Advertisement

Modeling Nucleic Acids at the Residue–Level Resolution

  • Filip Leonarski
  • Joanna Trylska
Chapter
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 8)

Abstract

Coarse–grained models and force fields have become useful in the studies of the dynamics and physicochemical properties of nucleic acids. Reduced representations of DNA or RNA allow saving computational cost of a few orders of magnitude in comparison with full–atomistic simulations. In this chapter we describe a few selected coarse–grained models of nucleic acids in which one nucleotide is represented as either one, two or three beads. We present the examples of the models designed to investigate the internal dynamics and temperature-dependent denaturation of nucleic acids, as well as created to predict the tertiary structure of RNA or used for large ribonucleoprotein complexes. We describe how the purpose of the model affects the design of the potential energy function and the choice of the simulation method. We also address the limitations of these models.

Notes

Acknowledgements

The authors acknowledge support from the Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw (G31-4, GA65-16, GA65-17, GB65-28 to JT), National Science Centre, Poland (2011/03/N/NZ2/02482 to FL, DEC-2014/12/W/ST5/00589 Symfonia to JT, 2016/23/B/NZ1/03198 Opus to JT).

References

  1. 1.
    Adams, P.L., Stahley, M.R., Kosek, A.B., Wang, J., Strobel, S.A.: Crystal structure of a self-splicing group I intron with both exons. Nature 430, 45–50 (2004)CrossRefGoogle Scholar
  2. 2.
    Al-Hashimi, H.M., Walter, N.G.: RNA dynamics: it is about time. Curr. Opin. Struct. Biol. 18, 321–329 (2008)CrossRefGoogle Scholar
  3. 3.
    Allison, S.A., McCammon, J.A.: Multistep Brownian dynamics: application to short wormlike chains. Biopolymers 23, 363–375 (1984)CrossRefGoogle Scholar
  4. 4.
    Arya, G., Zhang, Q., Schlick, T.: Flexible histone tails in a new mesoscopic oligonucleosome model. Biophys. J. 91, 133–150 (2006)CrossRefGoogle Scholar
  5. 5.
    Bath, J., Green, S.J., Allen, K.E., Turberfield, A.J.: Mechanism for a directional, processive, and reversible DNA motor. Small 5, 1513–1516 (2009)CrossRefGoogle Scholar
  6. 6.
    Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry, 7th edn. Freeman, W. H (2010)Google Scholar
  7. 7.
    Berman, H.M., Olson, W.K., Beveridge, D.L., Westbrook, J., Gelbin, A., Demeny, T., Hsieh, S.H., Srinivasan, A.R., Schneider, B.: The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 63, 751–759 (1992)CrossRefGoogle Scholar
  8. 8.
    Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.F.: J., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., Tasumi, M.: The protein data bank: A computer-based archival file for macromolecular structures. Arch. Biochem. Biophys. 185, 584–591 (1978)CrossRefGoogle Scholar
  9. 9.
    Biyun, S., Cho, S.S., Thirumalai, D.: Folding of human telomerase RNA pseudoknot using ion-jump and temperature-quench simulations. J. Am. Chem. Soc. 133, 20634–20643 (2011)CrossRefGoogle Scholar
  10. 10.
    Bloomfield, V.A., Crothers, D.M., Tinoco, I.J.: Nucleic acids : structures, properties and functions, 1st edn. University Science Books (2000)Google Scholar
  11. 11.
    Boniecki, M.J., Lach, G., Dawson, W.K., Tomala, K., Lukasz, P., Soltysinski, T., Rother, K.M., Bujnicki, J.M.: SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res. 44, e63 (2016)CrossRefGoogle Scholar
  12. 12.
    Brion, P., Westhof, E.: Hierarchy and dynamics of RNA folding. Annu. Rev. Biophys. Biomol. Struct. 26, 113–137 (1997)CrossRefGoogle Scholar
  13. 13.
    Brooks, B.R., Brooks III, C., MacKerell Jr., A., Nilsson, L., Petrella, R., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R., Post, C., Pu, J., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D., Karplus, M.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009)CrossRefGoogle Scholar
  14. 14.
    Bruant, N., Flatters, D., Lavery, R., Genest, D.: From atomic to mesoscopic descriptions of the internal dynamics of DNA. Biophys. J. 77, 2366–2376 (1999)CrossRefGoogle Scholar
  15. 15.
    Capriotti, E., Renom, M.M.: Quantifying the relationship between sequence and three-dimensional structure conservation in RNA. BMC Bioinformatics 11, 322 (2010)CrossRefGoogle Scholar
  16. 16.
    Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J.: The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005)CrossRefGoogle Scholar
  17. 17.
    Cheatham, T.E., Young, M.A.: Molecular dynamics simulation of nucleic acids: successes, limitations, and promise. Biopolymers 56, 232–256 (2000)CrossRefGoogle Scholar
  18. 18.
    Chen, Y., Ding, F., Nie, H., Serohijos, A.W.: S., S., Wilcox, K., Yin, S., Dokholyan, N.V.: Protein folding: then and now. Arch. Biochem. Biophys. 469, 4–19 (2008)CrossRefGoogle Scholar
  19. 19.
    Cho, S.S., Pincus, D.L., Thirumalai, D.: Assembly mechanisms of RNA pseudoknots are determined by the stabilities of constituent secondary structures. Proc. Natl. Acad. Sci. USA 106, 17349–17354 (2009)CrossRefGoogle Scholar
  20. 20.
    Choi, C.H., Kalosakas, G., Rasmussen, K.O., Hiromura, M., Bishop, A.R., Usheva, A.: DNA dynamically directs its own transcription initiation. Nucleic Acids Res. 32, 1584–90 (2004)CrossRefGoogle Scholar
  21. 21.
    Cieplak, M., Sułkowska, J.I.: Structure-based models of biomolecules: stretching of proteins, dynamics of knots, hydrodynamic effects, and indentation of virus capsids. In: A. Koliński (ed.) Multiscale approaches to protein modeling: structure prediction, dynamics, thermodynamics and macromolecular assemblies., chap. 8, pp. 179–208. Springer (2010)Google Scholar
  22. 22.
    Cui, Q., Tan, R.K.Z., Harvey, S.C., Case, D.A.: Low-Resolution Molecular Dynamics Simulations of the 30S Ribosomal Subunit. Multiscale Model. Simul. 5, 1248–1263 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Dans, P.D., Zeida, A., Machado, M.R., Pantano, S.: A Coarse Grained Model for Atomic-Detailed DNA Simulations with Explicit Electrostatics. J. Chem. Theory Comp. 6, 1711–1725 (2010)CrossRefGoogle Scholar
  24. 24.
    Dauter, Z., Wlodawer, A., Minor, W., Jaskolski, M., Rupp, B.: Avoidable errors in deposited macromolecular structures. IUCrJ 1, 179–193 (2014)CrossRefGoogle Scholar
  25. 25.
    DeMille, R.C., Cheatham, T.E., Molinero, V.: A coarse-grained model of DNA with explicit solvation by water and ions. J. Phys. Chem. B 115, 132–142 (2011)CrossRefGoogle Scholar
  26. 26.
    DeMille, R.C., Molinero, V.: Coarse-grained ions without charges: reproducing the solvation structure of NaCl in water using short-ranged potentials. J. Chem. Phys. 131, 034,107 (2009)CrossRefGoogle Scholar
  27. 27.
    Denesyuk, N., Thirumalai, D.: Coarse-grained model for predicting rna folding thermodynamics. J. Phys. Chem. B 117, 4901–4911 (2013)CrossRefGoogle Scholar
  28. 28.
    Denesyuk, N., Thirumalai, D.: How do metal ions direct ribozyme folding? Nat. Chem. 7, 793–801 (2015)CrossRefGoogle Scholar
  29. 29.
    Ding, D., Dokholyan, N.V.: Simple but predictive protein models. Trends Biotechnol. 23, 450–455 (2005)CrossRefGoogle Scholar
  30. 30.
    Ding, F., Sharma, S., Chalasani, P., Demidov, V.V., Broude, N.E., Dokholyan, N.V.: Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms. RNA 14, 1164–1173 (2008)CrossRefGoogle Scholar
  31. 31.
    Douglas, S.M., Marblestone, A.H., Teerapittayanon, S., Vazquez, A., Church, G.M., Shih, W.M.: Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009)CrossRefGoogle Scholar
  32. 32.
    Drukker, K., Schatz, G.C.: A Model for Simulating Dynamics of DNA Denaturation. J. Phys. Chem. B 104, 6108–6111 (2000)CrossRefGoogle Scholar
  33. 33.
    Drukker, K., Wu, G., Schatz, G.C.: Model simulations of DNA denaturation dynamics. J. Chem. Phys. 114, 579 (2001)CrossRefGoogle Scholar
  34. 34.
    Flicek, P., et al.: Ensembl 2011. Nucleic Acids Res. 39, D800–6 (2011)CrossRefGoogle Scholar
  35. 35.
