Advertisement

Electronic Properties of Iron Sites and Their Active Forms in Porphyrin-Type Architectures

  • Mariusz RadońEmail author
  • Ewa Broclawik
Chapter
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 8)

Abstract

This chapter is focused on recent advances in quantum chemical modeling of active sites in heme proteins and iron porphyrin complexes. After introducing the computational methods (density functional theory and correlated ab initio ones) several case studies are reviewed to show how these methods unravel the electronic structure of heme and heme-related systems; in particular, how they deal with description of: (a) spin state energetics in ferrous and ferric complexes; (b) binding properties of CO, NO, and \({\text {O}}_{2}\) ligands to heme; (c) electronic structure of P450 Cpd I and alike systems. Making conclusive calculations for the heme species requires a balanced treatment of electron correlation, which is a great challenge for the present computational methods. Further challenge is situated in a correct translation of the computational results into chemical terms. Achievements of modern ab initio methods on the two fronts are highlighted and discussed in relation to DFT calculations.

Notes

Acknowledgements

This research project was supported by grant no UMO-2011/01/B/ST4/02620 from the National Science Centre (Poland) and by grant no IP2011 044471 from the Ministry of Science and Higher Education (Poland). This scholarly work was made thanks to POWIEW project, which is co-funded by the European Regional Development Fund (ERDF) as a part of the Innovative Economy program. This publication was made possible through the financial support from the Foundation for Polish Science (START scholarship provided for M.R.). We also acknowledge computational grants from Academic Computer Center CYFRONET AGH in Kraków, WCSS in Wroclaw (grant no. 181), and CI TASK in Gdańsk.

References

  1. 1.
    Adler, T.B., Knizia, G., Werner, H.J.: A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys. 127(22), 221106 (2007).  https://doi.org/10.1063/1.2817618CrossRefGoogle Scholar
  2. 2.
    Ali, M.E., Sanyal, B., Oppeneer, P.M.: Electronic structure, spin-states, and spin-crossover reaction of heme-related Fe-porphyrins: a theoretical perspective. J. Phys. Chem. B 116(20), 5849–5859 (2012).  https://doi.org/10.1021/jp3021563CrossRefGoogle Scholar
  3. 3.
    Altun, A., Shaik, S., Thiel, W.: What is the active species of cytochrome P450 during camphor hydroxylation? QM/MM studies of different electronic states of compound I and of reduced and oxidized iron-oxo intermediates. J. Am. Chem. Soc. 129(29), 8978–8987 (2007).  https://doi.org/10.1021/ja066847yCrossRefGoogle Scholar
  4. 4.
    Altun, A., Kumar, D., Neese, F., Thiel, W.: Multireference ab initio quantum mechanics/molecular mechanics study on intermediates in the catalytic cycle of cytochrome P450cam. J. Phys. Chem. A 112, 12,904–12,910 (2008).  https://doi.org/10.1021/jp802092wCrossRefGoogle Scholar
  5. 5.
    Andersson, K., Malmqvist, P.Å., Roos, B.O.: Second-order perturbation theory with a complete active self-consistent field reference function. J. Chem. Phys. 96(2), 1218–1226 (1991)CrossRefGoogle Scholar
  6. 6.
    Angeli, C., Borini, S., Cavallini, A., Cestari, M., Cimiraglia, R., Ferrighi, L., Sparta, M.: Developments in the N-electron valence state perturbation theory. Int. J. Quantum. Chem. 106(3), 686–691 (2006).  https://doi.org/10.1002/qua.20831CrossRefGoogle Scholar
  7. 7.
    Aquilante, F., Malmqvist, P.Å., Pedersen, T.B., Ghosh, A., Roos, B.O.: Cholesky decomposition-based multiconfiguration second-order perturbation theory (CD-CASPT2): application to the spin-state energetics of Co\(^{\text{ III }}\)(diiminato)(NPh). J. Chem. Theory Comput. 4(5), 694–702 (2008).  https://doi.org/10.1021/ct700263hCrossRefGoogle Scholar
  8. 8.
    Balabanov, N.B., Peterson, K.A.: Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn. J. Chem. Phys. 123(064), 107 (2005).  https://doi.org/10.1063/1.1998907CrossRefGoogle Scholar
  9. 9.
