Advertisement

How Do Agricultural Practices Modify Soil Nutrient Dynamics in CCB?

  • Yunuen Tapia-Torres
  • Pamela Chávez Ortiz
  • Natali Hernández-Becerra
  • Alberto Morón Cruz
  • Ofelia Beltrán
  • Felipe García-Oliva
Chapter
Part of the Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis book series (CUCIBA)

Abstract

Increasing crop production to satisfy food demand of the growing population is one of the greatest challenges that we currently face. This has increased the rate at which natural ecosystems are transformed into agricultural systems. These land use changes, which are accompanied by agricultural practices such as the use of agrochemicals (pesticides and fertilizers), tillage, and irrigation, can lead to ecosystem degradation. Nationally, the state of Coahuila ranks seventh in production of alfalfa (1, 742,149 Mg), which is primarily used to feed the livestock in the country’s largest milk-producing area, Comarca Lagunera in Torreón. The alfalfa produced at Cuatro Cienegas Basin (CCB) is transported to this region, therefore, effectively exporting the wetland water and threatening CCBs’ sustainability.

For more than 10 years, our research group has been studying soil nutrient dynamics and soil bacterial biodiversity in CCB. Analysis of key soil attributes has allowed us to evaluate the drastic changes caused by land use change (native grassland into agricultural land) and to identify the soil processes that are vulnerable to management and, therefore, the factors that modify nutrient availability for the biota and how these factors could increase soil degradation. Our findings can serve as the basis for implementation of land remediation practices in CCB, and the set of soil attributes and variables used in our studies may also be extrapolated to different ecosystems for the same purpose.

