Enhanced Sampling for Biomolecular Simulations

  • Workalemahu Berhanu
  • Ping JiangEmail author
  • Ulrich H. E. Hansmann
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 8)


The use of computer simulations as “virtual microscopes” is limited by sampling difficulties that arise from the large dimensionality and the complex energy landscapes of biological systems leading to poor convergences already in folding simulations of single proteins. In this chapter we discuss a few strategies to enhance sampling in biomolecular simulations, and present some recent applications.



This article is an updated version of a review published in the first edition of this book, adding new algorithmic developments and applications. We thank Nathan Bernhardt, Yanjie Wei, Huilin Zang, Wei Wang, Wenhui Xi and Fatih Yasar for their contributions to work now also reviewed here. Support by the National Science Foundation (research grants CHE-998174, 0313618, 0809002, 1266256) and the National Institutes of Health (GM62838) are acknowledged.


  1. 1.
    Lindorff-Larsen, K., Piana, S., Dror, R.O., Shaw, D.E.: How fast-folding proteins fold. Science 334, 517–520 (2011)CrossRefGoogle Scholar
  2. 2.
    Chen, Y., Ding, F., Nie, H., Serohjos, A.W., Sharma, S., Wilocx, K.C., Yin, S., Dokholyan, N.V.: Protein folding: then and now. Arch. Biochem. Biophys. 469, 4–19 (2007)CrossRefGoogle Scholar
  3. 3.
    Daggett, V., Fersht, A.: Is there a unifying mechanism for protein folding? Trends Biochem. Sci. 28, 18–25 (2003)CrossRefGoogle Scholar
  4. 4.
    Daggett, V.: Molecular dynamics simulations of the protein unfolding/folding reaction. Acc. Chem. Res. 35, 422–429 (2002)CrossRefGoogle Scholar
  5. 5.
    Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D.: Hybrid Monte Carlo. Phys. Lett. B195, 216–221 (1987)CrossRefGoogle Scholar
  6. 6.
    Brass, A., Pendleton, B.J., Chen, Y., Robson, B.: Hybrid Monte Carlo simulation theory and initial comparison with molecular dynamics. Biopolymers 33, 1307–1315 (1993)CrossRefGoogle Scholar
  7. 7.
    Berg, B.A.: Metropolis importance sampling for rugged dynamical variables. Phys. Rev. Lett 90, 180601 (2003)CrossRefGoogle Scholar
  8. 8.
    Hansmann, U.H.E., Wille, L.: Global optimization by energy landscape paving. Phys. Rev. Lett. 88, 068105 (2002)CrossRefGoogle Scholar
  9. 9.
    Schug, A., Wenzel, W., Hansmann, U.H.E.: Energy landscape paving simulations of the trp-cage protein. J. Chem. Phys. 122, 194711 (2005)CrossRefGoogle Scholar
  10. 10.
    Hansmann, U.H.E., Okamoto, Y.: The generalized-ensemble approach for protein folding simulations. In: Stauffer, D. (ed.) Annual Reviews in Computational Physics, pp. 129–157. World Scientific, Singapore (1998)Google Scholar
  11. 11.
    Kumar, S., Payne, P., Vásquez, M.: Method for free-energy calculations using iterative techniques. J. Comp. Chem. 17, 1269–1275 (1996)CrossRefGoogle Scholar
  12. 12.
    Torrie, G.M., Valleau, J.P.: Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comp. Phys. 23, 187–199 (1977)CrossRefGoogle Scholar
  13. 13.
    Berg, B.A., Neuhaus, T.: Multicanonical algorithms for first order phase transitions. Phys. Lett. B 267, 249–253 (1991)CrossRefGoogle Scholar
  14. 14.
    Hansmann, U.H.E., Okamoto, Y.: Prediction of peptide conformation by multicanonical algorithm: a new approach to the multiple-minima problem. J. Comp. Chem. 14, 1333–1338 (1993)CrossRefGoogle Scholar
  15. 15.
    Hansmann, U.H.E., Okamoto, Y., Eisenmenger, F.: Molecular dynamics, Langevin and hybrid Monte Carlo simulations in a multicanonical ensemble. Chem. Phys. Lett. 259, 321–330 (1996)CrossRefGoogle Scholar
  16. 16.
    Ferrenberg, A.M., Swendsen, R.H.: New Monte Carlo technique for studying phase transitions. Phys. Rev. Lett. 61, 2635–2638 (1988). Optimized Monte Carlo data analysis. Phys. Rev. Lett. 63, 1195–1198 (1989)CrossRefGoogle Scholar
  17. 17.