    Bartlett, R.J., Musial, M.: Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291–352 (2007).  https://doi.org/10.1103/RevModPhys.79.291CrossRefGoogle Scholar
  10. 10.
    Barysz, M.: Two-component relativistic theories. In: Barysz, M., Ishikawa, Y. (eds.) Relativistic methods for chemists, no. 10 in challenges and advances in computational chemistry and physics, pp. 165–190. Springer, The Netherlands (2010).  https://doi.org/10.1007/978-1-4020-9975-5_4CrossRefGoogle Scholar
  11. 11.
    Blomberg, L.M., Blomberg, M.R., Siegbahn, P.E.: A theoretical study of the binding of O\(_2\), NO and CO to heme proteins. J. Inorg. Biochem. 99, 949–958 (2005).  https://doi.org/10.1016/j.jinorgbio.2005.02.014CrossRefGoogle Scholar
  12. 12.
    Blomberg, M.R., Johansson, A.J., Siegbahn, P.E.: O–O bond cleavage in dinuclear peroxo complexes of iron porphyrins: a quantum chemical study. Inorg. Chem. 46, 7992–7997 (2007)CrossRefGoogle Scholar
  13. 13.
    Brucker, E., Olson, J., Ikeda-Saito, M., Phillips Jr., G.: Nitric oxide myoglobin: crystal structure and analysis of ligand geometry. Proteins 30, 352–356 (1998). 10.1002/(SICI)1097-0134(19980301)30:4\({<}\)352::AID-PROT2\({>}\)3.0.CO;2-LCrossRefGoogle Scholar
  14. 14.
    Burlamacchi, L., Martini, G., Tiezzi, E.: Electron spin resonance of iron-nitric oxide complexes. Iron-nitrosyl-halide compounds. Inorg. Chem. 8(9), 2021–2025 (1969).  https://doi.org/10.1021/ic50079a047CrossRefGoogle Scholar
  15. 15.
    Caffarel, M.: Quantum monte carlo in chemistry. In: Engquist, B. (ed.) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin (2011)Google Scholar
  16. 16.
    Caffarel, M., Daudey, J.P., Heully, J.L., Ramírez-Solís, A.: Towards accurate all-electron quantum Monte Carlo calculations of transition-metal systems: spectroscopy of the copper atom. J. Chem. Phys. 123(094), 102 (2005).  https://doi.org/10.1063/1.2011393CrossRefGoogle Scholar
  17. 17.
    Cao, X., Dolg, M.: Relativistic pseudopotentials. In: Barysz, M., Ishikawa, Y. (eds.) Relativistic Methods for Chemists, Challenges and Advances in Computational Chemistry and Physics, vol. 10, pp. 215–277. Springer, The Netherlands (2010).  https://doi.org/10.1007/978-1-4020-9975-5_6CrossRefGoogle Scholar
  18. 18.
    Capece, L., Estrin, D.A., Marti, M.A.: Dynamical characterization of the heme NO oxygen binding (HNOX) domain. Insight into soluble guanylate cyclase allosteric transition. Biochemistry 47(36), 9416–9427 (2008).  https://doi.org/10.1021/bi800682kCrossRefGoogle Scholar
  19. 19.
    Chandrasena, R.E.P., Vatsis, K.P., Coon, M.J., Hollenberg, P.F., Newcomb, M.: Hydroxylation by the hydroperoxy-iron species in cytochrome p450 enzymes. J. Am. Chem. Soc. 126(1), 115–126 (2004).  https://doi.org/10.1021/ja038237tCrossRefGoogle Scholar
  20. 20.
    Chen, H., Ikeda-Saito, M., Shaik, S.: Nature of the Fe-O\(_2\) bonding in oxy-myoglobin: effect of the protein. J. Am. Chem. Soc. 130(44), 14778–14790 (2008).  https://doi.org/10.1021/ja805434mCrossRefGoogle Scholar
  21. 21.
    Chen, H., Song, J., Lai, W., Wu, W., Shaik, S.: Multiple low-lying states for compound I of P450cam and chloroperoxidase revealed from multireference ab initio QM/MM calculations. J. Chem. Theory Comput. 6(3), 940–953 (2010).  https://doi.org/10.1021/ct9006234CrossRefGoogle Scholar
  22. 22.
