Advertisement

Bacterial Siderophore-Mediated Iron Acquisition in Cuatro Cienegas Basin: A Complex Community Interplay Made Simpler in the Light of Evolutionary Genomics

  • H. Ramos-Aboites
  • A. Yáñez-Olvera
  • F. Barona-Gómez
Chapter
Part of the Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis book series (CUCIBA)

Abstract

Ferric iron (Fe3+) became abundant after the oxidation event that occurred during the Precambrian, but biologically limited due to its poor and uneven distribution in its soluble form, ferrous iron (Fe2+). In consequence, siderophores, i.e., specialized iron scavenger metabolites, evolved to allow bacteria to obtain this nutrient. Therefore, siderophores can mediate complex bacterial communities, emphasizing the ecological role of these specialized metabolites. In this chapter, we present what is known about hydroxamate siderophores and, in particular, about coelichelin and desferrioxamines that are produced by genera belonging to the phylum Actinobacteria. Given that this phylum is predominant in Cuatro Cienegas Basin (CCB), our interest is in the evolution and ecological roles of these specialized metabolites in this unique ecological niche. We review the biosynthetic and transport capabilities sustaining bacterial hydroxamate siderophore-mediated iron acquisition in Actinobacteria and provide an example to illustrate a proposed evolutionary conceptual frameworkuseful for molecular functional and ecological analyses. The example presented includes genomic analysis of novel actinobacteria that were isolated from CCB that leads to novel biological insights, informing us about the structure and function of the microbial community as mediated by hydroxamate siderophores.

Keywords

Desferrioxamines Coelichelin Siderophore biosynthesis Siderophore-binding proteins Actinobacteria Lentzea 

Notes

Acknowledgments

The work by our laboratory in the CCB was made possible, thanks to the support by Valeria Souza and Gabriela Olmedo and their teams and funding to FBG from Conacyt grants (Nos. 179290 & 285746). The authors would like to thank the many members of the Evolution of Metabolic Diversity Laboratory that took part in expeditions to CCB during 2012–2016 and subsequent experimental and bioinformatics work. We would like to specially thank Alejandra Castañeda, Pablo Cruz, Milan Janda, Cuauhtémoc Licona, Paulina Mejía, Sandra Pérez, Hugo Ramírez, José-Luis Steffani, Nelly Selem, Karina Gutiérrez, and Mariana Vallejo, without whom this work could not have been possible.

