Modeling of Electrostatic Effects in Macromolecules

  • Yury N. VorobjevEmail author
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 8)


Electrostatic energy and forces are primary important factors defining macromolecular interactions and its’ self-organization in an aqueous solution. The unique property of electrostatic forces is it’s long-range character. Therefore an accurate modeling of the long-range electrostatic interactions and related energy of macromolecule in an aqueous solvent at given temperature, salt and hydrogen ion concentration is the long-standing problem. One of the most advanced solution of macromolecular electrostatics is a single-molecule approach with an implicit solvent electrostatic model for macromolecular simulations in water proton bath is considered here. The fundamental quantity that implicit electrostatic models approximate is the solute potential of mean force, which is obtained by averaging over solvent degrees of freedom. The implicit solvent models suggest practical ways to calculate free energies of macromolecular conformations taking into account equilibrium interactions with water solvent and proton bath, while the explicit solvent approach is unable to do that due to the need to account for a large number of solvent degrees of freedom and long-range nature of the electrostatic interactions. The most advanced realizations of the implicit continuum electrostatic models by different research groups are discussed, their accuracy are examined and some applications of the implicit solvent electrostatic models to macromolecular modeling, such as protein free energy calculations, protein folding, ionization equilibria and pKa’s of ionizable groups and constant pH molecular dynamics are highlighted.



This work was supported by a grant from the Russian Fund of Basic Research #12-04-00135a, by grant #130-2012 from the Siberian Brunch of Russian Academy of Science and exchange visitor program P-1-00043 of the Cornell University.


  1. 1.
    Aguilar, B., Shadrach, R., Onufriev, A.V.: Reducing the secondary structure bias in the generalized Born model via R6 effective Radii. J. Chem. Theory Comput. 6, 3613–3630 (2010)CrossRefGoogle Scholar
  2. 2.
    Alexov, E., Mehler, E.L., Backer, N., Baptista, A.M., et al.: Progress in the prediction of pKa values in proteins. Proteins 79, 3260–3275 (2011)CrossRefGoogle Scholar
  3. 3.
    Aqvist, J., Hansson, T.: On the validity of electrostatic linear response in polar solvent. J. Phys. Chem. 100, 9512–9521 (1996)CrossRefGoogle Scholar
  4. 4.
    Arnautova, E.Y., Jagielska, A., Scheraga, H.A.: A new force field ECEPP05 for peptides, proteins and organic molecules. J Phys. Chem. B 110, 5025–5044 (2006)CrossRefGoogle Scholar
  5. 5.
    Arnautova, E.Y., Vorobjev, Y.N., Vila, J.A., Scheraga, H.A.: Identifying native-like protein structures with scoring functions based on all-atom ECEPP force fields, implicit solvent models and structure relaxation. Proteins 77, 38–51 (2009)CrossRefGoogle Scholar
  6. 6.
    Arthur, E.J., Yesselman, J.D., Brooks III, C.L.: Predicting extreme pKa shifts in staphylococcal nuclease mutants with constant pH molecular dynamics. Proteins 79, 3276–3286 (2011)CrossRefGoogle Scholar
  7. 7.
    Baptista, M., Martel, P.J., Petersen, S.B.: Simulation of protein conformation freedom as a function of pH: constant-pH molecular dynamics using implicit titration. Proteins 27, 523–544 (1997)CrossRefGoogle Scholar
  8. 8.
    Baptista, M., Martel, P.J., Soares, C.M.: Simulation of electron-proton coupling with a Monte Carlo method: application to cytochrome c(3) using continuum electrostatics. Biophys. J. 76, 2978–2998 (1999)CrossRefGoogle Scholar
  9. 9.
    Baptista, M., Soares, C.M.: Some theoretical and computational aspects of inclusion of proton tautomerism in the protonation equilibrium of proteins. J Phys. Chem. B 105, 293–309 (2001)CrossRefGoogle Scholar
  10. 10.
    Baptista, A.M., Teixeira, V.H., Soares, C.M.: Constant-pH molecular dynamics using stochastic titration. J. Chem. Phys. 2002(117), 4184–4200 (2002)CrossRefGoogle Scholar
  11. 11.
    Bashford, D., Gerwert, K.: Electrostatic calculations of the pKa values of ionizable group in bacteriorodopsin. J. Mol. Biol. 224, 473–486 (1992)CrossRefGoogle Scholar
  12. 12.
    Bashford, D., Case, A.D.: Generalized born models of macromolecular solvation effects. Annu. Rev. Phys. Chem. 51, 129–152 (2000)CrossRefGoogle Scholar
  13. 13.
    Beglov, D., Roux, B.: An integral equation to describe the solvation of polar molecules in liquid water. J. Chem. Phys. 104, 8678–8689 (1996)CrossRefGoogle Scholar
  14. 14.
    Beglov, D., Roux, B.: Solvation of complex molecules in a polar liquid: an integral equation theory. J. Phys. Chem. 101, 7821–7826 (1997)CrossRefGoogle Scholar
  15. 15.
