Advertisement

The Sulfur Cycle as the Gear of the “Clock of Life”: The Point of Convergence Between Geological and Genomic Data in the Cuatro Cienegas Basin

  • Valerie De Anda
  • Icoquih Zapata-Peñasco
  • Luis E. Eguiarte
  • Valeria Souza
Chapter
Part of the Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis book series (CUCIBA)

Abstract

Due to its chemical properties and several stable redox states, microbial transformations of sulfur compounds have been affecting the geochemical features of the Earth’s biosphere since the Archaean. However, despite the great importance of sulfur cycling, reconciling the geologic record with genomic data has been challenging. Here we first review current state-of-the-art evidence about the emergence of life on Earth in sulfur-rich environments, providing a conceptual framework that closely connects these two largely separated disciplines. Then, we summarize the current astonishing diversity of prokaryotes responsible for driving the sulfur cycle, suggesting that, due to their ancient origin, sulfur-associated taxa perhaps hold the greatest diversity of any group of microorganisms to metabolize a single element on Earth. Finally, because the guilds of sulfur metabolizing microbes co-occur at millimeter scales within microbial mats, we use the taxonomic and metabolic information derived from these primordial communities as ecological models to highlight sulfur as the guiding axis of these complex intersections, recapitulating a gear of the clock of life.

Keywords

Bacteria Diversity Microbial mat Prokaryotes Sulfur metabolism 

Notes

Acknowledgments

This work constitutes a partial fulfillment requirement for the Ph.D. degree of Valerie De Anda at the graduate program Doctorado en Ciencias Biomédicas of the Universidad Nacional Autónoma de México who received fellowship 356 832 from Consejo Nacional de Ciencia y Tecnología (CONACYT). The authors acknowledge the founding of WWF-Alianza Carlos Slim, as well as support by a Sep Conacyt Project to VS and LEE 1101OL34. (aqui hablar sobre que es proyecto del azufre). The manuscript was written during a sabbatical leave of LEE and VSS in the University of Minnesota in Peter Tiffin and Michael Travisano laboratories, with support of the program PASPA- DGAPA, UNAM.

We would like to acknowledge Peter Stadler whose valuable comments greatly improve the manuscript.