References

  1. Ahmed E, Holmström SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208CrossRefGoogle Scholar
  2. Arias AA, Lambert S, Martinet L et al (2015) Growth of desferrioxamine deficient Streptomyces mutants through xenosiderophore piracy of airborne fungal contaminations. FEMS Microbiol Ecol 91:fiv080CrossRefGoogle Scholar
  3. Barona-Gómez F, Wong U, Giannakopulos AE et al (2004) Identification of a Cluster of Genes that Directs Desferrioxamine Biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc 126:16282–16283CrossRefGoogle Scholar
  4. Barona-Gómez F, Lautru S, Francou FX, Leblond P, Pernodet JL, Challis GL et al (2006) Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877. Microbiology 152:3355–3366CrossRefGoogle Scholar
  5. Boiteau R, Mende D, Hawco N et al (2016) Siderophore-based adaptations to iron scarcity. PNAS 113:14237–14242CrossRefGoogle Scholar
  6. Boonlarppradab C (2007) Investigation of the potential anticancer and antifungal active secondary metabolites from marine natural products. Peer reviewed/Thesis/dissertation, UC San DiegoGoogle Scholar
  7. Bruns H, Crüsemann M, Letzel A et al (2018) Function-related replacement of bacterial siderophore pathways. ISME J 12:320–329CrossRefGoogle Scholar
  8. Bunet R, Brock A, Rexer HU et al (2006) Identification of genes involved in siderophore transport in Streptomyces coelicolor A3(2). FEMS Microbiol Lett 262:57–64CrossRefGoogle Scholar
  9. Caspi A, Hariri AR, Holmes A et al (2010) Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry 167:509–527CrossRefGoogle Scholar
  10. Challis G, Hopwood D (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. PNAS 100(Suppl 2):14555–14561CrossRefGoogle Scholar
  11. Cibrián-Jaramillo A, Barona-Gómez F (2016) Increasing metagenomic resolution of microbiome interactions through functional phylogenomics and bacterial sub-communities. Front Genet 10(7):4Google Scholar
  12. Codd R, Richardson-Sanchez T, Telfer TJ et al (2018) Advances in the chemical biology of Desferrioxamine B. ACS Chem Biol 13:11–25CrossRefGoogle Scholar
  13. Cornelis P, Andrews SC (2010) Iron uptake and homeostasis in microorganisms. Caister Academic Press, NorfolkGoogle Scholar
  14. Cruz-Morales P, Vijgenboom E, Iruegas-Bocardo F et al (2013) The genome sequence of Streptomyces lividans 66 reveals a novel tRNA-dependent peptide biosynthetic system within a metal-related genomic island. Genome Biol Evol 5:1165–1175CrossRefGoogle Scholar
  15. Cruz-Morales P, Ramos-Aboites HE, Licona-Cassani C et al (2017) Actinobacteria phylogenomics, selective isolation from an iron oligotrophic environment and siderophore functional characterization, unveil new desferrioxamine traits. FEMS Microbiol Ecol 93(9):fix086. https://doi.org/10.1093/femsec/fix086 CrossRefPubMedCentralGoogle Scholar
  16. D’Onofrio A, Crawford JM, Stewart EJ et al (2010) Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 17:254–264CrossRefGoogle Scholar
  17. Des Marais DL, Rausher MD (2008) Evidence for escape from adaptive conflict. Nature 454:762–765CrossRefGoogle Scholar
  18. Essen SA, Johnsson A, Bylund D et al (2007) Siderophore production by Pseudomonas stutzeri under aerobic and anaerobic conditions. Appl Environ Microbiol 73:5857–5864CrossRefGoogle Scholar
  19. Fardeau S, Mullié C, Dassonville-Klimpt A et al (2011) Bacterial iron uptake: a promising solution against multidrug resistant bacteria. In: Méndez-Vilas A (ed) Science against microbial pathogens: Communicating current research and technological advances. Formatex, Badajoz, pp 695–705Google Scholar
  20. Galet J, Deveau A, Hotel L et al (2015) Pseudomonas fluorescens pirates both ferrioxamine and ferricoelichelin siderophores from Streptomyces ambofaciens. Appl Environ Microbiol 81:3132–3141CrossRefGoogle Scholar
  21. Goswami D, Pithwa S, Dhandhukia P et al (2014) Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA-producing bacterium isolated from saline desert. J Plant Interact 9:566–576CrossRefGoogle Scholar
  22. Gouda S, Kerry R, Das G et al (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140CrossRefGoogle Scholar
  23. Gubbens J, Wu C, Zhu H et al (2017) intertwined precursor supply during biosynthesis of the catecholate-hydroxamate siderophores qinichelins in Streptomyces sp. MBT76. ACS Chem Biol 12:2756–2766CrossRefGoogle Scholar
  24. Guo X, Liu N, Li X et al (2015) Red soils harbor diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Appl Environ Microbiol 81:3086–3103CrossRefGoogle Scholar
  25. Gutiérrez-García K, Neira-González A, Pérez-Gutiérrez R et al (2017) Phylogenomics of 2,4-Diacetylphloroglucinol-Producing Pseudomonas and Novel Antiglycation Endophytes from Piper auritum. J Nat Prod 80:1955–1963CrossRefGoogle Scholar
  26. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657CrossRefGoogle Scholar
  27. Holden VI, Bachman MA (2015) Diverging roles of bacterial siderophores during infection. Metallomics 7:986–995CrossRefGoogle Scholar
  28. Hussain A, Rather M, Dar M et al (2018) Streptomyces puniceus strain AS13., Production, characterization and evaluation of bioactive metabolites: A new face of dinactin as an antitumor antibiotic. Microbiol Res 207:196–202CrossRefGoogle Scholar