    Ben-Naim, A., Marcus, Y.: Solvation thermodynamics of nonionic solutes. J. Chem. Phys. 81, 2016–2027 (1984)CrossRefGoogle Scholar
  16. 16.
    Ben-Naim, A.: Solvent effects on protein association and protein folding. Biopolymers 29, 567–596 (1990)CrossRefGoogle Scholar
  17. 17.
    Berendsen, H.J.C., Van der Spoel, D., Van Drunen, R.: GROMACS: a message passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995(91), 43–56 (1995)CrossRefGoogle Scholar
  18. 18.
    Bharadwaj, R., Windemuth, A., Sridharan, S., Honig, B., Nicholls, A.: The fast multipole boundary element method for molecular electrostatics: an optimal approach for large systems. J. Comput. Chem. 16, 898–913 (1995)CrossRefGoogle Scholar
  19. 19.
    Boresch, S., Ringhofer, S., Hochtl, P., Steinhauser, O.: Toward better description and understanding of biomolecular solvation. Biophys. Chem. 78, 43–68 (1999)CrossRefGoogle Scholar
  20. 20.
    Bradley, P., Misura, K.M., Baker, D.: Towards high-resolution de nova structure prediction for small proteins. Science 309, 1868–1871 (2005)CrossRefGoogle Scholar
  21. 21.
    Brooks III, C.L., Karplus, M., Pettitt, B.M.: Proteins a theoretical perspectives of dynamics, structure and thermodynamics. In: Prigogine, I., Rice, S.A. (eds.) Advances in Chemical Physics, vol. LXXI. Wiley, New York (1988)CrossRefGoogle Scholar
  22. 22.
    Brooks, B.R., Brooks III, C.L., Mackerell, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1615 (2009)CrossRefGoogle Scholar
  23. 23.
    Bogusz, S., Cheatham III, T.E., Brooks, R.R.: Removal of pressure and free energy artifacts in charged periodic system via net charge corrections to the Ewald potential. J. Chem. Phys. 108, 7070–7084 (2007)CrossRefGoogle Scholar
  24. 24.
    Bürgi, R., Kollman, P.A., Van Gunsteren, V.F.: Simulating proteins at constant pH: an approach combining molecular dynamics and Monte Carlo simulations. Proteins 47, 469–480 (2002)CrossRefGoogle Scholar
  25. 25.
    Case, D.A., Darden, T., Cheatham III, T.E., Simmerling, C., Wang, J., Merz, K.M., Wang, B., Pearlman, D.A., Duke, R.E., Crowley, M., Brozell, S., Luo, R., Tsui, V., Gohlke, H., Mongan, J., Hornak, V., Caldwell, J.W., Ross, W.S., Kollman, P.A.: Amber8. University of California, San Francisco (2004)Google Scholar
  26. 26.
    Chen, J., Brooks, C.: Critical importance of length-scale dependence in implicit modeling of hydrophobic interactions. J. Am. Chem. Soc. 129, 2444–2445 (2007)CrossRefGoogle Scholar
  27. 27.
    Chen, J., Brooks, C.: Implicit modeling of nonpolar solvation for simulating protein folding and conformational transitions. Phys. Chem. Chem. Phys. 10, 471–481 (2008)CrossRefGoogle Scholar
  28. 28.
    Chen, J.: Effective approximation of molecular volume using atom-centered dielectric functions in generalized Born models. J. Chem. Theory Comput. 6, 2790–2803 (2010)CrossRefGoogle Scholar
  29. 29.
    Chothia, C.H.: Hydrophobic bonding and accessible area in proteins. Nature 248, 338–339 (1974)CrossRefGoogle Scholar
  30. 30.
    Connolly, M.L.: Analytical molecular surface calculation. J. Appl. Crystallogr. 16, 548–558 (1983)CrossRefGoogle Scholar
  31. 31.
    Connolly, M.L.: Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–713 (1983)CrossRefGoogle Scholar
  32. 32.
    Connolly, M.L.: Computation of molecular volume. J. Am. Chem. Soc. 107, 1118–1124 (1985). Scholar
  33. 33.
    Curutchet, C., Cramer, C.J., Truhlar, D.G., Ruiz-Lopez, M.F., Rinaldi, D., Orozco, M., Luque, F.J.: Electrostatic component of solvation: comparison of SCRF continuum models. J. Comput. Chem. 24, 284–297 (2003)CrossRefGoogle Scholar
  34. 34.
    Davies, M.N., Toseland, C.P., Moss, D.S., Flower, D.R.: Benchmarking pKa prediction. BMC Biochem. 7, 18–30 (2006)CrossRefGoogle Scholar
  35. 35.
    Douglas, C.C.: Multigrid methods in science and engineering. Comput. Sci. Eng. 3, 55–68 (1996)CrossRefGoogle Scholar
  36. 36.
    Dlugosz, M., Antosiewicz, J.M.: Constant pH molecular dynamics simulations: test case of succinic acid. Chem. Phys. 302, 161–170 (2004)CrossRefGoogle Scholar
  37. 37.
    Dominy, B.N., Brooks, C.L.: Identifying native-like protein structures using physics-based potentials. J. Comput. Chem. 23, 147–160 (2002)CrossRefGoogle Scholar
  38. 38.
