Advertisement

Systemic Chemotherapy in Brain Gliomas

  • George A. AlexiouEmail author
  • Athanasios P. Kyritsis
Chapter

Abstract

Gliomas constitute the most common and difficult to treat primary brain tumors, accounting for over 50% of all primary central nervous system tumors. The glioblastoma is by far the most frequently occurring and most malignant of the glial tumors, with a median patient survival of 15 months. Current treatment involves maximal surgical resection followed by radiotherapy with concomitant and adjuvant chemotherapy. However, over the last decade much has changed regarding the role of chemotherapy in gliomas. This is the result of several trials that reported survival benefit with a combination of agents and the incorporation of molecular genetic markers as predictors of response to chemotherapy. Herewith we discuss the chemotherapy regimens currently used for glioma treatment as well as the associated toxicities and try to provide an insight into future advancements.

Keywords

Gliomas Brain Chemotherapy 

References

  1. 1.
    Kyritsis AP, Zhang B, Zhang W, Xiao M, Takeshima H, Bondy ML, et al. Mutations of the p16 gene in gliomas. Oncogene. 1996;12:63–7.PubMedGoogle Scholar
  2. 2.
    Levin VA, Giglio P, Kyritsis AP. The management of gliomas, medulloblastomas, CNS germ cell tumors and carcinomas metastatic to the CNS. In: Cavalli F, Hansen H, Kaye S, editors. Textbook of medical oncology. 3rd ed. New York: Taylor & Francis; 2004. p. 313–33.Google Scholar
  3. 3.
    Alexiou GA, Moschovi M, Stefanaki K, Panagopoulos D, Tsotra M, Siozos G, et al. Supratentorial ependymomas in children: analysis of nine cases. J Pediatr Neurosci. 2013;8:15–8.CrossRefGoogle Scholar
  4. 4.
    Levin VA. Personalized medicine in neuro-oncology. CNS Oncol. 2016;5:55–8.CrossRefGoogle Scholar
  5. 5.
    Alexiou GA, Goussia A, Kyritsis AP, Tsiouris S, Ntoulia A, Malamou-Mitsi V, et al. Influence of glioma’s multidrug resistance phenotype on (99m) Tc-tetrofosmin uptake. Mol Imaging Biol. 2011;13:348–51.CrossRefGoogle Scholar
  6. 6.
    Alexiou GA, Kyritsis AP. Immunotherapeutic strategies for glioma treatment. Neuroimmunol Neuroinflammation. 2016;3:51–6.CrossRefGoogle Scholar
  7. 7.
    Assimakopoulos A, Polyzoidis K, Kyritsis AP. Stem cells in gliomas. J Stem Cells Res Rev Rep. 2014;1:1009.Google Scholar
  8. 8.
    Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014;343:189–93.CrossRefGoogle Scholar
  9. 9.
    Meyers CA, Weitzner MA, Valentine AD, Levin VA. Methylphenidate therapy improves cognition, mood, and function of brain tumor patients. J Clin Oncol. 1998;16:2522–7.CrossRefGoogle Scholar
  10. 10.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.CrossRefGoogle Scholar
  11. 11.
    Nitta M, Muragaki Y, Maruyama T, Ikuta S, Komori T, Maebayashi K, et al. Proposed therapeutic strategy for adult low-grade glioma based on aggressive tumor resection. Neurosurg Focus. 2015;38:E7.CrossRefGoogle Scholar
  12. 12.
    Karim AB, Maat B, Hatlevoll R, Menten J, Rutten EH, Thomas DG, et al. A randomized trial on dose-response in radiation therapy of low-grade cerebral glioma: European Organization for Research and Treatment of Cancer (EORTC) study 22844. Int J Radiat Oncol Biol Phys. 1996;36:549–56.CrossRefGoogle Scholar
  13. 13.
    Shaw E, Arusell R, Scheithauer B, O’Fallon J, O’Neill B, Dinapoli R, et al. Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial low-grade glioma: initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group study. J Clin Oncol. 2002;20:2267–76.CrossRefGoogle Scholar
  14. 14.
    Buckner JC, Pugh SL, Shaw EG, Gilbert MR, Barger G, Coons S, et al. Phase III study of radiation therapy (RT) with or without procarbazine, CCNU, and vincristine (PCV) in low-grade glioma: RTOG 9802 with Alliance, ECOG, and SWOG. Paper presented at American Society of Clinical Oncology (ASCO) Annual Meeting; June 2, 2014. Abstract number 2000.Google Scholar
  15. 15.
    Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis GESMO. Guidelines Working Group. High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25:93–101.CrossRefGoogle Scholar
  16. 16.
    Wick W, Hartmann C, Engel C, Stoffels M, Felsberg J, Stockhammer F, et al. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol. 2009;27:5874–80.CrossRefGoogle Scholar
  17. 17.
    Alexiou GA, Goussia A, Voulgaris S, Fotopoulos AD, Fotakopoulos G, Ntoulia A, et al. Prognostic significance of MRP5 immunohistochemical expression in glioblastoma. Cancer Chemother Pharmacol. 2012;69:1387–91.CrossRefGoogle Scholar
  18. 18.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7:392–401.CrossRefGoogle Scholar
  19. 19.
    Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-Oncology. 2003;5:79–88.CrossRefGoogle Scholar
  20. 20.
    Shenouda G, Souhami L, Freeman CR, Hazel J, Lehnert S, Joseph L. Accelerated fractionation for high-grade cerebral astrocytomas. Preliminary treatment results. Cancer. 1991;67:2247–52.CrossRefGoogle Scholar
  21. 21.
    Gilbert MR, Wang M, Aldape KD, Stupp R, Hegi ME, Jaeckle KA, et al. Dose dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol. 2013;31:4085–91.CrossRefGoogle Scholar
  22. 22.
    Roldan Urgoiti GB, Singh AD, Easaw JC. Extended adjuvant temozolomide for treatment of newly diagnosed glioblastoma multiforme. J Neuro-Oncol. 2012;108:173–7.CrossRefGoogle Scholar
  23. 23.
    Chinot OL, Wick W, Mason W, Stupp R, Hegi ME, Jaeckle KA, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370:709–22.CrossRefGoogle Scholar
  24. 24.
    Sandmann T, Bourgon R, Garcia J, Li C, Cloughesy T, Chinot OL, et al. Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first-line radiotherapy and temozolomide: retrospective analysis of the AVAglio trial. J Clin Oncol. 2015;33:2735–44.CrossRefGoogle Scholar
  25. 25.
    Chinot OL, Nishikawa R, Mason W, Henriksson R, Saran F, Cloughesy T, et al. Upfront bevacizumab may extend survival for glioblastoma patients who do not receive second-line therapy: an exploratory analysis of AVAglio. Neuro-Oncology. 2016;18(9):1313–8.CrossRefGoogle Scholar
  26. 26.
    Herrlinger U, Schäfer N, Steinbach JP, Weyerbrock A, Hau P, Goldbrunner R, et al. Bevacizumab plus irinotecan versus temozolomide in newly diagnosed O6-methylguanine-DNA methyltransferase nonmethylated glioblastoma: the randomized GLARIUS trial. J Clin Oncol. 2016;34:1611–9.CrossRefGoogle Scholar
  27. 27.
    Happold C, Gorlia T, Chinot O, Gilbert MR, Nabors LB, Wick W, et al. Does valproic acid or levetiracetam improve survival in glioblastoma? A pooled analysis of prospective clinical trials in newly diagnosed glioblastoma. J Clin Oncol. 2016;34:731–9.CrossRefGoogle Scholar
  28. 28.
    Cabrera AR, Kirkpatrick JP, Fiveash JB, Shih HA, Koay EJ, Lutz S, et al. Radiation therapy for glioblastoma: executive summary of an American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline. Pract Radiat Oncol. 2016;6:217–25.CrossRefGoogle Scholar
  29. 29.
    van den Bent MJ, Brandes AA, Taphoorn MJ, Kros JM, Kouwenhoven MC, Delattre JY, et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC Brain Tumor Group study 26951. J Clin Oncol. 2013;31:344–50.CrossRefGoogle Scholar
  30. 30.
    Cairncross G, Wang M, Shaw E, Jenkins R, Brachman D, Buckner J, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol. 2013;31:337–43.CrossRefGoogle Scholar
  31. 31.
    Cairncross JG, Wang M, Jenkins RB, Shaw EG, Giannini C, Brachman DG, et al. Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol. 2014;32:783–90.CrossRefGoogle Scholar
  32. 32.
    Glass J, Hochberg FH, Gruber ML, Louis DN, Smith D, Rattner B. The treatment of oligodendrogliomas and mixed oligodendroglioma-astrocytomas with PCV chemotherapy. J Neurosurg. 1992;76:741–5.CrossRefGoogle Scholar
  33. 33.
    Yung WK, Prados MD, Yaya-Tur R, Rosenfeld SS, Brada M, Friedman HS, et al. Multicenter phase II trial of temozolomide in patients with anaplastic astrocytoma or anaplastic oligoastrocytoma at first relapse. Temodal Brain Tumor Group J Clin Oncol. 1999;17:2762–71.PubMedGoogle Scholar