References

  1. Alcaraz LD, Olmedo G, Bonilla G et al (2008) The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment. Proc Natl Acad Sci U S A 105:5803–5808. https://doi.org/10.1073/pnas.0800981105 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allwood AC, Walter MR, Kamber BS et al (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–718. https://doi.org/10.1038/nature04764 CrossRefPubMedGoogle Scholar
  3. Aoyama S, Ueno Y (2018) Multiple sulfur isotope constraints on microbial sulfate reduction below an Archean seafloor hydrothermal system. Geobiology 16:107–120. https://doi.org/10.1111/gbi.12268 CrossRefPubMedGoogle Scholar
  4. Bolhuis H, Cretoiu MS, Stal LJ (2014) Molecular ecology of microbial mats. FEMS Microbiol Ecol 90:335–350. https://doi.org/10.1111/1574-6941.12408 CrossRefPubMedGoogle Scholar
  5. Breitbart M, Hoare A, Nitti A et al (2009) Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. Environ Microbiol 11:16–34CrossRefGoogle Scholar
  6. Canfield D, Kristensen E, Bo T (2005) The sulfur cycle, 1st edn. Aquat. Geomicrobiol. (Advances Mar. Biol) Elsevier Academic PressGoogle Scholar
  7. Canfield D, Stewart F, Thamdrup B et al (2010) A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 330:1375–1378. https://doi.org/10.1126/science.1196889 CrossRefPubMedGoogle Scholar
  8. Caspi R, Altman T, Dreher K et al (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40:D742–D753. https://doi.org/10.1093/nar/gkr1014 CrossRefPubMedGoogle Scholar
  9. Dai J (2017) New insights into a hot environment for early life. Environ Microbiol Rep 9:1–26CrossRefGoogle Scholar
  10. Dalton R (2004) Fresh study questions oldest traces of life in Akilia rock. Nature 429:688CrossRefGoogle Scholar
  11. Dar SA, Yao L, van Dongen U et al (2007) Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Appl Environ Microbiol 73:594–604. https://doi.org/10.1128/AEM.01875-06 CrossRefPubMedGoogle Scholar
  12. De Anda V, Zapata-Peñasco I, Poot-Hernandez AC et al (2017) MEBS, a software platform to evaluate large (meta)genomic collections according to their metabolic machinery: unraveling the sulfur cycle. Gigascience 6:1–17. https://doi.org/10.1093/gigascience/gix096 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Delmont TO, Malandain C, Prestat E et al (2011) Metagenomic mining for microbiologists. ISME J 5:1837–1843. https://doi.org/10.1038/ismej.2011.61 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Desnues C, Rodriguez-Brito B, Rayhawk S et al (2008) Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 452:340–343. https://doi.org/10.1038/nature06735 CrossRefPubMedGoogle Scholar
  15. Dillon JG, Fishbain S, Miller SR et al (2007) High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms. Appl Environ Microbiol 73:5218–5226. https://doi.org/10.1128/AEM.00357-07 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Djokic T, VanKranendonk MJ, Campbel KA et al (2017) Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat Commun 8:1–8. https://doi.org/10.1038/ncomms15263 CrossRefGoogle Scholar
  17. Dodd MS, Papineau D, Grenne T et al (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543:60–64. https://doi.org/10.1038/nature21377 CrossRefPubMedGoogle Scholar
  18. Friedrich CG, Rother D, Bardischewsky F et al (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882. https://doi.org/10.1128/AEM.67.7.2873-2882.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Frigaard N-U, Bryant DA (2004) Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182:265–276. https://doi.org/10.1007/s00203-004-0718-9 CrossRefPubMedGoogle Scholar
  20. Frigaard N, Bryant DA (2008) Genomic and evolutionary perspectives on sulfur metabolism in green sulfur bacteria. In: Dahl C, Cornelius F (eds) Microbial sulfur metabolism. Springer, Berlin, Heidelberg, pp 60–76CrossRefGoogle Scholar
  21. Garcia AK, Schopf JW, Yokobori S et al (2017) Reconstructed ancestral enzymes suggest long-term cooling of Earth’s photic zone since the Archean. Proc Natl Acad Sci 114:4619–4624. https://doi.org/10.1073/pnas.1702729114 CrossRefPubMedGoogle Scholar
  22. Gaucher EA, Kratzer JT, Randall RN (2010) Deep phylogeny--how a tree can help characterize early life on earth. Cold Spring Harb Perspect Biol 2:1–16. https://doi.org/10.1101/cshperspect.a002238 CrossRefGoogle Scholar