    Chen, H., Lai, W., Shaik, S.: Multireference and multiconfiguration ab initio methods in heme-related systems: what have we learned so far? J. Phys. Chem. B 115(8), 1727–1742 (2011).  https://doi.org/10.1021/jp110016uCrossRefGoogle Scholar
  23. 23.
    Chen, O., Groh, S., Liechty, A., Ridge, D.P.: Binding of nitic oxide to iron(II) porphrins: radiative association, blackbody infrared radiative dissociation, and gas-phase association equilibrium. J. Am. Chem. Soc. 121, 11,910–11,911 (1999).  https://doi.org/10.1021/ja991477hCrossRefGoogle Scholar
  24. 24.
    Choe, Y.K., Hashimoto, T., Nakano, H., Hirao, K.: Theoretical study of the electronic ground state of iron(II) porphine. Chem. Phys. Lett. 295, 380–388 (1998)CrossRefGoogle Scholar
  25. 25.
    Choe, Y.K., Nakajima, T., Hirao, K., Lindh, R.: Theoretical study of the electronic ground state of iron(II) porphine. J. Chem. Phys. 111(9), 3837–3845 (1999).  https://doi.org/10.1063/1.479687CrossRefGoogle Scholar
  26. 26.
    Collman, J.P.: Functional analogs of heme protein active sites. Inorg. Chem. 36(23), 5145–5155 (1997).  https://doi.org/10.1021/ic971037wCrossRefGoogle Scholar
  27. 27.
    Collman, J.P., Hoard, J.L., Kim, N., Lang, G., Reed, C.A.: Synthesis, stereochemistry, and structure-related properties of \(\alpha,\beta,\gamma,\delta \)-tetraphenylporphinatoiron(II). J. Am. Chem. Soc. 97, 2676–2681 (1975).  https://doi.org/10.1021/ja00843a015CrossRefGoogle Scholar
  28. 28.
    Collman, J.P., Brauman, J.I., Iverson, B.L., Sessier, J.L., Morris, R.M., Gibson, Q.H.: O\(_2\) and CO binding to iron(II) porphyrins: a comparison of the “picket fence” and “pocket” porphyrins. J. Am. Chem. Soc. 105, 3052–3064 (1983)CrossRefGoogle Scholar
  29. 29.
    Conradie, J., Ghosh, A.: DFT calculations on the spin-crossover complex Fe(salen)(NO): a quest for the best functional. J. Phys. Chem. B 111, 12,621–12,624 (2007).  https://doi.org/10.1021/jp074480tCrossRefGoogle Scholar
  30. 30.
    Conradie, J., Quarless, D., Hsu, H.F., Harrop, T., Lippard, S., Koch, S., Ghosh, A.: Electronic structure and FeNO conformation of nonheme iron-thiolate-NO complexes: an experimental and DFT study. J. Am. Chem. Soc. 129(34), 10,446–10,456 (2007).  https://doi.org/10.1021/jp076979tCrossRefGoogle Scholar
  31. 31.
    Cramer, C.J., Truhlar, D.G.: Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys. 11, 10,757–10,816 (2009).  https://doi.org/10.1039/b907148bCrossRefGoogle Scholar
  32. 32.
    Davydov, R., Makris, T.M., Kofman, V., Werst, D.E., Sligar, S.G., Hoffman, B.M.: Hydroxylation of camphor by reduced oxy-cytochrome P450cam: mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes. J. Am. Chem. Soc. 123(7), 1403–1415 (2001).  https://doi.org/10.1021/ja003583l. (pMID: 11456714)CrossRefGoogle Scholar
  33. 33.
    Denisov, I.G., Makris, T.M., Sligar, S.G., Schlichting, I.: Structure and chemistry of cytochrome p450. Chem. Rev. 105, 2253–2278 (2005).  https://doi.org/10.1021/cr0307143CrossRefGoogle Scholar
  34. 34.
    Dey, A., Ghosh, A.: “True” iron(V) and iron(VI) porphyrins: a first theoretical exploration. J. Am. Chem. Soc. 124(13), 3206–3207 (2002).  https://doi.org/10.1021/ja012402sCrossRefGoogle Scholar
  35. 35.
