle Scholar
  45. 45.
    Kamimura T, Tohyama J, Oishi M, Akasaka N, Kanazawa O, Sasagawa M, et al. Magnetoencephalography in patients with tuberous sclerosis and localization-related epilepsy. Epilepsia. 2006;47:991–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Wu JY, Sutherling WW, Koh S, Salamon N, Jonas R, Yudovin S, et al. Magnetic source imaging localizes epileptogenic zone in children with tuberous sclerosis complex. Neurology. 2006;66:1270–2.PubMedCrossRefGoogle Scholar
  47. 47.
    Xiao Z, Xiang J, Holowka S, Hunjan A, Sharma R, Otsubo H, Chuang S. Volumetric localization of epileptic activities in tuberous sclerosis using synthetic aperture magnetometry. Pediatr Radiol. 2006;36:16–21.PubMedCrossRefGoogle Scholar
  48. 48.
    Hattori H, Yamano T, Tsutada T, Tsuyuguchi N, Kawawaki H, Shimogawara M. Magnetoencephalography in the detection of focal lesions in West syndrome. Brain and Development. 2001;23:528–32.PubMedCrossRefGoogle Scholar
  49. 49.
    Ishibashi H, Simos PG, Wheless JW, Baumgartner JE, Kim HL, Davis RN, et al. Multimodality functional imaging evaluation in a patient with Rasmussen’s encephalitis. Brain and Development. 2002b;24:239–44.PubMedCrossRefGoogle Scholar
  50. 50.
    Morioka T, Nishio S, Hisada K, Shigeto H, Yamamoto T, Fujii K, Fukui M. Neuromagnetic assessment of epileptogenicity in cerebral arteriovenous malformation. Neurosurg Rev. 2000;23:206–12.PubMedCrossRefGoogle Scholar
  51. 51.
    Otsubo H, Snead OC 3rd. Magnetoencephalography and magnetic source imaging in children. J Child Neurol. 2001;16:227–35.PubMedGoogle Scholar
  52. 52.
    Paetau R, Hamalainen M, Hari R, Kajola M, Karhu J, Larsen TA, et al. Magnetoencephalographic evaluation of children and adolescents with intractable epilepsy. Epilepsia. 1994;35:275–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Paetau R, Granstrom ML, Blomstedt G, Jousmaki V, Korkman M, Liukkonen E. Magnetoencephalography in presurgical evaluation of children with the Landau-Kleffner syndrome. Epilepsia. 1999;40:326–35.PubMedCrossRefGoogle Scholar
  54. 54.
    Verrotti A, Pizzella V, Trotta D, Madonna L, Chiarelli F, Romani GL. Magnetoencephalography in pediatric neurology and in epileptic syndromes. Pediatr Neurol. 2003;28:253–61.PubMedCrossRefGoogle Scholar
  55. 55.
    Yanai S, Minami T, Yamamoto T, Gondo K, Kira R, Tokunaga Y, Ueda K. Magnetoencephalographic analysis of hypsarrhythmia in West syndrome. J Epilepsy. 1997;10:131–8.CrossRefGoogle Scholar
  56. 56.
    Stefan H, Scheler G, Hummel C, Walter J, Romstock J, Buchfelder M, Blumcke I. Magnetoencephalography (MEG) predicts focal epileptogenicity in cavernomas. J Neurol Neurosurg Psychiatry. 2004;75:1309–13.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Amo C, Saldaña C, Hidalgo MG, Maestú F, Fernández A, Arrazola J, Ortiz T. Magnetoencephalographic localization of peritumoral temporal epileptic focus previous surgical resection. Seizure. 2003;12:19–22.PubMedCrossRefGoogle Scholar
  58. 58.
    Patt S, Steenbeck J, Hochstetter A, Kraft R, Huonker R, Haueisen J, et al. Source localization and possible causes of interictal epileptic activity in tumor-associated epilepsy. Neurobiol Dis. 2000;7:260–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Schiffbauer H, Berger MS, Ferrari P, Freudenstein D, Rowley HA, Roberts TP. Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. J Neurosurg. 2002;97:1333–42.PubMedCrossRefGoogle Scholar
  60. 60.
    Willemse RB, Hillebrand A, Ronner HE, Vandertop WP, Stam CJ. Magnetoencephalographic study of hand and foot sensorimotor organization in 325 consecutive patients evaluated for tumor or epilepsy surgery. Neuroimage Clin. 2016;10:46–53.PubMedCrossRefGoogle Scholar
  61. 61.