  23. Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 33:999–1043. https://doi.org/10.1111/j.1574-6976.2009.00187.x CrossRefPubMedGoogle Scholar
  24. Goldford JE, Hartman H, Smith TF, Segrè D (2017) Remnants of an ancient metabolism without phosphate. Cell 168:1126–1134.e9. https://doi.org/10.1016/j.cell.2017.02.001 CrossRefPubMedGoogle Scholar
  25. Grassineau NV, Nisbet EG, Bickle MJ et al (2001) Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million-year-old rocks of the Belingwe Belt, Zimbabwe. Proc R Soc B Biol Sci 268:113–119. https://doi.org/10.1098/rspb.2000.1338 CrossRefGoogle Scholar
  26. Guerrero R, Piqueras M, Berlanga M (2002) Microbial mats and the search for minimal ecosystems. Int Microbiol 5(4):177–188. Epub 2002 Nov 7. Review. PubMed PMID: 12497183. https://link.springer.com/article/10.1007%2Fs10123-002-0094-8
  27. Harris JK, Caporaso JG, Walker JJ et al (2013) Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J 7:50–60. https://doi.org/10.1038/ismej.2012.79 CrossRefPubMedGoogle Scholar
  28. Herman EK, Kump LR (2005) Biogeochemistry of microbial mats under Precambrian environmental conditions: a modelling study. Geobiology 3:77–92CrossRefGoogle Scholar
  29. Hoshino T, Kuratomi T, Morono Y et al (2016) Ecophysiology of Zetaproteobacteria associated with shallow hydrothermal iron-oxyhydroxide deposits in Nagahama Bay of Satsuma Iwo-Jima, Japan. Front Microbiol 6:1554. https://doi.org/10.3389/fmicb.2015.01554 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hubas C, Jesus B, Passarelli C, Jeanthon C (2011) Tools providing new insight into coastal anoxygenic purple bacterial mats: review and perspectives. Res Microbiol 162:858–868CrossRefGoogle Scholar
  31. Hug LA, Baker BJ, Anantharaman K et al (2016) A new view of the tree of life. Nat Microbiol 1:16048. https://doi.org/10.1038/nmicrobiol.2016.48 CrossRefPubMedGoogle Scholar
  32. Hügler M, Gärtner A, Imhoff JF (2010) Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiol Ecol 73:526–537. https://doi.org/10.1111/j.1574-6941.2010.00919.x CrossRefPubMedGoogle Scholar
  33. Jiménez DJ, Andreote FD, Chaves D et al (2012) Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes. PLoS One 7:e52069. https://doi.org/10.1371/journal.pone.0052069 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jungbluth SP, Glavina del Rio T, Tringe SG et al (2017) Genomic comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface systems. PeerJ 5:e3134. https://doi.org/10.7717/peerj.3134 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Khodadad CLM, Foster JS (2012) Metagenomic and metabolic profiling of nonlithifying and lithifying stromatolitic mats of Highborne Cay, The Bahamas. PLoS One 7:e38229. https://doi.org/10.1371/journal.pone.0038229 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654. https://doi.org/10.1016/j.tig.2005.09.006 CrossRefPubMedGoogle Scholar
  37. Lake JA, Skophammer RG, Herbold CW, Servin JA (2009) Genome beginnings: rooting the tree of life. Philos Trans R Soc Lond B Biol Sci 364:2177–2185. https://doi.org/10.1098/rstb.2009.0035 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lau MC, Kieft TL, Kuloyo O et al (2016) An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc Natl Acad Sci U S A 113:E7927–E7936CrossRefGoogle Scholar
  39. Loy A, Duller S, Baranyi C et al (2009) Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes. Environ Microbiol 11:289–299. https://doi.org/10.1111/j.1462-2920.2008.01760.x CrossRefPubMedPubMedCentralGoogle Scholar
  40. Martin WF, Thauer RK (2017) Energy in ancient metabolism. Cell 168:953–955. https://doi.org/10.1016/j.cell.2017.02.032 CrossRefPubMedGoogle Scholar
  41. Mason OU, Scott NM, Gonzalez A et al (2014) Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J 8:1464–1475. https://doi.org/10.1038/ismej.2013.254 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Meyer B, Kuever J (2007) Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5′-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes. Microbiology 153:3478–3498. https://doi.org/10.1099/mic.0.2007/008250-0 CrossRefPubMedGoogle Scholar