    Forrey, C., Muthukumar, M.: Langevin dynamics simulations of genome packing in bacteriophage. Biophys. J. 91, 25–41 (2006)CrossRefGoogle Scholar
  36. 36.
    Freddolino, P.L., Liu, F., Gruebele, M., Schulten, K.: Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. Biophys. J. 94, L75–7 (2008)CrossRefGoogle Scholar
  37. 37.
    Freeman, G.S., Hinckley, D.M., De Pablo, J.J.: A coarse-grain three-site-per-nucleotide model for DNA with explicit ions. J. Chem. Phys. 135, 165,104 (2011)CrossRefGoogle Scholar
  38. 38.
    Galas, D.J., Schmitz, A.: DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5, 3157–3170 (1978)CrossRefGoogle Scholar
  39. 39.
    Go, N.: Theoretical studies of protein folding. Annu. Rev. Biophys. Bioeng. 12, 183–210 (1983)CrossRefGoogle Scholar
  40. 40.
    Goodman, R.P., Schaap, I.A.T., Tardin, C.F., Erben, C.M., Berry, R.M., Schmidt, C.F., Turberfield, A.J.: Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005)CrossRefGoogle Scholar
  41. 41.
    Górecki, A., Szypowski, M., Długosz, M., Trylska, J.: RedMD – Reduced Molecular Dynamics Package. J. Comput. Chem. 30, 2364–2373 (2009)Google Scholar
  42. 42.
    Green, S.J., Bath, J., Turberfield, A.J.: Coordinated chemomechanical cycles: A mechanism for autonomous molecular motion. Phys. Rev. Lett. 101, 238,101 (2008)Google Scholar
  43. 43.
    Guvench, O., Brooks, C.L.: Efficient approximate all-atom solvent accessible surface area method parameterized for folded and denatured protein conformations. J. Comput. Chem. 25, 1005–1014 (2004)CrossRefGoogle Scholar
  44. 44.
    Harris, S.A., Laughton, C.A., Liverpool, T.B.: Mapping the phase diagram of the writhe of DNA nanocircles using atomistic molecular dynamics simulations. Nucleic Acids Res. 36, 21–29 (2008)CrossRefGoogle Scholar
  45. 45.
    He, Y., Maciejczyk, M., Oldziej, S., Scheraga, H.A., Liwo, A.: Mean-field interactions between nucleic-acid-base dipoles can drive the formation of the double helix. Phys. Rev. Lett. 110, 098,101 (2013)Google Scholar
  46. 46.
    Hoang, T.X., Cieplak, M.: Molecular dynamics of folding of secondary structures in Go-type models of proteins. J. Chem. Phys. 112, 6851 (2000)CrossRefGoogle Scholar
  47. 47.
    Hülsmann, M., Köddermann, T., Vrabec, J., Reith, D.: GROW: A gradient-based optimization workflow for the automated development of molecular models. Comput. Phys. Commun. 181, 499–513 (2010)zbMATHCrossRefGoogle Scholar
  48. 48.
    Hyeon, C., Thirumalai, D.: Mechanical unfolding of RNA hairpins. Proc. Natl. Acad. Sci. USA 102, 6789–6794 (2005)CrossRefGoogle Scholar
  49. 49.
    Hyeon, C., Thirumalai, D.: Capturing the essence of folding and functions of biomolecules using coarse-grained models. Nat. Comm. 2, 487 (2011)CrossRefGoogle Scholar
  50. 50.
    International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)CrossRefGoogle Scholar
  51. 51.
    Jian, H., Schlick, T., Vologodskii, A.: Internal motion of supercoiled DNA: brownian dynamics simulations of site juxtaposition. J. Mol. Biol. 284, 287–296 (1998)CrossRefGoogle Scholar
  52. 52.
    Jonikas, M.A., Radmer, R.J., Altman, R.B.: Knowledge-based instantiation of full atomic detail into coarse-grain RNA 3D structural models. Bioinformatics 25, 3259–3266 (2009)CrossRefGoogle Scholar
  53. 53.
    Jonikas, M.A., Radmer, R.J., Laederach, A., Das, R., Pearlman, S., Herschlag, D., Altman, R.B.: Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15, 189–199 (2009)CrossRefGoogle Scholar
  54. 54.
    Kibbe, W.A.: OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 35, W43–W46 (2007)CrossRefGoogle Scholar
  55. 55.
    Klimov, D.K., Thirumalai, D.: Native topology determines force-induced unfolding pathways in globular proteins. Proc. Natl. Acad. Sci. USA 97, 7254–7259 (2000)CrossRefGoogle Scholar
  56. 56.