    Feig, M., Onufriev, A., Lee, M., Im, W.: Performance comparison of Generalized Born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. J. Comput. Chem. 25, 265–284 (2004)CrossRefGoogle Scholar
  39. 39.
    Fisher, D.: 3D-SHORTGUN: a novel, cooperative, fold-recognition meta-predictor. Proteins 51, 434–444 (2003)CrossRefGoogle Scholar
  40. 40.
    Felts, A.K., Gallicchio, E., Wallqvist, A., Levy, R.M.: Distinquishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all-atom force field and the surface generalized Born solvent model. Proteins 48, 404–422 (2002)CrossRefGoogle Scholar
  41. 41.
    Fogolary, F., Esposito, G., Viglino, P., Molinari, H.: Molecular mechanics and dynamics of biomolecules using a solvent continuum model. J. Comput. Chem. 22, 1830–1842 (2001)CrossRefGoogle Scholar
  42. 42.
    Gallicchio, E., Kubo, M.M., Levy, R.M.: Enthalpy-entropy and cavity decomposition of alkane hydration free energies: numerical results and implications for theories of hydrophobic solvation. J. Phys. Chem. B. 104, 6271–6285 (2000)CrossRefGoogle Scholar
  43. 43.
    Gallicchio, E., Zhang, L.Y., Levy, R.M.: The SGB/NP hydration free energy model based on the surface genaralized Born solvent reaction field and novel nonpolar hydration free energy estimators. J. Comput. Chem. 23, 517–529 (2002)CrossRefGoogle Scholar
  44. 44.
    Gallicchio, E., Levy, R.: AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. J. Comput. Chem. 25, 479–499 (2004)CrossRefGoogle Scholar
  45. 45.
    Gallicchio, E., Paris, K., Levy, R.: The AGBNP2 implicit solvation model. J. Chem. Theory Comput. 5, 2544–2564 (2009)CrossRefGoogle Scholar
  46. 46.
    Goel, N.S., Gang, F., Ko, Z.: Electrostatic field in inhomogeneous dielectric media. Indirect boundary element method. J. Comput. Phys. 118, 172–179 (1995)zbMATHCrossRefGoogle Scholar
  47. 47.
    Grant, J.A., Pickup, B.T.: A Gaussian description of molecular shape. J. Phys. Chem. 99, 3503–3510 (1995)CrossRefGoogle Scholar
  48. 48.
    Gribenko, A.V., Patel, M.M., Liu, J., McCallum, S.A., Makhatadze, G.I.: Rational stabilization of enzymes by computational redesign of surface charge-charge interactions. Proc. Natl. Acad. Sci. U.S.A. 106, 2601–2606 (2009)CrossRefGoogle Scholar
  49. 49.
    Hawkins, G.D., Cramer, C.J., Truhlar, D.G.: Parametrized models of aqueous free energies of solvation based pairwise solute descreening of solute atomic charges from a dielectric medium. J. Phys. Chem. 100, 19824–19836 (1996)CrossRefGoogle Scholar
  50. 50.
    Hermann, R.B.: Theory of hydrophobic bonding. II. The correlation of hydrocarbon solubility in water with solvent cavity surface area. J. Phys. Chem. 76, 2754–2759 (1972)CrossRefGoogle Scholar
  51. 51.
    Holst, M., Kozack, R.E., Saied, F., Subramaniam, S.: Treatment of electrostatic effects in proteins: multigrid-based Newton iterative method for solution of the full nonlinear Poisson-Boltzmann equation. Proteins 18, 231–245 (1994)CrossRefGoogle Scholar
  52. 52.
    Holst, M., Saied, F.: Numerical solution of the nonlinear Poisson-Boltzmann equation: developing more robust and efficient methods. J. Comput. Chem. 16, 337–364 (1995)CrossRefGoogle Scholar
  53. 53.
    Holst, M., Baker, N., Wang, M.: Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I. Algorithms and examples. J. Comput. Chem. 21, 1319–1342 (2000)CrossRefGoogle Scholar
  54. 54.
    Honig, B., Sharp, K., Yang, A.S.: Macroscopic models of aqueous solutions: biological and chemical applications. J. Phys. Chem. 97, 1101–1109 (1993)CrossRefGoogle Scholar
  55. 55.
    Hou, G., Zhu, X., Cui, Q.: An implicit solvent model for SCC-DFTB with charge-dependent radii. J. Chem. Theory Comput. 6, 2303–2314 (2010)CrossRefGoogle Scholar
  56. 56.
    Hummer, G., Pratt, L.R., Garcia, A.E.: Hydration free energy of water. J. Phys. Chem. 99, 14188–14194 (1995)CrossRefGoogle Scholar
  57. 57.
    Hummer, G., Pratt, L.R., Garcia, A.E.: Free energy of ionic hydration. J. Phys. Chem. 100, 1206–1215 (1996)CrossRefGoogle Scholar
  58. 58.
    Hűnnenberg, P.H., McCammon, J.A.: Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatic study. Biophys. Chem. 78, 69–88 (1999)CrossRefGoogle Scholar
  59. 59.