  43. Müller AL, Kjeldsen KU, Rattei T et al (2015) Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. ISME J 9:1152–1165. https://doi.org/10.1038/ismej.2014.208 CrossRefPubMedGoogle Scholar
  44. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454CrossRefGoogle Scholar
  45. Nakai R, Abe T, Takeyama H, Naganuma T (2011) Metagenomic analysis of 0.2-μm-passable microorganisms in deep-sea hydrothermal fluid. Mar Biotechnol 13:900–908. https://doi.org/10.1007/s10126-010-9351-6 CrossRefPubMedGoogle Scholar
  46. Nitti A, Daniels CA, Siefert J et al (2012) Spatially resolved genomic, stable isotopic, and lipid analyses of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. Astrobiology 12:685–698. https://doi.org/10.1089/ast.2011.0812 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Noffke N, Christian D, Wacey D, Hazen RM (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old dresser formation, Pilbara, Western Australia. Astrobiology 13:1103–1124. https://doi.org/10.1089/ast.2013.1030 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Nutman AP, Bennett VC, Friend CRL et al (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538. https://doi.org/10.1038/nature19355 CrossRefPubMedGoogle Scholar
  49. Olson KR, Straub KD, Straub KD (2016) The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology 31:60–72. https://doi.org/10.1152/physiol.00024.2015 CrossRefPubMedGoogle Scholar
  50. Ozuolmez D, Na H, Lever M et al (2015) Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence? Front Microbiol 6:492. https://doi.org/10.3389/fmicb.2015.00492 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Peimbert M, Alcaraz LD, Bonilla-Rosso G et al (2012) Comparative metagenomics of two microbial mats at cuatro ciénegas basin I: ancient lessons on how to cope with an environment under severe nutrient stress. Astrobiology 12:648–658. https://doi.org/10.1089/ast.2011.0694 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pereira IA, Ramos AR, Grein F et al (2011) A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol 2:69. https://doi.org/10.3389/fmicb.2011.00069 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Philippot P, Van Zuilen M, Lepot K et al (2007) Early archaean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537. https://doi.org/10.1126/science.1145861 CrossRefPubMedGoogle Scholar
  54. Pinckney JL, Paerl HW (1997) Anoxygenic photosynthesis and nitrogen fixation by a microbial mat community in a bahamian hypersaline lagoon. Appl Environ Microbiol 63:420–426PubMedPubMedCentralGoogle Scholar
  55. Plugge C, Zhang W, Scholten J, Stams A (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:81. https://doi.org/10.3389/fmicb.2011.00081 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Prieto-Barajas CM, Valencia-Cantero E, Santoyo G (2017) Microbial mat ecosystems: structure types, functional diversity, and biotechnological application. Electron J Biotechnol 31:48–56. https://doi.org/10.1016/j.ejbt.2017.11.001 CrossRefGoogle Scholar
  57. Robertson LA, Kuenen JG (2006) The colorless sulfur bacteria. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes: volume 2: ecophysiology and biochemistry. Springer, New York, NY, pp 985–1011Google Scholar
  58. Schopf JW (1993) Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646. https://doi.org/10.1126/science.260.5108.640 CrossRefPubMedGoogle Scholar
  59. Schopf JW, Kitajima K, Spicuzza MJ et al (2018) SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proc Natl Acad Sci 115:53–58. https://doi.org/10.1073/pnas.1718063115 CrossRefPubMedGoogle Scholar
  60. Semenov SN, Kraft LJ, Ainla A et al (2016) Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature 537:656–660. https://doi.org/10.1038/nature19776 CrossRefPubMedGoogle Scholar
  61. Shen Y, Buick R, Canfield D (2001) Isotopic evidence for microbial sulphate reduction in the early Archaea era. Nature 410:77–81CrossRefGoogle Scholar
  62. Shen Y, Farquhar J, Masterson A et al (2009) Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet Sci Lett 279:383–391. https://doi.org/10.1016/j.epsl.2009.01.018 CrossRefGoogle Scholar
  63. Staley JT (2002) The metabolism of Earth’s first organisms. In: American Astronomical Society meeting abstracts, p 1221Google Scholar