    Berg, B.A.: Markov chain Monte Carlo simulations and their statistical analysis. World Scientific, Singapore (2004)CrossRefzbMATHGoogle Scholar
  18. 18.
    Hansmann, U.H.E., Okamoto, Y.: Comparative study of multicanonical and simulated annealing algorithms in the protein folding problem. Physica A 212, 415–437 (1994)CrossRefGoogle Scholar
  19. 19.
    Wang, F.G., Landau, D.P.: Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050–2053 (2001)CrossRefGoogle Scholar
  20. 20.
    Hansmann, U.H.E., Okamoto, Y.: Finite-size scaling of helix-coil transitions in poly-alanine studied by multicanonical simulations. J. Chem. Phys. 110, 1267–1276 (1999)CrossRefGoogle Scholar
  21. 21.
    Hansmann, U.H.E., Okamoto, Y.: New Monte Carlo algorithms for protein folding. Curr. Opin. Struct. Biol. 9, 177–184 (1999)CrossRefGoogle Scholar
  22. 22.
    Curado, E.M.F., Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Phys. A: Math. Gen. 27, 3663 (1994)CrossRefGoogle Scholar
  23. 23.
    Wenzel, W., Hamacher, K.: Stochastic tunneling approach for global minimization of complex potential energy landscapes. Phys. Rev. Lett. 82, 3003 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hansmann, U.H.E.: Protein folding simulations in a deformed energy landscape. Eur. Phy. J. B 12, 607–612 (1999)CrossRefGoogle Scholar
  25. 25.
    Laio, A., Parrinello, M.: Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99, 12562–12566 (2002)CrossRefGoogle Scholar
  26. 26.
    Lyubartsev, A.P., Martinovski,  A.A., Shevkunov, S.V., Vorontsov-Velyaminov, P.N.: New approach to Monte Carlo calculations of the free energy: method of expanded ensembles. J. Chem. Phys. 96, 1776–1783 (1992). Marinari, E., Parisi, G.: Simulated tempering: a new Monte Carlo Scheme. Europhys. Lett. 19, 451–458 (1992)Google Scholar
  27. 27.
    Hukushima, K., Nemoto, K.: Exchange Monte Carlo method and applications to spin glass simulations. J. Phys. Soc. (Japan) 65, 1604–1608 (1996); Geyer, G.J., Thompson, E.A.: Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Am. Stat. Assn. 90, 909–920 (1995)CrossRefGoogle Scholar
  28. 28.
    Hansmann, U.H.E.: Parallel tempering algorithm for conformational studies of biological molecules. Chem. Phys. Lett. 281, 140–150 (1997)CrossRefGoogle Scholar
  29. 29.
    Periole, X., Mark, A.E.: Convergence and sampling efficiency of replica-exchange molecular dynamic simulations of peptide folding in explicit solvent. J. Chem. Phys. 126, 014903 (2007)CrossRefGoogle Scholar
  30. 30.
    Abraham, M.J., Gready, J.E.: Ensuring mixing efficiency of replica-exchange molecular dynamics simulations. J. Chem. Theor. Comput. 4, 1119–1128 (2008)CrossRefGoogle Scholar
  31. 31.
    Sindhikara, D.J., Emerson, D.J., Roitberg, A.E.: Exchange often and properly in replica exchange molecular dynamics. J. Chem. Theor. Comput. 6, 2804–2808 (2010)CrossRefGoogle Scholar
  32. 32.
    Sindhikara, D.J., Emerson, D.J., Roitberg, A.E.: Exchange frequency in replica exchange molecular dynamics. J. Chem. Phys. 128, 10 (2008)CrossRefGoogle Scholar
  33. 33.
    Rhee, Y.M., Pande, V.S.: Multiplexed-replica exchange molecular dynamics method for protein folding simulation. Biophys. J. 84, 755–786 (2003)CrossRefGoogle Scholar
  34. 34.
    Wallace, J.A., Shen, J.K.: Continuous constant pH molecular dynamics in explicit solvent with pH-based replica exchange. J. Chem. Theor. Comput. 7, 2617–2629 (2011)CrossRefGoogle Scholar
  35. 35.
    Kwak, W., Hansmann, U.H.E.: Efficient sampling of protein structures by model hopping. Phys. Rev. Lett. 95, 138102 (2005)CrossRefGoogle Scholar
  36. 36.