    Im, W., Lee, M.S., Brooks III, C.L.: Generalized Born model with a simple smoothing function. J. Comput. Chem. 24, 1691–1702 (2003)CrossRefGoogle Scholar
  60. 60.
    Isom, D.G., Castaneda, C.A., Cannon, B.R., Garcia-Moreno, B.E.: Large shifts in pKa values of lysine residues buried inside a protein. PNAS 108, 5260–5265 (2011)CrossRefGoogle Scholar
  61. 61.
    Jackson, J.D.: Classical electrodynamics. Wiley, New York (1975)zbMATHGoogle Scholar
  62. 62.
    Jackson, R.M., Sternberg, J.E.: Application of scaled particle theory to model the hydrophobic effect: implications for molecular association and protein stability. Protein Eng. 7, 371–383 (1994)CrossRefGoogle Scholar
  63. 63.
    Jackson, R.M., Sternberg, J.E.: A continuum model for protein-protein interactions: applications to the docking problem. J. Mol. Biol. 250, 258–275 (1995)CrossRefGoogle Scholar
  64. 64.
    Jayaram, B., Fine, R., Sharp, K., Honig, B.: Free energy calculations of ion hydration: an analysis of the Born model in terms of microscopic simulations. J. Phys. Chem. 93, 4320–4327 (1989)CrossRefGoogle Scholar
  65. 65.
    Jorgensen, W.L., Madura, J.D.: Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol. Phys. 56, 1381–1392 (1985)CrossRefGoogle Scholar
  66. 66.
    Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)CrossRefGoogle Scholar
  67. 67.
    Jorgensen, W., Tirado-Rives, J.: Free energies of hydration from a generalized born model and an all-atom force field. J. Phys. Chem. B 108, 16264–16270 (2004)CrossRefGoogle Scholar
  68. 68.
    Juffer, A.H., Botta, E.F.F., Bert, A.M., van Keulen, B.A.M., van der Ploeg, A., Berendsen, H.J.C.: The electric potential of a macromolecule in a solvent: a fundamental approach. J. Comput. Phys. 97, 144–171 (1991)zbMATHCrossRefGoogle Scholar
  69. 69.
    Juffer, A.H., Eisenbaher, S.J., Hubbard, S.J., Walter, D., Argos, P.: Comparison of atomic solvation parametric sets: applicability and limitations in protein folding and binding. Protein Sci. 4, 2499–2509 (1995)CrossRefGoogle Scholar
  70. 70.
    Kar, P., Wei, Y., Hansmann, U.E., Höfinger, S.: Systematic study of the boundary composition in Poisson Boltzmann calculations. J. Comput. Chem. 28, 2538–2544 (2007)CrossRefGoogle Scholar
  71. 71.
    Karplus, M., McCammon, A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9, 646–652 (2002)CrossRefGoogle Scholar
  72. 72.
    Khandogin, J., Brooks III, C.L.: Constant pH molecular dynamics with proton tautomerism. Biophys. J. 89, 141–157 (2005)CrossRefGoogle Scholar
  73. 73.
    Khandogin, J., Chen, J., Brooks III, C.L.: Exploring atomistic details of pH-dependent peptide folding. PNAS 103, 18546–18550 (2006)CrossRefGoogle Scholar
  74. 74.
    Khandogin, J., Brooks III, C.L.: Toward the accurate first-principles prediction of ionization equilibria in proteins. Biochemistry 45, 9363–9373 (2006)CrossRefGoogle Scholar
  75. 75.
    Khandogin, J., Brooks III, C.L.: Molecular simulation pH-mediated biological processes. Annu. Rep. Comput. Chem. 3, 3–12 (2007)CrossRefGoogle Scholar
  76. 76.
    Kollman, P.: Free energy calculations: applications to chemical and biochemical phenomena. Chem. Rev. 93, 2395–2417 (1993)CrossRefGoogle Scholar
  77. 77.
    Kollman, P., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Dua, Y., Wang, L., Donini, O., Cieplak, P., Srinivasan, J., Case, D., Cheatham III, T.E.: Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 33, 889–897 (2000)CrossRefGoogle Scholar
  78. 78.
    Kong, X., Brooks III, C.L.: λ-dynamics: a new approach to free energy calculations. J. Chem. Phys. 105, 2414–2423 (1996)CrossRefGoogle Scholar
  79. 79.
    Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. V. 8. Course of theoretical physics. Translated from the Russian. Pergamon Press, Oxford (1988)Google Scholar
  80. 80.
    Lee, M.R., Duan, Y., Kollman, P.A.: Use of MM-PB/SA in estimating the free Energies of proteins: application to native, intermediates, and unfolded villin headpiece. Proteins 39, 309–316 (2000)CrossRefGoogle Scholar
  81. 81.
    Lee, M.S., Feig, M., Salsbury Jr., F.R., Brooks III, C.L.: New analytic approximation to the standart molecular volume definition and its application to generalized Born calculations. J. Comput. Chem. 24, 1348–1356 (2003)CrossRefGoogle Scholar
  82. 82.