  64. Tang K, Liu K, Jiao N et al (2013) Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system. PLoS One 8:e72958. https://doi.org/10.1371/journal.pone.0072958 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tashiro T, Ishida A, Hori M et al (2017) Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549:516–518. https://doi.org/10.1038/nature24019 CrossRefPubMedGoogle Scholar
  66. Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431:549–552. https://doi.org/10.1038/nature02920.1 CrossRefPubMedGoogle Scholar
  67. Todd JD, Curson ARJ, Kirkwood M et al (2011) DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ Microbiol 13:427–438. https://doi.org/10.1111/j.1462-2920.2010.02348.x CrossRefPubMedGoogle Scholar
  68. Trudinger PA (1992) Bacterial sulfate reduction: current status and possible origin. In: Schidlowski M et al (eds) Early organic evolution: implications for mineral and energy resources. Springer-Verlag, Berlin, Heidelberg, pp 367–377CrossRefGoogle Scholar
  69. Ueno Y, Ono S, Rumble D, Maruyama S (2008) Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean. Geochim Cosmochim Acta 72:5675–5691. https://doi.org/10.1016/j.gca.2008.08.026 CrossRefGoogle Scholar
  70. van Gemerden H (1993) Microbial mats: a joint venture. Mar Geol 113:3–25. https://doi.org/10.1016/0025-3227(93)90146-M CrossRefGoogle Scholar
  71. Van Kranendonk MJ, Philippot P, Lepot K et al (2008) Geological setting of Earth’s oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Res 167:93–124. https://doi.org/10.1016/j.precamres.2008.07.003 CrossRefGoogle Scholar
  72. Van Kranendonk MJ, Deamer DW, Djokic T (2017) Life springs. Sci Am 317:28–35. https://doi.org/10.1038/scientificamerican0817-28 CrossRefPubMedGoogle Scholar
  73. Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes, and products. Palaeogeogr Palaeoclimatol Palaeoecol 219:87–100. https://doi.org/10.1016/j.palaeo.2004.10.016 CrossRefGoogle Scholar
  74. Vladár P, Rusznyák A, Márialigeti K, Borsodi AK (2008) Diversity of sulfate-reducing bacteria inhabiting the rhizosphere of Phragmites australis in Lake Velence (Hungary) revealed by a combined cultivation-based and molecular approach. Microb Ecol 56:64–75. https://doi.org/10.1007/s00248-007-9324-0 CrossRefPubMedGoogle Scholar
  75. Wächtershäuser G (1990) The case for the chemoautotrophic origin of life in an iron-sulfur world. Orig Life Evol Biosph 20:173–176. https://doi.org/10.1007/BF01808279 CrossRefGoogle Scholar
  76. Wächtershäuser G (2008) Iron-sulfur world. In: Begley T (ed) Wiley encyclopedia of chemical biology. American Cancer Society. Wiley, Chichester, pp 1–8Google Scholar
  77. Wagner M, Roger AJ, Flax JL et al (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982PubMedPubMedCentralGoogle Scholar
  78. Walter MR, Buick R, Dunlop JSR (1980) Stromatolites 3,400-3,500 Myr old from the North Pole area, Western Australia. Nature 284:443–445CrossRefGoogle Scholar
  79. Warden JG, Casaburi G, Omelon CR et al (2016) Characterization of microbial mat microbiomes in the modern thrombolite ecosystem of Lake Clifton, Western Australia using shotgun metagenomics. Front Microbiol 11:1–14Google Scholar
  80. Watanabe T, Kojima H, Takano Y, Fukui M (2013) Diversity of sulfur-cycle prokaryotes in freshwater lake sediments investigated using aprA as the functional marker gene. Syst Appl Microbiol 36:436–443CrossRefGoogle Scholar
  81. Westall F, Vries ST, Nijman W et al (2006) The 3.466 Ga “Kitty’s Gap Cheil,” an early Archean microbial ecosystem. GSA Spec Pap 405:105–131Google Scholar
  82. Wilbanks EG, Jaekel U, Salman V et al (2014) Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh. Environ Microbiol 16:3398–3415. https://doi.org/10.1111/1462-2920.12388 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhelezinskaia I, Kaufman AJ, Farquhar J, Cliff J (2014) Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction. Science 346:742–744. https://doi.org/10.1126/science.1256211 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Valerie De Anda
    • 1
  • Icoquih Zapata-Peñasco
    • 2
  • Luis E. Eguiarte
    • 1
  • Valeria Souza
    • 1
  1. 1.Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCoyoacanMexico
  2. 2.Instituto Mexicano del PetróleoMexico CityMexico

Personalised recommendations