    Knotts, T.A., Rathore, N., Schwartz, D.C., De Pablo, J.J.: A coarse grain model for DNA. J. Chem. Phys. 126, 084,901 (2007)CrossRefGoogle Scholar
  57. 57.
    Koliński, A., Skolnick, J.: Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins 18, 338–352 (1994)CrossRefGoogle Scholar
  58. 58.
    Kolk, M.H., Heus, H.A., Hilbers, C.W.: The structure of the isolated, central hairpin of the HDV antigenomic ribozyme: novel structural features and similarity of the loop in the ribozyme and free in solution. EMBO J. 16, 3685–92 (1997)CrossRefGoogle Scholar
  59. 59.
    Kumar, S.: D, B., Swendsen, R.H., Kollman, P.A., Rosenberg, J.M.: The weighted histogram analysis method for free-energy calculations on biomolecules. I. the method. J. Comput. Chem. 13, 1011–1021 (1992)CrossRefGoogle Scholar
  60. 60.
    Lankas, F., Lavery, R., Maddocks, J.H.: Kinking occurs during molecular dynamics simulations of small DNA minicircles. Structure 14, 1527–1534 (2006)CrossRefGoogle Scholar
  61. 61.
    Leach, A.: Molecular Modelling: Principles and Applications (2nd Edition). Prentice Hall (2001)Google Scholar
  62. 62.
    Leonarski, F., D’Ascenzo, L., Auffinger, P.: Mg2+ ions: do they bind to nucleobase nitrogens? Nucleic Acids Res. 45, 987–1004 (2017)CrossRefGoogle Scholar
  63. 63.
    Leonarski, F., Trovato, F., Tozzini, V., Leś, A., Trylska, J.: Evolutionary algorithm in the optimization of a coarse-grained force field. J. Chem. Theory Comput. 9, 4874–4889 (2013)CrossRefGoogle Scholar
  64. 64.
    Leonarski, F., Trovato, F., Tozzini, V., Trylska, J.: Genetic algorithm optimization of force field parameters: application to a coarse-grained model of RNA. In: Proceedings of the 9th European conference on Evolutionary computation, machine learning and data mining in bioinformatics, EvoBIO’11, pp. 147–152. Springer-Verlag, Berlin, Heidelberg (2011)CrossRefGoogle Scholar
  65. 65.
    Leonarski, F., Trylska, J.: RedMDStream: Parameterization and simulation toolbox for coarse-grained molecular dynamics models. Biophys. J. 108, 1843–1847 (2015)CrossRefGoogle Scholar
  66. 66.
    Leontis, N.B., Westhof, E.: Analysis of RNA motifs. Curr. Opin. Struct. Biol. 13, 300–308 (2003)CrossRefGoogle Scholar
  67. 67.
    Liphardt, J., Dumont, S., Smith, S.B., Tinoco, I., Bustamante, C.: Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835 (2002)CrossRefGoogle Scholar
  68. 68.
    Liphardt, J., Onoa, B., Smith, S.B., Tinoco, I., Bustamante, C.: Reversible unfolding of single RNA molecules by mechanical force. Science 292, 733–737 (2001)CrossRefGoogle Scholar
  69. 69.
    Liwo, A., Czaplewski, C., Oldziej, S., Rojas, A., Kazmierkiewicz, R., Makowski, M., Murarka, R., Scheraga, H.: Simulation of protein structure and dynamics with the coarse-grained unres force field. In: G. Voth (ed.) Coarse-Graining of Condensed Phase and Biomolecular Systems., chap. 8, pp. 107–122. Taylor & Francis (2008)Google Scholar
  70. 70.
    Liwo, A., He, Y., Scheraga, H.A.: Coarse-grained force field: general folding theory. Phys. Chem. Chem. Phys. 13(16), 890–901 (2011)Google Scholar
  71. 71.
    Lu, Z.J., Turner, D.H., Mathews, D.H.: A set of nearest neighbor parameters for predicting the enthalpy change of rna secondary structure formation. Nucleic Acids Res. 34, 4912–4924 (2006)CrossRefGoogle Scholar
  72. 72.
    Lyubartsev, A.P., Laaksonen, A.: Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach. Phys. Rev. E 52, 3730–3737 (1995)CrossRefGoogle Scholar
  73. 73.
    Ma, J.: Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13, 373–380 (2005)CrossRefGoogle Scholar
  74. 74.
    Maciejczyk, M., Rudnicki, W.R., Lesyng, B.: A mezoscopic model of nucleic acids. Part 2. An effective potential energy function for DNA. J. Biomol. Struct. Dyn. 17, 1109–1115 (2000)CrossRefGoogle Scholar
  75. 75.