    Lee, M.S., Salsbury Jr., F.R., Brooks III, C.L.: Constant-pH molecular dynamics using continuous titration coordinates. Proteins 56, 738–752 (2004)CrossRefGoogle Scholar
  83. 83.
    Lee, M.S., Olson, M.A.: Protein folding simulations combining self-guided Langevin dynamics and temperature-based replica exchange. J. Chem. Theory Comput. 6, 2477–2487 (2010)CrossRefGoogle Scholar
  84. 84.
    Levy, R.M., Belhadj, M., Kitchen, D.B.: Gaussian fluctuation formula for electrostatic free energy changes in solution. J. Chem. Phys. 95, 3627–3633 (1991)CrossRefGoogle Scholar
  85. 85.
    Levy, R.M., Zhanh, L.Y., Gallicchio, E., Felts, A.: On the non polar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy. J. Am. Chem. Soc. 25, 9523–9530 (2003)CrossRefGoogle Scholar
  86. 86.
    Loladze, V.V., Makhatadze, G.I.: Energetics of charge-charge interactions between residues adjacent in sequence. Proteins 79, 3494–3499 (2011)CrossRefGoogle Scholar
  87. 87.
    Lounnas, V., Pettitt, B.M., Phillips Jr., B.M.: A global model of protein-water interface. Biophys. J. 66, 601–614 (1994)CrossRefGoogle Scholar
  88. 88.
    Lu, B., Cheng, X.L., Hang, J.F., McCammon, A.: Order N algorithm for computation of electrostatic interactions in biomolecular systems. Proc. Natl. Acad. Sci. U.S.A. 103, 19314–19319 (2006)CrossRefGoogle Scholar
  89. 89.
    Lu, B., McCammon, A.: Improved boundary element method for Poisson-Boltzman electrostatic potential and force calculatins. J. Chem. Theory Comput. 3, 1134–1142 (2007)CrossRefGoogle Scholar
  90. 90.
    Machuqueiro, M., Baptista, A.M.: Constant-pH molecular dynamics with ionic strength effects: Protonation–Conformation coupling in decalysine. J. Phys. Chem. 110, 2927–2933 (2006)CrossRefGoogle Scholar
  91. 91.
    Machuqueiro, M., Baptista, A.M.: Molecular dynamics at constant pH and reduction potential: application to cytochrome c3. J. Am. Chem. Soc. 131, 12586–12594 (2009)CrossRefGoogle Scholar
  92. 92.
    Machuqueiro, M., Baptista, A.M.: Is the prediction of pKa values by the constant-pH molecular dynamics being hindered by inherited problems? Proteins 79, 3437–3447 (2011)CrossRefGoogle Scholar
  93. 93.
    Madura, J.D., Davis, M.E., Gilson, M.K., Wade, R.C., Luty, B.A., McCammon, J.A.: Biological application of electrostatic calculations and Brownian dynamics simulations. Rev. Comput. Chem. 5, 229–267 (1994)Google Scholar
  94. 94.
    McDowell, S.C., Špackova, N., Šponer, J., Walter, N.G.: Molecular dynamics simulations of RNA: an in silico single molecule approach. Biopolymers 85, 169–184 (2007)CrossRefGoogle Scholar
  95. 95.
    McKenney, A., Greengard, L.: A fast Poisson solver for complex geometries. J. Comput. Phys. 118, 348–355 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Meyer, T., Kieseritzky, G., Knapp, E.W.: Electrostatic pKa computations in protein: role of internal cavities. Proteins 79, 3320–3332 (2011). Scholar
  97. 97.
    Mongan, J., Case, D.A., McCammon, J.A.: Constant pH molecular dynamics in generalized Born implicit solvent. J. Comput. Chem. 25, 2038–2064 (2004)CrossRefGoogle Scholar
  98. 98.
    Mongan, J., Simmerling, C., McCammon, J., Case, D., Onufriev, A.: A generalized Born model with a simple, robust molecular volume correction. J. Chem. Theory Comput. 3, 156–159 (2007)CrossRefGoogle Scholar
  99. 99.
    Mongan, J., Svrcek-Seiler, W.A., Onufriev, A.: Analysis of integral expressions for effective Born radii. J Chem. Phys. 127, 18510–18521 (2007)CrossRefGoogle Scholar
  100. 100.
    Nina, M., Beglov, D., Roux, B.: Atomic radii for continuum electrostatic calculations based on molecular dynamics free energy simulations. J. Phys. Chem. 101, 5239–5248 (1997)CrossRefGoogle Scholar
  101. 101.
    Nina, M., Im, W., Roux, B.: Optimized atomic radii for protein contiuum electrostatic solvation forces. Biophys. Chem. 78, 89–96 (1999)CrossRefGoogle Scholar
  102. 102.
    Nielesen, J.E., Gunner, M.R., Garcia-Moreno, B.E.: The pKa Cooperative: a collaborative effort to advance structure-based calculation of pKa values and electrostatic effects in proteins. Proteins 79, 3249–3259 (2011)CrossRefGoogle Scholar
  103. 103.
    Nozaki, Y., Tanford, C.: Examination of titration behavior. Methods Enzymol. 11, 715–734 (1967)CrossRefGoogle Scholar
  104. 104.