    Smith JR, Schwartz BJ, Gallen C, Orrison W, Lewine J, Murro AM, et al. Multichannel magnetoencephalography in ablative seizure surgery outside the anteromesial temporal lobe. Stereotact Funct Neurosurg. 1995;65:81–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Ishibashi H, Morioka T, Nishio S, Shigeto H, Yamamoto T, Fukui M. Magnetoencephalographic investigation of somatosensory homunculus in patients with peri-Rolandic tumors. Neurol Res. 2001;23:29–38.PubMedCrossRefGoogle Scholar
  63. 63.
    Morioka T, Yamamoto T, Katsuta T, Fujii K, Fukui M. Presurgical three-dimensional magnetic source imaging of the somatosensory cortex in a patient with a peri-Rolandic lesion: technical note. Neurosurgery. 1994;34:930–3; discussion, 933–4.PubMedGoogle Scholar
  64. 64.
    Roberts TP, Ferrari P, Perry D, Rowley HA, Berger MS. Presurgical mapping with magnetic source imaging: comparisons with intraoperative findings. Brain Tumor Pathol. 2000;17:57–64.PubMedCrossRefGoogle Scholar
  65. 65.
    Ganslandt O, Buchfelder M, Hastreiter P, Grummich P, Fahlbusch R, Nimsky C. Magnetic source imaging supports clinical decision making in glioma patients. Clin Neurol Neurosurg. 2004;107:20–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Korvenoja A, Kirveskari E, Aronen HJ, Avikainen S, Brander A, Huttunen J, et al. Sensorimotor cortex localization: comparison of magnetoencephalography, functional MR imaging, and intraoperative cortical mapping. Radiology. 2006;241:213–22.PubMedCrossRefGoogle Scholar
  67. 67.
    Ganslandt O, Fahlbusch R, Nimsky C, Kober H, Moller M, Steinmeier R, et al. Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J Neurosurg. 1999;91:73–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Kirsch HE, Zhu Z, Honma S, Findlay A, Berger MS, Nagarajan SS. Predicting the location of mouth motor cortex in patients with brain tumors by using somatosensory evoked field measurements. J Neurosurg. 2007;107:481–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Breier JI, Simos PG, Wheless JW, Zouridakis G, Willmore LJ, Constantinou JEC, Papanicolaou AC. A magnetoencephalography study of cortical plasticity. Neurocase. 1999a;5:277–84.CrossRefGoogle Scholar
  70. 70.
    Burneo JG, Kuzniecky RI, Bebin M, Knowlton RC. Cortical reorganization in malformations of cortical development: a magnetoencephalographic study. Neurology. 2004b;63:1818–24.PubMedCrossRefGoogle Scholar
  71. 71.
    Oishi M, Fukuda M, Kameyama S, Kawaguchi T, Masuda H, Tanaka R. Magnetoencephalographic representation of the sensorimotor hand area in cases of intracerebral tumour. J Neurol Neurosurg Psychiatry. 2003b;74:1649–54.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Papanicolaou AC, Simos PG, Breier JI, Wheless JW, Mancias P, Baumgartner JE. Brain plasticity for sensory and linguistic functions: a functional imaging study using magnetoencephalography with children and young adults. J Child Neurol. 2001;16:241–52.PubMedCrossRefGoogle Scholar
  73. 73.
    Roberts TP, Zusman E, McDermott M, Barbaro N, Rowley HA. Correlation of functional magnetic source imaging with intraoperative cortical stimulation in neurosurgical patients. J Image Guid Surg. 1995;1:339–47.PubMedCrossRefGoogle Scholar
  74. 74.
    Vates GE, Lawton MT, Wilson CB, McDermott MW, Halbach VV, Roberts TP, Rowley HA. Magnetic source imaging demonstrates altered cortical distribution of function in patients with arteriovenous malformations. Neurosurgery. 2002;51:614–23; discussion, 623–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Kassubeck J, Stippich C, Soros P. A motor field localization protocol using magnetoencephalography. Biomed Eng. 1996;41:334–5.CrossRefGoogle Scholar
  76. 76.
    Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, Nagarajan SS. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg. 2012;117:354–62.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Castillo EM, Simos PG, Wheless JW, Baumgartner JE, Breier JI, Billingsley RL, et al. Integrating sensory and motor mapping in a comprehensive MEG protocol: clinical validity and replicability. NeuroImage. 2004;21:973–83.PubMedCrossRefGoogle Scholar
  78. 78.
    Barnikol UB, Amunts K, Dammers J, Mohlberg H, Fieseler T, Malikovic A, et al. Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps. NeuroImage. 2006;31:86–108.PubMedCrossRefGoogle Scholar
  79. 79.