  34. 34.
    Levin VA, Edwards MS, Wright DC, Seager ML, Schimberg TP, Townsend JJ, Wilson CB. Modified procarbazine, CCNU and vincristine (PCV-3) combination chemotherapy in the treatment of malignant brain tumors. Cancer Treat Rep. 1980;64:237–44.PubMedGoogle Scholar
  35. 35.
    Khasraw M, Bell D, Wheeler H. Long-term use of temozolomide: could you use temozolomide safely for life in gliomas? J Clin Neurosci. 2009;16:854–5.CrossRefGoogle Scholar
  36. 36.
    Panet-Raymond V, Souhami L, Roberge D, Kavan P, Shakibnia L, Muanza T, et al. Accelerated hypofractionated intensity-modulated radiotherapy with concurrent and adjuvant temozolomide for patients with glioblastoma multiforme: a safety and efficacy analysis. Int J Radiat Oncol Biol Phys. 2009;73:473–8.CrossRefGoogle Scholar
  37. 37.
    Riga M, Psarommatis I, Korres S, Varvutsi M, Giotakis I, Apostolopoulos N, Ferekidis E. Neurotoxicity of vincristine on the medial olivocochlear bundle. Int J Pediatr Otorhinolaryngol. 2007;71:63–9.CrossRefGoogle Scholar
  38. 38.
    Hurwitz RL, Mahoney DH Jr, Armstrong DL, Browder TM. Reversible encephalopathy and seizures as a result of conventional vincristine administration. Med Pediatr Oncol. 1988;16:216–9.CrossRefGoogle Scholar
  39. 39.
    Toker E, Yenice O, Ogut MS. Isolated abducens nerve palsy induced by vincristine therapy. J AAPOS. 2004;8:69–71.CrossRefGoogle Scholar
  40. 40.
    Piribauer M, Fazeny-Dörner B, Rössler K, Ungersböck K, Czech T, Killer M, et al. Feasibility and toxicity of CCNU therapy in elderly patients with glioblastoma multiforme. Anti-Cancer Drugs. 2003;14:137–43.CrossRefGoogle Scholar
  41. 41.
    Zhu X, Wu S, Dahut WL, Parikh CR. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis. 2007;49:186–93.CrossRefGoogle Scholar
  42. 42.
    Armstrong TS, Wen PY, Gilbert MR, Schiff D. Management of treatment-associated toxicites of anti-angiogenic therapy in patients with brain tumors. Neuro-Oncol. 2012;14:1203–14.CrossRefGoogle Scholar
  43. 43.
    Hapani S, Sher A, Chu D, Wu S. Increased risk of serious hemorrhage with bevacizumab in cancer patients: a meta-analysis. Oncology. 2010;79:27–38.CrossRefGoogle Scholar
  44. 44.
    Wellstein A. ALK receptor activation, ligands and therapeutic targeting in glioblastoma and in other cancers. Front Oncol. 2012;2:192.CrossRefGoogle Scholar
  45. 45.
    Robinson GW, Orr BA, Gajjar A. Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer. 2014;14:258.CrossRefGoogle Scholar
  46. 46.
    Alexiou GA, Tsamis KI, Vartholomatos E, Peponi E, Tzima E, Tasiou I, et al. Combination treatment of TRAIL, DFMO and radiation for malignant glioma cells. J Neuro-Oncol. 2015;123:217–24.CrossRefGoogle Scholar
  47. 47.
    Alexiou GA, Tsamis KI, Kyritsis AP. Targeting tumor necrosis factor-related apoptosis-inducing ligand (TRAIL): a promising therapeutic strategy in gliomas. Semin Pediatr Neurol. 2015;22:35–9.CrossRefGoogle Scholar
  48. 48.
    Campbell RM, Anderson BD, Brooks NA, Brooks HB, Chan EM, De Dios A, et al. Characterization of LY2228820 dimesylate, a potent and selective inhibitor of p38 MAPK with antitumor activity. Mol Cancer Ther. 2014;13:364–74.CrossRefGoogle Scholar
  49. 49.
    Hasselbalch B, Lassen U, Hansen S, Holmberg M, Sørensen M, Kosteljanetz M, et al. Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: a phase II trial. Neuro-Oncology. 2010;12:508–16.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Phillips AC, Boghaert ER, Vaidya KS, Mitten MJ, Norvell S, Falls HD, et al. ABT-414, an antibody-drug conjugate targeting a tumor-selective EGFR epitope. Mol Cancer Ther. 2016;15:661–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeurosurgeryUniversity Hospital of IoanninaIoanninaGreece
  2. 2.Department of Neurology and Neurosurgical InstituteUniversity Hospital of IoanninaIoanninaGreece

Personalised recommendations