    Novotny, J., Brucooleri, R.E., Davis, M., Sharp, K.A.: Empirical free energy calculations: a blind test and further improvements of the method. J. Mol. Biol. 268, 401–411 (1997)CrossRefGoogle Scholar
  105. 105.
    Onufriev, A., Case, D., Bashford, D.: Effective Born radii the generalized Born approximation: the importance of being perfect. J. Comput. Chem. 23, 1297–1304 (2002)CrossRefGoogle Scholar
  106. 106.
    Onufriev, A., Bashford, D., Case, D.: Eploring protein native states and large scale conformational changes with modified generalized Born model. Proteins 55, 383–394 (2004)CrossRefGoogle Scholar
  107. 107.
    Onufriev, A.: Implicit solvent models in molecular dynamics simulations: a brief overview. Annu. Rep. Comp. Chem. 4, 125–137 (2008)Google Scholar
  108. 108.
    Park, B.H., Levitt, M.: Decoys of globular proteins. J. Mol. Biol. 258, 367–392 (1996)CrossRefGoogle Scholar
  109. 109.
    Perrot, G.B., Cheng, B., Gibson, K.D., Vila, J., Palmer, K.A., Nayeem, A., Maigret, B., Scheraga, H.A.: MSEED: a program for rapid analytical determination of accessible surface areas and their derivatives. J. Comput. Chem. 13, 1–11 (1992)MathSciNetCrossRefGoogle Scholar
  110. 110.
    Pellegrini, E., Field, M.J.: A generalized-born solvation model for macromolecular hybrid-potential calculations. J. Phys. Chem. A 106, 1316–1326 (2002)CrossRefGoogle Scholar
  111. 111.
    Pierotti, R.A.: A scaled particle theory of aqueous and non-aqueous solutions. Chem. Rev. 76, 717–726 (1976)CrossRefGoogle Scholar
  112. 112.
    Postma, J.P.M., Berendsen, H.J.C., Haak, J.R.: Thermodynamics of cavity formation in water. Faraday Symp. Chem. Soc. 17, 55–67 (1982)CrossRefGoogle Scholar
  113. 113.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical recipes in C. Cambridge University Press, Cambridge (1988)zbMATHGoogle Scholar
  114. 114.
    Radmer, R.J., Kollman, P.A.: Free energy calculation methods: a theoretical and empirical comparison of numerical errors and a new method for qualitative estimates of free energy changes. J. Comput. Chem. 18, 902–919 (1997)CrossRefGoogle Scholar
  115. 115.
    Rashin, A.A.: Hydration phenomena, classical electrostatics, and the boundary element method. J. Phys. Chem. 94, 1725–1733 (1990)CrossRefGoogle Scholar
  116. 116.
    Rashin, A.A., Young, L., Topol, I.A.: Quantitative evaluation of hydration thermodynamics with continuum model. Biophys. Chem. 51, 359–374 (1994)CrossRefGoogle Scholar
  117. 117.
    Richards, F.M.: Areas, volume, packing and protein structures. Annu. Rev. Biophys. Biophys. Chem. 19, 301–332 (1977)Google Scholar
  118. 118.
    Rick, S.W., Berne, B.J.: The aqueous solvation of water: a comparison of continuum methods with molecular dynamics. J. Am. Chem. Soc. 116, 3949–3954 (1994)CrossRefGoogle Scholar
  119. 119.
    Ripoll, D.R., Vorobjev, Y.N., Liwo, A., Vila, J.A., Scheraga, H.A.: Coupling between folding and ionization equilibria: effect of pH on the conformational preferences of polypeptides. J. Mol. Biol. 264, 770–783 (1996)CrossRefGoogle Scholar
  120. 120.
    Rocchia, W., Sridharan, S., Nicholls, A., Alexov, E., Chiabrera, A., Honig, B.: Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. J. Comput. Chem. 23, 128–137 (2002)CrossRefGoogle Scholar
  121. 121.
    Roux, B., Yu, H.A., Karplus, M.: Molecular basis for the Born model of ion solvation. J. Phys. Chem. 94, 4683–4688 (1990)CrossRefGoogle Scholar
  122. 122.
    Roux, B., Simonson, T.: Implicit solvent models. Biopys. Chem. 78, 1–20 (1999)CrossRefGoogle Scholar
  123. 123.
    Sanner, M.F., Olson, A.J., Spehner, J.C.: Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996)CrossRefGoogle Scholar
  124. 124.
    Schaefer, M., Froemmel, C.: A precise analytical method for calculating the electrostatic energy of macromolecules in aqueous solution. J. Mol. Biol. 216, 1045–1066 (1990)CrossRefGoogle Scholar
  125. 125.
    Sharp, K.A., Honig, B.: Electrostatic interactions in macromolecules: theory and applications. Annu. Rev. Biophys. Chem. 19, 301–332 (1990)CrossRefGoogle Scholar
  126. 126.
    Schellman, J.A.: Macromolecular binding. Biopolymers 14, 999–1018 (1975)CrossRefGoogle Scholar
  127. 127.