  29. Kadi N, Oves-Costales D, Barona-Gómez F et al (2007) A new family of ATP-dependent oligomerization – macrocyclization biocatalysts. Nat Chem Biol 3:652–656CrossRefGoogle Scholar
  30. Kaur C, Kaur I, Raichand R et al (2011) Description of a novel actinobacterium Kocuria assamensis sp. nov., isolated from a water sample collected from the river Brahmaputra, Assam, India. Antonie Van Leeuwenhoek 99:721–726CrossRefGoogle Scholar
  31. Lambert S, Traxler MF, Craig M et al (2014) Altered desferrioxamine-mediated iron utilization is a common trait of bald mutants of Streptomyces coelicolor. Metallomics 6(8):1390–1399CrossRefGoogle Scholar
  32. Lautru S, Deeth RJ, Bailey LM et al (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1:265–269CrossRefGoogle Scholar
  33. Li D, Zheng W, Zhao J et al (2018) Lentzea soli sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 68:1496–1501CrossRefGoogle Scholar
  34. Louden B, Haarmann D, Lynne AM (2011) Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ 12:51–53CrossRefGoogle Scholar
  35. Messenger A, Barclay R (1983) Bacteria, iron and pathogenicity. Biochem Educ 11:54–63CrossRefGoogle Scholar
  36. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451CrossRefGoogle Scholar
  37. Monciardinni P, Iorio M, Maffioli S et al (2014) Discovering new bioactive molecules from microbial sources. Microb Biotechnol 7:209–220CrossRefGoogle Scholar
  38. Patel P, Song L, Challis GL (2010) Distinct extracytoplasmic siderophore binding proteins recognize ferrioxamines and ferricoelichelin in Streptomyces coelicolor A3(2). Biochemistry 49:8033–8042CrossRefGoogle Scholar
  39. Pessotti R, Hansen BL, Traxler MF (2018) In search of model ecological systems for understanding specialized metabolism. mSystems 3(2):e00175–e00117CrossRefGoogle Scholar
  40. Roberts AA, Schultz AW, Kersten RD et al (2012) Iron acquisition in the marine actinomycete genus Salinispora is controlled by the desferrioxamine family of siderophores. FEMS Microbiol Lett 335:95–103CrossRefGoogle Scholar
  41. Ronan J, Kadi N, McMahon S et al (2018) Desferrioxamine biosynthesis: diverse hydroxamate assembly by substrate-tolerant acyl transferase DesC. Philos Trans R Soc Lond B Biol Sci 373:20170068CrossRefGoogle Scholar
  42. Saha M, Sarkar S, Sarkar B et al (2016) Microbial siderophores and their potential applications: a review. Environ Sci Poll Res 23:3984–3999CrossRefGoogle Scholar
  43. Schwyn B, Neilands B (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56CrossRefGoogle Scholar
  44. Senges C, Al-Dilaimi A, Marchbank D et al (2018) The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry. PNAS 115:2490–2495CrossRefGoogle Scholar
  45. Smits TH, Duffy B (2011) Genomics of iron acquisition in the plant pathogen Erwinia amylovora insights in the biosynthetic pathway of the siderophore desferrioxamine E. Arch Microbiol 193:693–699CrossRefGoogle Scholar
  46. Souza V, Eguiarte L, Siefert J et al (2008) Microbial endemism: does phosphorus limitation enhance speciation? Nat Rev Microbiol 6(2008):559–564CrossRefGoogle Scholar
  47. Stackebrandt E, Koch C, Gvozdiak O et al (1995) Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 45:682–692CrossRefGoogle Scholar
  48. Tierrafría VH, Ramos-Aboites HE, Gosset G et al (2011) Disruption of the siderophore-binding desE receptor gene in Streptomyces coelicolor A3(2) results in impaired growth in spite of multiple iron–siderophore transport systems. Microb Biotechnol 4:275–285CrossRefGoogle Scholar
  49. Traxler M, Kolter R (2015) Natural products in soil microbe interactions and evolution. Nat Prod Rep 32:956–970CrossRefGoogle Scholar
  50. Traxler MF, Seyedsayamdost MR, Clardy J et al (2012) Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol Microbiol 86:628–644CrossRefGoogle Scholar
  51. Traxler MF, Watrous JD, Alexandrov T et al (2013) Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio 20:4Google Scholar
  52. Tunca S, Barreiro C, Sola-Landa A et al (2007) Transcriptional regulation of the desferrioxamine gene cluster of Streptomyces coelicolor is mediated by binding of DmdR1 to an iron box in the promoter of the desA gene. FEBS J 274:1110–1122CrossRefGoogle Scholar
  53. Tunca S, Barreiro C, Coque JJ et al (2009) Two overlapping antiparallel genes encoding the iron regulator DmdR1 and the Adm proteins control siderophore and antibiotic biosynthesis in Streptomyces coelicolor A3(2). FEBS J 276: 4814–4827CrossRefGoogle Scholar
  54. Wang W, Qiu Z, Tan H et al (2014) Siderophore production by actinobacteria. Biometals 27:623–631CrossRefGoogle Scholar
  55. Yamanaka K, Oikawa H, Ogawa HO et al (2005) Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology 151(Pt 9):2899–2905CrossRefGoogle Scholar
  56. Yassin AF, Rainey FA, Brzezinka H et al (1995) Lentzea gen. nov., a new genus of the order Actinomycetales. Int J Syst Bacteriol 45:357–363CrossRefGoogle Scholar
  57. Zhao P, Xue Y, Gao W et al (2018) Actinobacteria-Derived peptide antibiotics since 2000. Peptides 103:48–59CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • H. Ramos-Aboites
    • 1
  • A. Yáñez-Olvera
    • 1
  • F. Barona-Gómez
    • 1
  1. 1.Unidad de Genómica Avanzada (Langebio)Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav)IrapuatoMéxico

Personalised recommendations