    Maciejczyk, M., Spasic, A., Liwo, A., Scheraga, H.A.: Coarse-grained model of nucleic acid bases. J. Comp. Chem. 31, 1644–1655 (2010)Google Scholar
  76. 76.
    Maciejczyk, M., Spasic, A., Liwo, A., Scheraga, H.A.: DNA duplex formation with a coarse-grained model. J. Chem. Theory Comput. 10, 5020–5035 (2014)CrossRefGoogle Scholar
  77. 77.
    MacKerell, A.D., Banavali, N., Foloppe, N.: Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56, 257–265 (2000)CrossRefGoogle Scholar
  78. 78.
    Malhotra, A., Harvey, S.C.: A quantitative model of the Escherichia coli 16 S RNA in the 30 S ribosomal subunit. J. Mol. Biol. 240, 308–340 (1994)CrossRefGoogle Scholar
  79. 79.
    Malhotra, A., Tan, R.K., Harvey, S.C.: Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques. Biophys. J. 66, 1777–1795 (1994)CrossRefGoogle Scholar
  80. 80.
    Malo, J., Mitchell, J.C., Venien-Bryan, C., Harris, J.R., Wille, H., Sherratt, D.J., Turberfield, A.J.: Engineering a 2D protein DNA crystal. Angew. Chem. Int. Ed. 44, 3057–3061 (2005)CrossRefGoogle Scholar
  81. 81.
    Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999)CrossRefGoogle Scholar
  82. 82.
    Mathews, D.H., Turner, D.H.: Prediction of RNA secondary structure by free energy minimization. Curr. Opin. Struct. Biol. 16, 270–278 (2006)CrossRefGoogle Scholar
  83. 83.
    Mattick, J.S., Makunin, I.V.: Non-coding RNA. Human Mol. Gen. 15 Spec No, R17–29 (2006)CrossRefGoogle Scholar
  84. 84.
    Mazur, A.K.: Evaluation of elastic properties of atomistic DNA models. Biophys. J. 91, 4507–4518 (2006)CrossRefGoogle Scholar
  85. 85.
    McCammon, J.A., Gelin, B.R., Karplus, M.: Dynamics of folded proteins. Nature 267, 585–590 (1977)CrossRefGoogle Scholar
  86. 86.
    Mergell, B., Ejtehadi, M.R., Everaers, R.: Modeling DNA structure, elasticity, and deformations at the base-pair level. Phys Rev E Stat Nonlin Soft Matter Phys 68, 15 (2003)CrossRefGoogle Scholar
  87. 87.
    Mergny, J.L., Lacroix, L.: Analysis of thermal melting curves. Oligonucleotides 13, 515–537 (2003)CrossRefGoogle Scholar
  88. 88.
    Merino, E.J., Wilkinson, K.A., Coughlan, J.L., Weeks, K.M.: RNA structure analysis at single nucleotide resolution by selective 2’-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005)CrossRefGoogle Scholar
  89. 89.
    Miao, Z., Adamiak, R.W., Antczak, M., Batey, R.T., Becka, A.J., Biesiada, M., Boniecki, M.J., Bujnicki, J.M., Chen, S.J., Cheng, C.Y., Chou, F.C., Ferre-D’Amare, A.R., Das, R., Dawson, W.K., Ding, F., Dokholyan, N.V., Dunin-Horkawicz, S., Geniesse, C., Kappel, K., Kladwang, W., Krokhotin, A., Lach, G.E., Major, F., Mann, T.H., Magnus, M., Pachulska-Wieczorek, K., Patel, D.J., Piccirilli, J.A., Popenda, M., Purzycka, K.J., Ren, A., Rice, G.M., Santalucia, J., Sarzynska, J., Szachniuk, M., Tandon, A., Trausch, J.J., Tian, S., Wang, J., Weeks, K.M., Williams, B., Xiao, Y., Xu, X., Zhang, D., Zok, T., Westhof, E.: RNA-Puzzles round III: 3D RNA structure prediction of five riboswitches and one ribozyme. RNA 23, 655–672 (2017)CrossRefGoogle Scholar
  90. 90.
    Mizushima, T., Kataoka, K., Ogata, Y.: Inoue, R.i., Sekimizu, K.: Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. Mol. Microbiol. 23, 381–386 (1997)CrossRefGoogle Scholar
  91. 91.
    Mizushima, T., Natori, S., Sekimizu, K.: Relaxation of supercoiled DNA associated with induction of heat shock proteins in Escherichia coli. Mol. Gen. Genet. 238, 1–5 (1993)Google Scholar
  92. 92.