    Fukunishi, H., Watanabe, O., Takada, S.: On the Hamiltonian replica exchange method for efficient sampling, of biomolecular systems: application to protein structure prediction. J. Chem. Phys. 116, 9058–9067 (2002)CrossRefGoogle Scholar
  37. 37.
    Sugita, Y., Kitao, A., Okamoto, Y.: Multidimensional replica-exchange method for free-energy calculations. J. Chem. Phys. 113, 6042–6051 (2000)CrossRefGoogle Scholar
  38. 38.
    Gront, D., Kolinski, A., Hansmann, U.H.E.: Exploring protein energy landscape with hierarchical clustering. Int. J. Quant. Chem. 105, 826 (2005)CrossRefGoogle Scholar
  39. 39.
    Williamson, T.E., Vitalis, A., Crick, S.L., Pappu, R.V.: Modulation of polyglutamine conformations and dimer formation by the N-terminus of huntingtin. J. Mol. Biol. 396, 1295–1309 (2010)CrossRefGoogle Scholar
  40. 40.
    Vitalis, A., Pappu, R.V.: Assessing the contribution of heterogeneous distributions of oligomers to aggregation mechanisms of polyglutamine peptides. Biophys. Chem. 159, 14–33 (2011)CrossRefGoogle Scholar
  41. 41.
    Nadler, W., Hansmann, U.H.E.: Generalized ensemble and tempering simulations: a unified view. Phys. Rev. E 75, 026109 (2007)CrossRefGoogle Scholar
  42. 42.
    Nadler, W., Hansmann, U.H.E.: Optimized explicit-solvent replica-exchange molecular dynamics from scratch. J. Phys. Chem. B 112, 10386 (2008)CrossRefGoogle Scholar
  43. 43.
    Trebst, S., Troyer, M., Hansmann, U.H.E.: Optimized parallel tempering simulations of proteins. J. Chem. Phys. 124, 174903 (2006)CrossRefGoogle Scholar
  44. 44.
    Nadler, W., Meinke, J.A., Hansmann, U.H.E.: Folding proteins by first-passage-times optimized replica exchange. Phys. Rev. E 78, 061905 (2008)CrossRefGoogle Scholar
  45. 45.
    Gallicchio, E., Levy, R.M., Parashar, M.: Asynchronous replica exchange for molecular simulations. J. Comput. Chem. 29, 788–794 (2008)CrossRefGoogle Scholar
  46. 46.
    Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999)CrossRefGoogle Scholar
  47. 47.
    Nadler, W., Hansmann, U.H.E.: Optimizing replica exchange moves for molecular dynamics. Phys. Rev. E 76, 057102 (2007)CrossRefGoogle Scholar
  48. 48.
    Kar, P., Nadler, W., Hansmann, U.H.E.: Microcanonical replica exchange molecular dynamics simulation of proteins. Phys. Rev. E 80, 056703 (2009)CrossRefGoogle Scholar
  49. 49.
    Kim, B., Hagen, M., Liu, P., Friesner, R.A., Berne, B.J.: Serial replica exchange. J. Phys. Chem. B. 111, 1416–1423 (2007)CrossRefGoogle Scholar
  50. 50.
    Lee, M., Olson, M.: Comparison of two adaptive temperature-based replica exchange methods applied to a sharp phase transition of protein unfolding-folding. J. Chem. Phys. 134, 244111 (2011)CrossRefGoogle Scholar
  51. 51.
    Okur, A., Wickstrom, L., Layten, M., Geney, R., Song, K., Hornak, V., Simmerling, C.: Improved efficiency of replica exchange simulations through use of a hybrid explicit/implicit solvation model. J. Chem. Theor. Comput. 2, 420–433 (2006)CrossRefGoogle Scholar
  52. 52.
    Huang, X., Hagen, M., Kim, B., Friesner, R.A., Zhou, R., Berne, B.J.: Replica exchange with solute tempering: efficiency in large scale systems. J. Phys. Chem. B 111, 5405–5410 (2007)CrossRefGoogle Scholar
  53. 53.
    Wang, J., Zhu, W., Li, G., Hansmann, U.H.E.: Velocity-scaling for replica exchange simulations of proteins in explicit solvent. J. Chem. Phys. 135, 084115 (2011)CrossRefGoogle Scholar
  54. 54.