    Scheraga, H.A.: Theory of hydrophobic interactions. J. Biomol. Struct. Dyn. 16, 447–460 (1998)CrossRefGoogle Scholar
  128. 128.
    Simmerling, C., Strockbine, B., Roitberg, A.E.: All-atom structure prediction and folding simulations of a stable protein. J. Am. Chem. Soc. 124, 11258–11259 (2002)CrossRefGoogle Scholar
  129. 129.
    Simonson, T., Brünger, A.: Solvation free energies estimated from macroscopic continuum theory: an accuracy assessment. J. Phys. Chem. 98, 4683–4694 (1994)CrossRefGoogle Scholar
  130. 130.
    Sitkoff, D., Sharp, K.A., Honig, B.: Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 98, 1978–1988 (1994)CrossRefGoogle Scholar
  131. 131.
    Sobolevski, E., Makowski, M., Czaplewski, C., Liwo, A., Oldziej, S., Scheraga, H.A.: Potential of mean force of hydrophobic association: dependence on solute Size. J. Phys. Chem. B 111, 10765–10774 (2007)CrossRefGoogle Scholar
  132. 132.
    Song, W., Mao, J., Gunner, M.R.: MCCE2: Improved protein pKa calculations with extensive side chain rotamer sampling. J. Comput. Chem. 30, 2231–2247 (2011)Google Scholar
  133. 133.
    Srinivasan, J., Cheatham, T.E., Cieplak, P., Kollman, P.A., Case, D.A.: Continuum solvent studies of stability of DNA, RNA and phosphoramide DNA helicases. J. Am. Chem. Soc. 120, 9401–9409 (1998)CrossRefGoogle Scholar
  134. 134.
    Stanton, C., Houk, K.: Benchmarking pKa prediction methods for residues in proteins. J. Chem. Theory Comput. 3, 951–966 (2008)CrossRefGoogle Scholar
  135. 135.
    Still, W.C., Tempczyk, A., Hawley, R.C., Hendricson, T.: Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127–6129 (1990)CrossRefGoogle Scholar
  136. 136.
    Strickler, S.S., Gribenko, A.V., Keiffer, T.R., Tomlinson, J., Reihle, T., Loladze, V.V., Makhatadze, G.I.: Protein stability and surface electrostatics: a charged relationship. Biochmistry 45, 2761–2766 (2006)CrossRefGoogle Scholar
  137. 137.
    Tanford, C.: Protein denaturation: part C. Theoretical models for denaturation. Adv. Protein Chem. 24, 1–95 (1970)CrossRefGoogle Scholar
  138. 138.
    Tanford, C., Roxby, R.: The interpretation of protein titration curves. Application to lysozyme. Biochemistry 11, 2192–2198 (1972)CrossRefGoogle Scholar
  139. 139.
    Tanokura, M.: 1H-NMR study of the tautomerism of the imidazole ring of histidine residues: 1. Microscopic pK values and molar ratios of tautomers in histidine containing peptides. Biochim. Biophys. Acta 742, 576–585 (1983)CrossRefGoogle Scholar
  140. 140.
    Teixeira, V.H., Cunha, C.A., Machuqueiro, M., Oliveira, A.S.V., Victor, B.L., Soares, C.M., Baptista, A.A.: On the use of different dielectric constants for computing individual and pairwise terms in Poisson-Bolzman studies of protein ionization equilibrium. J. Phys Chem B 109, 14691–14706 (2005)CrossRefGoogle Scholar
  141. 141.
    Tomasi, J., Persico, M.: Molecular interactions in solution: overview of methods based on continuum distribution of the solvent. Chem. Rev. 94, 2027–2094 (1994)CrossRefGoogle Scholar
  142. 142.
    Varshney, A., Brooks, F.P., Wright, W.V.: Computing smooth molecular surface. IEEE Comput. Graph. Appl. 14, 19–25 (1994)CrossRefGoogle Scholar
  143. 143.
    Vila, j, Ripoll, D.R., Arnautova, Y.A., Vorobjev, Y.N., Scheraga, H.A.: Coupling between conformation and proton binding in proteins. Proteins 61, 56–68 (2005)CrossRefGoogle Scholar
  144. 144.
    Vorobjev, Y.N., Grant, J.A., Scheraga, H.A.: A combined iterative and boundary element approach for solution of the nonlinear Poisson-Boltzmann equation. J. Am. Chem. Soc. 114, 3189–3196 (1992)CrossRefGoogle Scholar
  145. 145.
    Vorobjev, Y.N., Scheraga, H.A.: A fast adaptive multigrid boundary element method for macromolecular electrostatics in a solvent. J. Comput. Chem. 18, 569–583 (1997)CrossRefGoogle Scholar
  146. 146.
    Vorobjev, Y.N., Hermans, J.: SIMS, computation of a smooth invariant molecular surface. Biophys. J. 73, 722–732 (1997)CrossRefGoogle Scholar
  147. 147.
    Vorobjev, Y.N., Almagro, J.C., Hermans, J.: Discrimination between native and intentionally misfolded conformation of proteins: ES/IS, new method for calculating conformational free energy that uses both dynamic s simulations with an explicit solvent and implicit solvent continuum model. Proteins 32, 399–413 (1998)CrossRefGoogle Scholar
  148. 148.