    Dolphin, D., Sams, J.R., Tsin, T.B., Wong, K.L.: Synthesis and Moessbauer spectra of octaethylporphyrin ferrous complexes. J. Am. Chem. Soc. 98, 6970–6975 (1976).  https://doi.org/10.1021/ja00438a037CrossRefGoogle Scholar
  36. 36.
    Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989).  https://doi.org/10.1063/1.456153CrossRefGoogle Scholar
  37. 37.
    Egawa, T., Shimada, H., Ishimura, Y.: Evidence for compound I formation in the reaction of cytochrome-P450cam with m-chloroperbenzoic acid. Biochem. Biophys. Res. Commun. 201(3), 1464–1469 (1994).  https://doi.org/10.1006/bbrc.1994.1868CrossRefGoogle Scholar
  38. 38.
    van Eldik, R.: Fascinating inorganic/bioinorganic reaction mechanisms. Coord. Chem. Revs. 251(13–14), 1649–1662 (2007).  https://doi.org/10.1016/j.ccr.2007.02.004. (37th International Conference on Coordination Chemistry, Cape Town, South Africa)CrossRefGoogle Scholar
  39. 39.
    Ellison, M., Schulz, C., Scheidt, W.: Structure of the deoxymyoglobin model [Fe(TPP)(2-MeHIm)] reveals unusual porphyrin core distortions. Inorg. Chem. 41(8), 2173–2181 (2002).  https://doi.org/10.1021/ic020012gCrossRefGoogle Scholar
  40. 40.
    Enemark, J., Feltham, R.: Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord. Chem. Revs. 13(4), 339–406 (1974).  https://doi.org/10.1016/S0010-8545(00)80259-3CrossRefGoogle Scholar
  41. 41.
    Frenking, G., Fröhlich, N.: The nature of the bonding in transition-metal compounds. Chem. Rev. 100, 717–774 (2000)CrossRefGoogle Scholar
  42. 42.
    Ghosh, A.: Transition metal spin state energetics and noninnocent systems: challenges for DFT in the bioinorganic area. J. Biol. Inorg. Chem. 11, 712–724 (2006)CrossRefGoogle Scholar
  43. 43.
    Goddard III, W.A., Olafson, B.D.: Ozone model for bonding of an O\(_2\) to heme in oxyhemoglobin. Proc. Nat. Acad. Sci. 72, 2335–2339 (1975)CrossRefGoogle Scholar
  44. 44.
    Goff, H., La Mar, G.N.: High-spin ferrous porphyrin complexes as models for deoxymyoglobin and -hemoglobin: a proton nuclear magnetic resonance study. J. Am. Chem. Soc. 99, 6599–6606 (1977).  https://doi.org/10.1021/ja00462a022CrossRefGoogle Scholar
  45. 45.
    Goff, H., La Mar, G.N., Reed, C.A.: Nuclear magnetic resonance investigation of magnetic and electronic properties of “intermediate spin” ferrous porphyrin complexes. J. Am. Chem. Soc. 99, 3641–3646 (1977).  https://doi.org/10.1021/ja00453a022CrossRefGoogle Scholar
  46. 46.
    Goodrich, L.E., Paulat, F., Praneeth, V.K.K., Lehnert, N.: Electronic structure of heme-nitrosyls and its significance for nitric oxide reactivity, sensing, transport, and toxicity in biological systems. Inorg. Chem. 49(14), 6293–6316 (2010).  https://doi.org/10.1021/ic902304aCrossRefGoogle Scholar
  47. 47.
    Green, M.T.: Evidence for sulphur-based radicals in thiolate compound I intermediates. J. Am. Chem. Soc. 121, 7939–7940 (1999)CrossRefGoogle Scholar
  48. 48.
    Green, M.T.: The structure and spin coupling of catalase compound I: a study of noncovalent effects. J. Am. Chem. Soc. 123(37), 9218–9219 (2001).  https://doi.org/10.1021/ja010105h. (pMID: 11552853)CrossRefGoogle Scholar
  49. 49.