    Hashimoto T, Kashii S, Kikuchi M, Honda Y, Nagamine T, Shibasaki H. Temporal profile of visual evoked responses to pattern-reversal stimulation analyzed with a whole-head magnetometer. Exp Brain Res. 1999;125:375–82.PubMedCrossRefGoogle Scholar
  80. 80.
    Hatanaka K, Nakasato N, Seki K, Kanno A, Mizoi K, Yoshimoto T. Striate cortical generators of the N75, P100 and N145 components localized by pattern reversal visual evoked magnetic fields. Tohoku J Exp Med. 1997;182:9–14.PubMedCrossRefGoogle Scholar
  81. 81.
    Nakamura M, Kakigi R, Okusa T, Hoshiyama M, Watanabe K. Effects of check size on pattern reversal visual evoked magnetic field and potential. Brain Res. 2000;872:77–86.PubMedCrossRefGoogle Scholar
  82. 82.
    Seki K, Nakasato N, Fujita S, Hatanaka K, Kawamura T, Kanno A, Yoshimoto T. Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure. Electroencephalogr Clin Neurophysiol. 1996;100:436–42.PubMedCrossRefGoogle Scholar
  83. 83.
    Shigeto H, Tobimatsu S, Yamamoto T, Kobayashi T, Kato M. Visual evoked cortical magnetic responses to checkerboard pattern reversal stimulation: a study on the neural generators of N75, P100 and N145. J Neurol Sci. 1998;156:186–94.PubMedCrossRefGoogle Scholar
  84. 84.
    Alberstone CD, Skirboll SL, Benzel EC, Sanders JA, Hart BL, Baldwin NG, et al. Magnetic source imaging and brain surgery: presurgical and intraoperative planning in 26 patients. J Neurosurg. 2000;92:79–90.PubMedCrossRefGoogle Scholar
  85. 85.
    Inoue I, Fujimura M, Kumabe T, Nakasato N, Higano S, Tominaga T. Combined three-dimensional anisotropy contrast imaging and magnetoencephalography guidance to preserve visual function in a patient with an occipital lobe tumor. Minim Invasive Neurosurg. 2004;47:249–52.PubMedCrossRefGoogle Scholar
  86. 86.
    Nakasato N, Kumabe T, Kanno A, Ohtomo S, Mizoi K, Yoshimoto T. Neuromagnetic evaluation of cortical auditory function in patients with temporal lobe tumors. J Neurosurg. 1997;86:610–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Nakasato N, Fujita S, Seki K, Kawamura T, Matani A, Tamura I, et al. Functional localization of bilateral auditory cortices using an MRI-linked whole head magnetoencephalography (MEG) system. Electroencephalogr Clin Neurophysiol. 1995;94:183–90.PubMedCrossRefGoogle Scholar
  88. 88.
    Suzuki K, Okuda J, Nakasato N, Kanno A, Hatanaka K, Yamadori A, et al. Auditory evoked magnetic fields in patients with right hemisphere language dominance. Neuroreport. 1997;8:3363–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Dym RJ, Burns J, Freeman K, Lipton ML. Is functional MR imaging assessment of hemispheric language dominance as good as the Wada test?: a meta-analysis. Radiology. 2011;261:446–55.PubMedCrossRefGoogle Scholar
  90. 90.
    Breier JI, Simos PG, Zouridakis G, Wheless JW, Willmore LJ, Constantinou JE, et al. Language dominance determined by magnetic source imaging: a comparison with the Wada procedure. Neurology. 1999b;53:938–45.PubMedCrossRefGoogle Scholar
  91. 91.
    Breier JI, Simos PG, Wheless JW, Constantinou JEC, Papanicolaou AC. Hemispheric language dominance in children determined by magnetic source imaging. J Child Neurol. 2001;16:124–30.PubMedCrossRefGoogle Scholar
  92. 92.
    Papanicolaou AC, Simos PG, Castillo EM, Breier JI, Sarkari S, Pataraia E, et al. Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg. 2004;100:867–76.PubMedCrossRefGoogle Scholar
  93. 93.
    Doss RC, Zhang W, Risse GL, Dickens DL. Lateralizing language with magnetic source imaging: validation based on the Wada test. Epilepsia. 2009;50:2242–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Maestu F, Ortiz T, Fernandez A, Amo C, Martin P, Fernandez S, Sola RG. Spanish language mapping using MEG: a validation study. NeuroImage. 2002;17:1579–86.PubMedCrossRefGoogle Scholar
  95. 95.
    Rezaie R, Narayana S, Schiller K, Birg L, Wheless JW, Boop FA, Papanicolaou AC. Assessment of hemispheric dominance for receptive language in pediatric patients under sedation using magnetoencephalography. Front Hum Neurosci. 2014;8(657)Google Scholar
  96. 96.