Keywords

Alfalfa Herbicides Nitrification Soil bacteria community Soil nutrient dynamics 

References

  1. Beltrán O (2017) Dinámica de nutrientes del suelo bajo cultivo intensivo de alfalfa en la región ganadera del valle de Cuatro Ciénegas, Coahuila. Master thesis, Ciencias Biológicas, UMSNHGoogle Scholar
  2. Bentley R, Haslam E (1990) The shikimate pathway—a metabolic tree with many branches. Crit Rev Biochem Mol Biol 25:307–384CrossRefGoogle Scholar
  3. Challenger A (1998) Utilización y conservación de los ecosistemas terrestres de México, Pasado, presente y Futuro. Comisión Nacional para el Conocimiento de los Ecosistemas y Uso De La Biodiversidad, México, D.FGoogle Scholar
  4. Chávez-Ortiz P (2017) Efecto del uso del glifosato en la dinámica de nutrientes y actividad microbiana de suelos agrícolas en el valle de Cuatro Ciénegas, Coahuila. Master thesis, Ciencias Biológicas, UNAMGoogle Scholar
  5. Damonte M, Sánchez RMT, dos Santos Afonso M (2007) Some aspects of the glyphosate adsorption on montmorillonite and its calcined form. Appl Clay Sci 36:86–94CrossRefGoogle Scholar
  6. DOF. Diario Oficial de la Federación (2008) Acuerdo por el que se dan a conocer los estudios técnicos del Acuífero 0528 Cuatrociénegas y se modifica los límites y plano de localización que respecto del mismo se dieron a conocer en el Acuerdo por el que se dan a conocer los límites de 188 acuíferos de los estados Unidos mexicano, los resultados de los estudios realizados para determinar su disponibilidad media anual de agua y sus planos de localización. Poder Ejecutivo. Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT). Primera Sección. JunioGoogle Scholar
  7. Duke SO, Powles SB (2008) Mini-review Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319–325CrossRefGoogle Scholar
  8. FAO (2013) FAO statistical year book. World food and agriculture. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  9. Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique global herbicide (American Chemical Society Monograph 189). American Chemical Society, Washington, DC, 653pGoogle Scholar
  10. Gianfreda L, Rao MA (2011) The influence of pesticides on soil enzymes. In: Shukla G, Varma A (eds) Soil enzymology. Springer, Berlin/Heidelberg, pp 293–312Google Scholar
  11. Hernández-Becerra N (2014) Dinámica de C, N y P y composición de la comunidad bacteriana del suelo de un gradiente de manejo agrícola en el Valle de Cuatro Ciénegas, Coahuila. Bachelor thesis, UNAMGoogle Scholar
  12. Hernández-Becerra N, Tapia-Torres Y, Beltrán-Paz O et al (2016) Agricultural land-use change in a Mexican oligotrophic desert depletes ecosystem stability. PeerJ 4:e2365CrossRefGoogle Scholar
  13. Iranzo M, Sain-Pardo I, Boluda R et al (2001) The use of microorganisms in environmental remediation. Ann Microbiol 51:135–143Google Scholar
  14. Morón-Cruz, JA (2014) Degradación de N-fosfonometil glicina (glifosato) por bacterias edáficas de Cuatro Ciénegas, Coahuila. Bachelor thesis, Instituto Tecnológico de MoreliaGoogle Scholar
  15. Perroni Y, García-Oliva F, Tapia-Torres Y et al (2014) Relationship between soil P fractions and microbial biomass in an oligotrophic grassland-desert scrub system. Ecol Res 29:463–472CrossRefGoogle Scholar
  16. Pipke R, Amrhein N (1988) Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Appl Environ Microbiol 54:1293–1296PubMedPubMedCentralGoogle Scholar
  17. Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551e563Google Scholar
  18. Ratcliff AW, Busse MD, Shestak CJ (2006) Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl Soil Ecol 34:114–124CrossRefGoogle Scholar
  19. Secretaría de Desarrollo Rural (2012) Programa Estatal de Desarrollo Rural 2011–2017. Coahuila de Zaragoza Gobierno del Coahuila, Secretaría de Desarrollo Rural Saltillo, CoahuilaGoogle Scholar
  20. Souza V, Espinosa-Asuar L, Escalante AE, Eguiarte LE, Farmer J, Forney L, Lloret L, Rodriguez-Martinez JM, Soberon X, Dirzo R, Elser JJ (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Nat Acad Sci 103(17):6565–6570CrossRefGoogle Scholar
  21. Sprankle P, Meggitt WF, Penner D (1975) Adsorption, mobility, and microbial degradation of glyphosate in the soil. Weed Sci 23:229–234Google Scholar
  22. Sviridov AV, Shushkova TV, Zelenkova NF et al (2012) Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. Appl Microbiol Biotechnol 93:787–796CrossRefGoogle Scholar
  23. Sviridov AV, Shushkova TV, Ermakova IT et al (2015) Microbial degradation of glyphosate herbicides (Review). Appl Biochem Microbiol 51:188–195CrossRefGoogle Scholar
  24. Tapia-Torres Y, Rodríguez-Torres MD, Elser JJ et al (2016) How to live with phosphorus scarcity in soil and sediment: lessons from bacteria. Appl Environ Microbiol 82:4652–4662CrossRefGoogle Scholar
  25. Tapia-Torres Y, Olmedo-Álvarez G (2018) Life on phosphite: a Metagenomics tale. Trends Microbiol 26:170–172CrossRefGoogle Scholar
  26. Wardle DA, Parkinson D (1990) Influence of the herbicide glyphosate on soil microbial community structure. Plant Soil 122:29–37CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yunuen Tapia-Torres
    • 1
  • Pamela Chávez Ortiz
    • 2
  • Natali Hernández-Becerra
    • 1
  • Alberto Morón Cruz
    • 1
  • Ofelia Beltrán
    • 2
  • Felipe García-Oliva
    • 2
  1. 1.Escuela Nacional de Estudios Superiores Unidad MoreliaUniversidad Nacional Autónoma de MéxicoMoreliaMéxico
  2. 2.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMéxico

Personalised recommendations