    Yaşar, F., Bernhardt, N.A., Hansmann, U.H.E.: Replica-exchange-with-tunneling for fast exploration of protein landscapes. J. Chem. Phys. 143, 224102 (2015)CrossRefGoogle Scholar
  55. 55.
    Lyman, E., Ytreberg, F.M., Zuckerman, D.M.: Resolution exchange simulation. Phys. Rev. Lett. 96, 028105 (2006)CrossRefGoogle Scholar
  56. 56.
    Lyman, E., Zuckerman, D.M.: Resolution exchange simulation with incremental coarsening. J. Chem. Theor. Comput. 2, 656–666 (2006)CrossRefGoogle Scholar
  57. 57.
    Liu, P., Shi, Q., Lyman, E., Both, G.A.: Reconstructing atomistic detail for coarse-grained models with resolution exchange. J. Chem. Phys. 129, 114103 (2008)CrossRefGoogle Scholar
  58. 58.
    Moritsugu, K., Terada, T., Kidera, A.: Scalable free energy calculation of proteins via multiscale essential sampling. J. Chem. Phys. 133, 224105 (2010)CrossRefGoogle Scholar
  59. 59.
    Bernhardt, N.A., Xi, W., Wang, W., Hansmann, U.H.E.: Simulating protein fold switching by replica-exchange-with-tunneling. J. Chem. Theor. Comput. 12, 5656–5666 (2016); 13 393 (2017)CrossRefGoogle Scholar
  60. 60.
    Zhang, H., Xi, W., Hansmann, U.H.E., Wei, Y.: Fibril-barrel transitions in cylindrin amyloids. J. Chem. Theor. Comput. 13, 3936–3944 (2017)CrossRefGoogle Scholar
  61. 61.
    Mohanty, S., Meinke, J.H., Zimmermann, O., Hansmann, U.H.E.: Simulation of top7-CFr: a transient helix extension guides folding. Proc. Natl. Acad. Sci. U.S.A. 105, 8004–8007 (2008)CrossRefGoogle Scholar
  62. 62.
    Mohanty, S., Hansmann, U.H.E.: Caching of a chameleon segment facilitates folding of a protein with end-to-end \(\beta \) -sheet. J. Phys. Chem. B 112, 15134 (2008)CrossRefGoogle Scholar
  63. 63.
    Kuhlman, B., Dantas, G., Ireton, G.C., Varani, G., Stoddard, B.L., Baker, D.: Design of a novel globular protein fold with atomic level accuracy. Science 302, 1364–1368 (2003)CrossRefGoogle Scholar
  64. 64.
    Dantas, G., Watters, A.L., Lunde, B.M., Eletr, Z.M., Isern, N.G., Roseman, T., Lipfert, J., Doniach, S., Tompa, M., Kuhlman, B., Stoddard, B.L., Varani, G., Baker, D.: Mis-translation of a computationally designed protein yields an exceptionally stable homodimer: implications for protein engineering and evolution. J. Mol. Biol. 362, 1004–1024 (2006)CrossRefGoogle Scholar
  65. 65.
    Gaye, M.L., Hardwick, C., Kouza, M., Hansmann, U.H.E.: Chamelonicity and folding of the C-fragment of TOP7. Eur. Phys. Let. 97, 68003 (2012)CrossRefGoogle Scholar
  66. 66.
    Kouza, M., Gowtham, S., Seel, M., Hansmann, U.H.E.: A numerical investigation into possible mechanisms by that the A629P mutant of ATP7A causes Menkes Disease. Phys. Chem. Chem. Phys. 12, 11390–11397 (2010)CrossRefGoogle Scholar
  67. 67.
    Jiang, P., Hansmann, U.H.E.: Modeling structural flexibility of proteins with Go-models. J. Chem. Theor. Comput. 8, 2127–2133 (2012)CrossRefGoogle Scholar
  68. 68.
    Alexander, P., He, Y., Chen, Y., Orban, J., Bryan, P.: A minimal sequence code for switching protein structure and function. Proc. Natl. Acad. Sci U.S.A. 106, 21149–21154 (2009)CrossRefGoogle Scholar
  69. 69.
    Kouza, M., Hansmann, U.H.E.: Folding simulations of the A and B domains of protein G. J. Phys. Chem. B. 116, 6645–6653 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Workalemahu Berhanu
    • 1
  • Ping Jiang
    • 2
    Email author
  • Ulrich H. E. Hansmann
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of OklahomaNormanUSA
  2. 2.Tiandao, EducationShanghaiPeople’s Republic of China

Personalised recommendations