    Kamada K, Sawamura Y, Takeuchi F, Kuriki A, Kawai K, Morita A, et al. Expressive and receptive language areas determined by a non-invasive reliable method using functional magnetic resonance imaging and magnetoencephalography. Neurosurgery. 2007;60:296–305.PubMedCrossRefGoogle Scholar
  97. 97.
    Findlay AM, Ambrose JB, Cahn-Weiner DA, Houde JF, Honma S, Hinkley LB, et al. Dynamics of hemispheric dominance for language assessed by magnetoencephalographic imaging. Ann Neurol. 2012;71:668–86.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Hirata M, Kato A, Taniguchi M, Saitoh Y, Ninomiya H, Ihara A, et al. Determination of language dominance with synthetic aperture magnetometry: comparison with the Wada test. NeuroImage. 2004;23:46–53.PubMedCrossRefGoogle Scholar
  99. 99.
    McDonald CR, Thesen T, Hagler DJ Jr, Carlson C, Devinksy O, Kuzniecky R, et al. Distributed source modeling of language with magnetoencephalography: application to patients with intractable epilepsy. Epilepsia. 2009;50:2256–66.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Tanaka N, Liu H, Reinsberger C, Madsen JR, Bourgeois BF, Dworetzky BA, et al. Language lateralization represented by spatiotemporal mapping of magnetoencephalography. Am J Neuroradiol. 2013;34:558–63.PubMedCrossRefGoogle Scholar
  101. 101.
    Bowyer SM, Moran JE, Mason KM, Constantinou JE, Smith BJ, Barkley GL, et al. MEG localization of language-specific cortex utilizing MR-FOCUSS. Neurology. 2004;62:2247–55.PubMedCrossRefGoogle Scholar
  102. 102.
    Simos PG, Breier JI, Maggio WW, Gormley WB, Zouridakis G, Willmore LJ, et al. Atypical temporal lobe language representation: MEG and intraoperative stimulation mapping correlation. Neuroreport. 1999a;10:139–42.PubMedCrossRefGoogle Scholar
  103. 103.
    Castillo EM, Breier JI, Wheless JW, Slater JD, Tandon N, Baumgartner JE, et al. Contributions of direct cortical stimulation and MEG recordings to identify “essential” language cortex. Epilepsia. 2005;46:324.Google Scholar
  104. 104.
    Kober H, Moller M, Nimsky C, Vieth J, Fahlbusch R, Ganslandt O. New approach to localize speech relevant brain areas and hemispheric dominance using spatially filtered magnetoencephalography. Hum Brain Mapp. 2001;14:236–50.PubMedCrossRefGoogle Scholar
  105. 105.
    Castillo EM, Simos PG, Venkataraman V, Breier JI, Wheless JW, Papanicolaou AC. Mapping of expressive language cortex using magnetic source imaging. Neurocase. 2001;7:419–22.PubMedCrossRefGoogle Scholar
  106. 106.
    Lüders HO. Epilepsy surgery. New York: Raven Press; 1992.Google Scholar
  107. 107.
    Ko DY, Kufta C, Scaffidi D, Sato S. Source localization determined by magnetoencephalography and electroencephalography in temporal lobe epilepsy: comparison with electrocorticography: technical case report. Neurosurgery. 1998;42:414–21; discussion, 421.PubMedCrossRefGoogle Scholar
  108. 108.
    Sutherling WW, Crandall PH, Engel J Jr, Darcey TM, Cahan LD, Barth DS. The magnetic field of complex partial seizures agrees with intracranial localizations. Ann Neurol. 1987;21:548–58.PubMedCrossRefGoogle Scholar
  109. 109.
    Ishibashi H, Morioka T, Shigeto H, Nishio S, Yamamoto T, Fukui M. Three-dimensional localization of subclinical ictal activity by magnetoencephalography: correlation with invasive monitoring. Surg Neurol. 1998;50:157–63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Panagiotis G. Simos
    • 1
  • Roozbeh Rezaie
    • 2
  • Andrew C. Papanicolaou
    • 3
  1. 1.University of Crete, Voute CampusSchool of Medicine, Division of Psychiatry and Behavioral SciencesHerakleionGreece
  2. 2.Department of Pediatrics, Division of Clinical NeurosciencesUniversity of Tennessee Health Science CenterMemphisUSA
  3. 3.Department of Pediatrics, Division of Clinical NeurosciencesUniversity of Tennessee Health Science Center, Neuroscience Institute, Le Bonheur Children’s HospitalMemphisUSA

Personalised recommendations