An Investigation of Stress Concentration, Crack Nucleation, and Fatigue Life of Thin Low Porosity Metallic Auxetic Structures

  • L. Francesconi
  • M. Taylor
  • A. Baldi
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


This paper investigates, both experimentally and numerically, the mechanical response of low porosity thin metal samples under fatigue loads. The specimens, characterized by an overall porosity of 10%, were designed using selected patterns of voids and then fatigue tested to estimate the influence of both auxetic and non-auxetic tessellations on the mechanical performance. During the loading, detailed deformation maps were recorded by means of bi-dimensional Digital Image Correlation (DIC). The experimental data collected during this study indicate that the use of auxetic patterns could be a strategy to enhance the fatigue life of porous structures. In addition, DIC analysis is shown to be an excellent non-contact experimental method to assess the cumulative damage of the samples and to predict the crack starting points well before they are detectable by the unaided eye.


Auxetic structures Fatigue testing Perforated structures Digital image correlation Low-porosity structures 


  1. 1.
    Ashby, M.F., Jones, D.R.H.: Engineering Materials 1: An Introduction to Their Properties and Applications. Butterworth Heinemann, Oxford (1996)Google Scholar
  2. 2.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)zbMATHGoogle Scholar
  3. 3.
    Lakes, R.: Advances in negative Poisson’s ratio materials. Adv. Mater. 5, 293–296 (1993)CrossRefGoogle Scholar
  4. 4.
    Greaves, G.N., Greer, A.L., Lakes, R.S., Rouxel, T.: Poisson's ratio and modern materials. Nat. Mater. 10, 823–837 (2011)CrossRefGoogle Scholar
  5. 5.
    Prawoto, Y.: Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 58, 140–153 (2012)CrossRefGoogle Scholar
  6. 6.
    Grima, J., Gatt, R.: Perforated sheets exhibiting negative poisson’s ratios. Adv. Eng. Mater. 12, 460–464 (2010)CrossRefGoogle Scholar
  7. 7.
    Evans, K.E., Alderson, A.: Auxetic materials: functional materials and structures from lateral thinking. Adv. Mater. 12(9), 617–628 (2000)CrossRefGoogle Scholar
  8. 8.
    Sanami, M., Ravirala, N., Alderson, K., Alderson, A.: Auxetic materials for sports applications. Procedia Eng. 72, 453–458 (2014)CrossRefGoogle Scholar
  9. 9.
    Herakovich, C.T.: Composite laminates with negative through-the-thickness Poisson’s ratios. J. Compos. Mater. 18(5), 447–455 (1984)CrossRefGoogle Scholar
  10. 10.
    Smith, C.W., Grima, J.N., Evans, K.E.: A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta Mater. 48(17), 4349–4356 (2000)CrossRefGoogle Scholar
  11. 11.
    Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P., Aizenberg, J.: Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science. 315, 487–490 (2007)CrossRefGoogle Scholar
  12. 12.
    Bhullar, S.K., Ko, J., Ahmed, F., Jun, M.B.G.: Design and fabrication of stent with negative Poisson’s ratio. Int. J. Mech. Aerosp. Ind. Mechatronic Manuf. Eng. 8(2), 448–454 (2014)Google Scholar
  13. 13.
    Hou, X., Hu, H., Silberschmidt, V.: A novel concept to develop composite structures with isotropic negative Poisson’s ratio: effects of random inclusions. Compos. Sci. Technol. 72, 1848–1854 (2012)CrossRefGoogle Scholar
  14. 14.
    Bertoldi, K., Reis, P.M., Willshaw, S., Mullin, T.: Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22, 361–366 (2010)CrossRefGoogle Scholar
  15. 15.
    Chen, Y., Li, T., Scarpa, F., Wang, L.: Lattice metamaterials with mechanically tunable Poisson’s ratio for vibration control. Phys. Rev. Appl. 7(2), (2017)Google Scholar
  16. 16.
    Larsen, U.D., Sigmund, O., Bouwstra, S.: Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J. Microelectromech. Syst. 6, 99–106 (1997)CrossRefGoogle Scholar
  17. 17.
    Jiang, J.W., Kim, S.Y., Park, H.S.: Auxetic nanomaterials: recent progress and future development. Appl. Phys. Rev. 3(4), 2016CrossRefGoogle Scholar
  18. 18.
    Taylor, M., Francesconi, L., Gerendas, M., Shanian, A., Carson, C., Bertoldi, K.: Low porosity metallic periodic structures with negative Poisson’s ratio. Adv. Mater. 26(15), 2365–2370 (2014)CrossRefGoogle Scholar
  19. 19.
    Carta, G., Brun, M., Baldi, A.: Design of a porous material with isotropic negative Poisson’s ratio. Mech. Mater. 97, 67–75 (2016)CrossRefGoogle Scholar
  20. 20.
    Mitschke, H., Schwerdtfeger, J., Schury, F., Stingl, M., Körner, C., Singer, R.F., Robins, V., Mecke, K., Schröder-Turk, G.E.: Finding auxetic frameworks in periodic tessellations. Adv. Mater. 23, 2669–2674 (2011)CrossRefGoogle Scholar
  21. 21.
    Francesconi, L., Taylor, M., Bertoldi, K., Baldi, A.: Static and modal analysis of low porosity thin metallic auxetic structures using speckle interferometry and digital image correlation. Exp. Mech. 58(2), 283–300 (2018)CrossRefGoogle Scholar
  22. 22.
    Javid, F., Liu, J., Rafsanjani, A., Schaenzer, M., Pham, M.Q., Backman, D., Yandt, S., Innes, M.C., Booth-Morrison, C., Gerendas, M., Scarinci, T., Shanian, A., Bertoldi, K.: On the design of porous structures with enhanced fatigue life. Extreme Mech. Lett. 16, 13–17 (2017)CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2019

Authors and Affiliations

  • L. Francesconi
    • 1
  • M. Taylor
    • 1
  • A. Baldi
    • 2
  1. 1.Department of Mechanical EngineeringSanta Clara UniversitySanta ClaraUSA
  2. 2.Dipartimento di Ingegneria MeccanicaChimica e dei Materiali, Università degli Studi di CagliariCagliariItaly

Personalised recommendations