    Morriss-Andrews, A., Rottler, J., Plotkin, S.S.: A systematically coarse-grained model for DNA and its predictions for persistence length, stacking, twist, and chirality. J. Chem. Phys. 132, 30 (2010)CrossRefGoogle Scholar
  93. 93.
    Narberhaus, F., Waldminghaus, T., Chowdhury, S.: RNA thermometers. FEMS Microbiol. Rev. 30, 3–16 (2006)CrossRefGoogle Scholar
  94. 94.
    Niewieczerzał, S., Cieplak, M.: Stretching and twisting of the DNA duplexes in coarse-grained dynamical models. J. Phys. Condens. Matter 21, 474,221 (2009)Google Scholar
  95. 95.
    Olson, W.K.: Configurational statistics of polynucleotide chains. a single virtual bond treatment. Macromolecules 8, 272–275 (1975)CrossRefGoogle Scholar
  96. 96.
    Olson, W.K.: Flexible dna double helix.1. average dimensions and distribution functions. Biopolymers 18, 1213–1233 (1979)CrossRefGoogle Scholar
  97. 97.
    Olson, W.K., Manning, G.S.: A configurational interpretation of the axial phosphate spacing in polynucleotide helices and random coils. Biopolymers 15, 859–878 (1976)CrossRefGoogle Scholar
  98. 98.
    Olson, W.K., Zhurkin, V.B.: Modeling DNA deformations. Curr. Opin. Struct. Biol. 10, 286–297 (2000)CrossRefGoogle Scholar
  99. 99.
    Omabegho, T., Sha, R., Seeman, N.C.: A bipedal DNA brownian motor with coordinated legs. Science 324, 67–71 (2009)CrossRefGoogle Scholar
  100. 100.
    Ouldridge, T. (ed.): Coarse-Grained Modelling of DNA and DNA Self-Assembly. Springer, Berlin Heidelberg, Oxford, UK (2012)Google Scholar
  101. 101.
    Ouldridge, T.E., Johnston, I.G., Louis, A.A., Doye, J.P.K.: The self-assembly of DNA Holliday junctions studied with a minimal model. J. Chem. Phys. 130, 065101 (2009)CrossRefGoogle Scholar
  102. 102.
    Ouldridge, T.E., Louis, A.A., Doye, J.P.K.: DNA nanotweezers studied with a coarse-grained model of DNA. Phys. Rev. Lett. 104, 4 (2009)Google Scholar
  103. 103.
    Ouldridge, T.E., Louis, A.A., Doye, J.P.K.: Extracting bulk properties of self-assembling systems from small simulations. J. Phys. Condens. Matter 22, 104,102 (2010)Google Scholar
  104. 104.
    Ouldridge, T.E., Louis, A.A., Doye, J.P.K.: Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J. Chem. Phys 134, 085,101 (2010)CrossRefGoogle Scholar
  105. 105.
    Parisien, M., Cruz, J.A., Westhof, E., Major, F.: New metrics for comparing and assessing discrepancies between rna 3d structures and models. RNA 15, 1875–1885 (2009)CrossRefGoogle Scholar
  106. 106.
    Pasquali, S., Derreumaux, P.: HiRE-RNA: a high resolution coarse-grained energy model for RNA. J. Phys. Chem. B 114, 11957–11966 (2010)CrossRefGoogle Scholar
  107. 107.
    Pérez, A., Marchán, I., Svozil, D., Sponer, J., Cheatham, T.E., Laughton, C.A., Orozco, M.: Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 92, 3817–3829 (2007)CrossRefGoogle Scholar
  108. 108.
    Poulain, P., Saladin, A., Hartmann, B., Prévost, C.: Insights on protein-DNA recognition by coarse grain modelling. J. Comp. Chem. 29, 2582–2592 (2008)CrossRefGoogle Scholar
  109. 109.
    Prytkova, T.R., Eryazici, I., Stepp, B., Nguyen, S.B., Schatz, G.C.: DNA melting in small-molecule-DNA-hybrid dimer structures: experimental characterization and coarse-grained molecular dynamics simulations. J. Phys. Chem. B 114, 2627–2634 (2010)CrossRefGoogle Scholar
  110. 110.
    Ramachandran, A., Guo, Q., Iqbal, S.M., Liu, Y.: Coarse-grained molecular dynamics simulation of DNA translocation in chemically modified nanopores. J. Phys. Chem. B 115, 6138–6148 (2011)CrossRefGoogle Scholar
  111. 111.
    Reith, D.: CG-OPT: A software package for automatic force field design. Comput. Phys. Commun. 148, 299–313 (2002)CrossRefGoogle Scholar
  112. 112.