    Vorobjev, Y.N., Hermans, J.: ES/IS: estimation of conformational free energy by combining dynamics simulations with explicit solvent with an implicit solvent continuum model. Biopys. Chem. 78, 195–205 (1999)CrossRefGoogle Scholar
  149. 149.
    Vorobjev, Y.N., Hermans, J.: Free energies of protein decoys provide insight into determinant of protein stability. Protein Sci. 10, 2498–2506 (2001)CrossRefGoogle Scholar
  150. 150.
    Vorobjev, Y.N., Vila, J., Scheraga, H.A.: FAMBE-pH: a fast and accurate method to compute the total solvation free energies of proteins. J. Phys. Chem. B 112, 11122–11136 (2008)CrossRefGoogle Scholar
  151. 151.
    Vorobjev, Y.N.: Blind docking method combining search of low-resolution binding sites with ligand pose refinement by molecular dynamics-based global optimization. J. Comput. Chem. 31, 1080–1092 (2010)Google Scholar
  152. 152.
    Vorobjev, Y.N.: Advances in implicit models of water solvent to compute conformational free energy and molecular dynamics of proteins at constant pH. Adv. Protein Chem. Struct. Biol. 85, 282–322 (2011)Google Scholar
  153. 153.
    Vorobjev, Y.N.: Potential of mean force of water-proton bath and molecular dynamic simulation of proteins at constant pH. J. Comput. Chem. 33, 832–842 (2012)CrossRefGoogle Scholar
  154. 154.
    Wagoner, J., Baker, N.: Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms. Proc. Nat. Acad. Sci. U.S.A. 103, 8331–8336 (2006)CrossRefGoogle Scholar
  155. 155.
    Wang, J., Cieplak, P., Kollman, P.A.: How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049–1074 (2000)CrossRefGoogle Scholar
  156. 156.
    Wallace, J.A., Shen, J.K.: Predicting pKa values with continuous constant pH molecular dynamics. Methods Enzymol. 466, 455–475 (2009)CrossRefGoogle Scholar
  157. 157.
    Wallqvist, W., Berne, B.J.: Molecular dynamics study of the dependence of water solvation free energy on solute curvature and surface area. J. Phys. Chem. 99, 2885–2892 (1995)CrossRefGoogle Scholar
  158. 158.
    Wallqvist, W., Berne, B.J.: Computer simulation of hydrophobic hydration forces on stacked plates at short range. J. Phys. Chem. 99, 2893–2899 (1995)CrossRefGoogle Scholar
  159. 159.
    Williams, S.L., Oliveira, C.A.F., McCammon, J.A.: Coupling constant pH molecular dynamics with accelerated molecular dynamics. J. Chem. Theory. Comput. 6, 560–568 (2010)CrossRefGoogle Scholar
  160. 160.
    Wihtam, S., Talley, K., Wang, L., Zhang, Z., Sarkar, S., Gao, D., Yang, W., Alexov, E.: Developing of hybrid approaches to predict pKa values of ionizable groups. Proteins 79, 3389–3399 (2011)CrossRefGoogle Scholar
  161. 161.
    Wroblewska, L., Skolnick, J.: Can a physics-based, all-atom potential find a protein’s native structure among misfolded structures? I. Large scale AMBER benchmarking. J. Comput. Chem. 28, 2059–2066 (2007)CrossRefGoogle Scholar
  162. 162.
    Yang, S.A., Honig, B.: On the pH dependence of protein stability. J. Mol. Biol. 231, 459–474 (1993)CrossRefGoogle Scholar
  163. 163.
    Yoon, B.J., Lenhoff, A.M.: A boundary element method for molecular electrostatics with electrolyte effects. J. Comput. Chem. 11, 1080–1086 (1990)CrossRefGoogle Scholar
  164. 164.
    Zauhar, R.J.: SMATR: a solvent-accessible triangulated surface generator for molecular graphics and boundary element applications. J. Comput. Aided Mol. Des. 9, 149–159 (1995)CrossRefGoogle Scholar
  165. 165.
    Zauhar, R.J., Varnek, A.A.: Fast and space-efficient boundary element method for computing electrostatics and hydration effects in large molecules. J. Comput. Chem. 17, 864–877 (1996)CrossRefGoogle Scholar
  166. 166.
    Zhang, Y., Skolnick, J.: Automated structure prediction of weakly gomologous proteins on a genomic scale. Proc. Natl. Acad. Sci. U.S.A. 101, 7594–7599 (2003)CrossRefGoogle Scholar
  167. 167.
    Zhou, Z., Payne, P., Vasquez, M., Kuhn, N., Levitt, M.: Finite-difference solution of the Poisson-Boltzmann equation: complete elimination of self-energy. J. Comput. Chem. 17, 1344–1353 (1996)CrossRefGoogle Scholar
  168. 168.
    Zhou, Y.C., Feig, M., Wei, G.W.: Higly accurate biomolecular electrostatics in continuum dielectric environments. J. Comput. Chem. 29, 87–97 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of ScienceNovosibirskRussia

Personalised recommendations