    Griffith, W.P., Lewis, J., Wilkinson, G.: Some nitric oxide complexes of iron and copper. J. Chem. Soc. 1958, 3993–3998 (1958).  https://doi.org/10.1039/JR9580003993CrossRefGoogle Scholar
  50. 50.
    Grimme, S.: Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comp. Chem. 25(12), 1463–1473 (2004).  https://doi.org/10.1002/jcc.20078CrossRefGoogle Scholar
  51. 51.
    Grimme, S.: Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124(034), 108 (2006)Google Scholar
  52. 52.
    Grimme, S., Antony, J., Schwabe, T., Mück-Lichtenfeld, C.: Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Org. Biomol. Chem. 5, 741–758 (2007).  https://doi.org/10.1039/b615319bCrossRefGoogle Scholar
  53. 53.
    Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132(15), 154,104 (2010).  https://doi.org/10.1063/1.3382344CrossRefGoogle Scholar
  54. 54.
    Groves, J.: Models and mechanisms of cytochrome P450 action. In: Ortiz de Montellano, P. (ed.) Cytochrome P450: Structure, Mechanism and Biochemistry, pp. 1–43. Kluwer Academic/Plenum Publishers, Dordrecht (2005).  https://doi.org/10.1007/0-387-27447-2_1CrossRefGoogle Scholar
  55. 55.
    Guallar, V., Olsen, B.: The role of the heme propionates in heme biochemistry. J. Inorg. Biochem. 100(4), 755–760 (2006).  https://doi.org/10.1016/j.jinorgbio.2006.01.019. (ce:title High-valent iron intermediates in biology/ce:title xocs:full-name High-valent iron intermediates in biology/xocs:full-name)CrossRefGoogle Scholar
  56. 56.
    Gütlich, P., Goodwin, H.A.: Spin crossover-an overall perspective. In: Gütlich, P., Goodwin, H. (eds.) Spin Crossover in Transition Metal Compounds I, Topics in Current Chemistry, vol. 233, pp. 1–47. Springer, Berlin (2004).  https://doi.org/10.1007/b13527CrossRefGoogle Scholar
  57. 57.
    Hampel, C., Werner, H.J.: Local treatment of electron correlation in coupled cluster theory. J. Chem. Phys. 104(16), 6286–6297 (1996).  https://doi.org/10.1063/1.471289CrossRefGoogle Scholar
  58. 58.
    Handy, N.C., Cohen, A.J.: Left-right correlation energy. Mol. Phys. 99(5), 403–412 (2001)CrossRefGoogle Scholar
  59. 59.
    Harischandra, D., Zhang, R., Newcomb, M.: Photochemical generation of a highly reactive iron-oxo intermediate. A true iron(V)-Oxo species? J. Am. Chem. Soc. 127(40), 13,776–13,777 (2005)CrossRefGoogle Scholar
  60. 60.
    Harvey, J.N.: On the accuracy of density functional theory in transition metal chemistry. Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 102, 203–226 (2006).  https://doi.org/10.1039/b419105fCrossRefGoogle Scholar
  61. 61.
    Harvey, J.N.: The coupled-cluster description of electronic structure: perspectives for bioinorganic chemistry. J. Biol. Inorg. Chem. 16, 831–839 (2011).  https://doi.org/10.1007/s00775-011-0786-7CrossRefGoogle Scholar
  62. 62.
    Helgaker, T., Klopper, W., Koch, H., Noga, J.: Basis-set convergence of correlated calculations on water. J. Chem. Phys. 106, 9639–9646 (1997).  https://doi.org/10.1063/1.473863CrossRefGoogle Scholar
  63. 63.
    Henderson, T.M., Janesko, B.G., Scuseria, G.E.: Range separation and local hybridization in density functional theory. J. Phys. Chem. A 112(49), 12,530–12,542 (2008).  https://doi.org/10.1021/jp806573kCrossRefGoogle Scholar
  64. 64.
    Hirao, K.: Multireference Møller-Plesset method. Chem. Phys. Lett. 190(3–4), 374–380 (1992).  https://doi.org/10.1016/0009-2614(92)85354-DCrossRefGoogle Scholar
  65. 65.