    Reith, D., Pütz, M., Müller-Plathe, F.: Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem. 24, 1624–1636 (2003)CrossRefGoogle Scholar
  113. 113.
    Ren, A., Patel, D.J.: c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. Nat. Chem. Biol. 10, 780–786 (2014)CrossRefGoogle Scholar
  114. 114.
    Richmond, T.J., Davey, C.A.: The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003)CrossRefGoogle Scholar
  115. 115.
    Romano, F., Hudson, A., Doye, J.P.K., Ouldridge, T.E., Louis, A.A.: The effect of topology on the structure and free energy landscape of DNA kissing complexes. J. Chem. Phys. 136, 215102 (2012)CrossRefGoogle Scholar
  116. 116.
    Rothemund, P.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)CrossRefGoogle Scholar
  117. 117.
    Rother, K., Rother, M., Boniecki, M., Puton, T., Bujnicki, J.M.: RNA and protein 3D structure modeling: similarities and differences. J. Mol. Model. pp. 2325–2336 (2011)CrossRefGoogle Scholar
  118. 118.
    Rüdisser, S., Tinoco, I.: Solution structure of Cobalt(III)hexammine complexed to the GAAA tetraloop, and metal-ion binding to G.A mismatches. J. Mol. Biol. 295, 1211–1223 (2000)CrossRefGoogle Scholar
  119. 119.
    Rudnicki, W.R., Bakalarski, G., Lesyng, B.: A mezoscopic model of nucleic acids. Part 1. Lagrangian and quaternion molecular dynamics. J. Biomol. Struct. Dyn. 17, 1097–1108 (2000)CrossRefGoogle Scholar
  120. 120.
    Russell, R., Millett, I.S., Doniach, S., Herschlag, D.: Small angle X-ray scattering reveals a compact intermediate in RNA folding. Nat. Struct. Biol. 7, 367–370 (2000)CrossRefGoogle Scholar
  121. 121.
    Sambriski, E.J., Schwartz, D.C., De Pablo, J.J.: A mesoscale model of DNA and its renaturation. Biophys. J. 96, 1675–1690 (2009)CrossRefGoogle Scholar
  122. 122.
    Savelyev, A., Papoian, G.A.: Molecular Renormalization Group Coarse-Graining of Polymer Chains: Application to Double-Stranded DNA. Biophys. J. 96, 4044–4052 (2009)CrossRefGoogle Scholar
  123. 123.
    Savelyev, A., Papoian, G.A.: Chemically accurate coarse graining of double-stranded DNA. Proc. Natl. Acad. Sci. USA 107, 20340–20345 (2010)CrossRefGoogle Scholar
  124. 124.
    Schlick, T.: Molecular Modeling and Simulation: An Interdisciplinary Guide (Interdisciplinary Applied Mathematics), 2nd edition. edn. Springer (2010)Google Scholar
  125. 125.
    Seeman, N.C.: DNA in a material world. Nature 421, 427–431 (2003)MathSciNetCrossRefGoogle Scholar
  126. 126.
    Sharma, S., Ding, F., Dokholyan, N.V.: iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24, 1951–1952 (2008)CrossRefGoogle Scholar
  127. 127.
    Shaw, D.E., Dror, R.O., Salmon, J.K., et al.: Millisecond-scale molecular dynamics simulations on anton. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC ’09, pp. 39:1–39:11. ACM, New York, NY, USA (2009)Google Scholar
  128. 128.
    Shaw, D.E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R.O., et al.: Atomic-level characterization of the structural dynamics of proteins. Science 330, 341–346 (2010)CrossRefGoogle Scholar
  129. 129.
    Skolnick, J., Koliński, A.: Simulations of the folding of a globular protein. Science 250, 1121–1125 (1990)CrossRefGoogle Scholar
  130. 130.
    Stagg, S.M., Mears, J.A., Harvey, S.C.: A Structural Model for the Assembly of the 30S Subunit of the Ribosome. J. Mol. Biol. 328, 49–61 (2003)CrossRefGoogle Scholar
  131. 131.
    Sussman, J.L., Holbrook, S.R., Warrant, R.W., Church, G.M., Kim, S.H.: Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J. Mol. Biol. 123, 607–30 (1978)Google Scholar
  132. 132.
    Swendsen, R.H.: Monte Carlo renormalization group. Phys. Rev. Lett. 42, 859–861 (1979)CrossRefGoogle Scholar
  133. 133.
    Swendsen, R.H., Wang, J.S.: Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 57, 2607–2609 (1986)MathSciNetCrossRefGoogle Scholar
  134. 134.
    Tan, R.K.Z., Harvey, S.C.: Molecular Mechanics Model of Supercoiled DNA. J. Mol. Biol. 205, 573–591 (1989)CrossRefGoogle Scholar
  135. 135.
    Trovato, F., Tozzini, V.: Supercoiling and local denaturation of plasmids with a minimalist DNA model. J. Phys. Chem. B 112, 13197–13200 (2008)CrossRefGoogle Scholar
  136. 136.
    Trylska, J., Tozzini, V., McCammon, J.A.: Exploring global motions and correlations in the ribosome. Biophys. J. 89, 1455–1463 (2005)CrossRefGoogle Scholar
  137. 137.
    Tucker, B.J., Breaker, R.R.: Riboswitches as versatile gene control elements. Curr. Opin. Struct. Biol. 15, 342–8 (2005)CrossRefGoogle Scholar
  138. 138.
    Tullius, T.D.: DNA footprinting with hydroxyl radical. Nature 332, 663–664 (1988)CrossRefGoogle Scholar
  139. 139.
    Turner, D.H., Mathews, D.H.: NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 38, D280–282 (2010)CrossRefGoogle Scholar
  140. 140.
    Venter, J.C., et al.: The sequence of the human genome. Science 291, 1304–51 (2001)CrossRefGoogle Scholar
  141. 141.
    Vinograd, J., Lebowitz, J., Radloff, R., Watson, R., Laipis, P.: The twisted circular form of polyoma viral DNA. Proc. Natl. Acad. Sci. USA 53, 1104–1111 (1965)CrossRefGoogle Scholar
  142. 142.
    Voltz, K., Trylska, J., Calimet, N., Smith, J.C., Langowski, J.: Unwrapping of nucleosomal DNA ends: a multiscale molecular dynamics study. Biophys. J. 102, 849–858 (2012)CrossRefGoogle Scholar
  143. 143.
    Voltz, K., Trylska, J., Tozzini, V., Kurkal-Siebert, V., Langowski, J., Smith, J.: Coarse-grained force field for the nucleosome from self-consistent multiscaling. J. Comput. Chem. 29, 1429–1439 (2008)CrossRefGoogle Scholar
  144. 144.
    Vorobjev, Y.N.: Block-units method for conformational calculations of large nucleic acid chains. i. block-units approximation of atomic structure and conformational energy of polynucleotides. Biopolymers 29, 1503–1518 (1990)CrossRefGoogle Scholar
  145. 145.
    Wang, J., Peck, L., Becherer, K.: DNA Supercoiling and Its Effects on DNA Structure and Function. Cold Spring Harbor Symposia on Quantitative Biology 47, 85–91 (1983)CrossRefGoogle Scholar
  146. 146.
    Whitelam, S., Feng, E.H., Hagan, M.F., Geissler, P.L.: The role of collective motion in examples of coarsening and self-assembly. Soft Matter 5, 1251–1262 (2009)CrossRefGoogle Scholar
  147. 147.
    Wimberly, B.T., Bodersen, D.E., Clemons, W.M., Morgan-Warren, R.J., Carter, A.P., Vonrhein, C., Hartsch, T., Ramakrishnan, V.: Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000)CrossRefGoogle Scholar
  148. 148.
    Xia, Z., Gardner, D.P., Gutell, R.R., Ren, P.: Coarse-grained model for simulation of RNA three-dimensional structures. J. Phys. Chem. B 114, 13497–13506 (2010)CrossRefGoogle Scholar
  149. 149.
    Yu, I., Mori, T., Ando, T., Harada, R., Jung, J., Sugita, Y., Feig, M.: Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. eLife 5, e19,274 (2016)Google Scholar
  150. 150.
    Yurke, B., Turberfield, A.J., Mills Jr, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature pp. 605–608 (2000)CrossRefGoogle Scholar
  151. 151.
    Zheng, H., Chordia, M.D., Cooper, D.R., Chruszcz, M., Mueller, P., Sheldrick, G.M., Minor, W.: Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server. Nat. Protoc. 9, 156–170 (2014)CrossRefGoogle Scholar
  152. 152.
    Zou, J., Liang, W., Zhang, S.: Coarse-grained molecular dynamics modeling of DNA-carbon nanotube complexes. Int. J. Numer. Meth. Eng. 0600661, 968–985 (2010)zbMATHCrossRefGoogle Scholar
  153. 153.
    Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Chemistry, Centre of New TechnologiesUniversity of WarsawWarsawPoland
  2. 2.Centre of New TechnologiesUniversity of WarsawWarsawPoland

Personalised recommendations