    Hopmann, K.H., Conradie, J., Ghosh, A.: Broken-symmetry DFT spin densities of iron nitrosyls, including roussin’s red and black salts: striking differences between pure and hybrid functionals. J. Phys. Chem. B 113(30), 10,540–10,547 (2009).  https://doi.org/10.1021/jp904135hCrossRefGoogle Scholar
  66. 66.
    Hu, C., Roth, A., Ellison, M., An, J., Ellis, C., Schulz, C., Scheidt, W.: Electronic configuration assignment and the importance of low-lying excited states in high-spin imidazole-ligated iron(II) porphyrinates. J. Am. Chem. Soc. 127(15), 5675–5688 (2005).  https://doi.org/10.1021/ja044077pCrossRefGoogle Scholar
  67. 67.
    Hu, C., An, J., Noll, B.C., Schulz, C.E., Scheidt, W.R.: Electronic configuration of high-spin imidazole-ligated iron(II) octaethylporphyrinates. Inorg. Chem. 45(10), 4177–4185 (2006).  https://doi.org/10.1021/ic052194vCrossRefGoogle Scholar
  68. 68.
    Hughes, T.F., Friesner, R.A.: Correcting systematic errors in DFT spin-splitting energetics for transition metal complexes. J. Chem. Theory Comput. 7(1), 19–32 (2011).  https://doi.org/10.1021/ct100359xCrossRefGoogle Scholar
  69. 69.
    Hughes, T.F., Harveyb, J.N., Friesner, R.A.: A B3LYP-DBLOC empirical correction scheme for ligand removal enthalpies of transition metal complexes: parameterization against experimental and CCSD(T)-F12 heats of formation. Phys. Chem. Chem. Phys. 14, 7724–7738 (2012).  https://doi.org/10.1039/c2cp40220cCrossRefGoogle Scholar
  70. 70.
    Isobe, H., Yamanaka, S., Okumura, M., Yamaguchi, K., Shimada, J.: Unique structural and electronic features of perferryl-oxo oxidant in cytochrome P450. J. Phys. Chem. B 115(36), 10,730–10,738 (2011).  https://doi.org/10.1021/jp206004yCrossRefGoogle Scholar
  71. 71.
    Isobe, H., Yamaguchi, K., Okumura, M., Shimada, J.: Role of perferryl-oxo oxidant in alkane hydroxylation catalyzed by cytochrome P450: a hybrid density functional study. J. Phys. Chem. B 116(16), 4713–4730 (2012).  https://doi.org/10.1021/jp211184yCrossRefGoogle Scholar
  72. 72.
    Jameson, G.B., Rodley, G.A., Robinson, W.T., Gagne, R.R., Reed, C., Collman, J.P.: Structure of a dioxygen adduct of (1-methylimidazole)-meso-tetrakis(\(\alpha \),\(\alpha \),\(\alpha \),\(\alpha \)-o-pivalamidophenyl)porphinatoiron(II). An iron dioxygen model for the heme component of oxymyoglobin. Inorg. Chem. 17(4), 850–857 (1978).  https://doi.org/10.1021/ic50182a012CrossRefGoogle Scholar
  73. 73.
    Jensen, F.: Introduction to Computational Chemistry, 2nd edn. Wiley, New York (2007)Google Scholar
  74. 74.
    Jensen, K.P., Ryde, U.: Comparison of the chemical properties of iron and cobalt porphyrins and corrins. ChemBioChem 4, 413–424 (2003).  https://doi.org/10.1002/cbic.200200449CrossRefGoogle Scholar
  75. 75.
    Jensen, K.P., Ryde, U.: How O\(_2\) binds to heme: reasons for rapid binding and spin inversion. J. Biol. Chem. 279, 14,561–14,569 (2004)CrossRefGoogle Scholar
  76. 76.
    Jensen, K.P., Roos, B., Ryde, U.: Erratum to “O\(_2\)-binding to heme: electronic structure and spectrum of oxyheme, studied by multiconfigurational methods”. J. Inorg. Biochem. 99, 978 (2005).  https://doi.org/10.1016/j.jinorgbio.2005.02.013CrossRefGoogle Scholar
  77. 77.
    Jensen, K.P., Roos, B., Ryde, U.: O\(_2\)-binding to heme: electronic structure and spectrum of oxyheme, studied by multiconfigurational methods. J. Inorg. Biochem. 99(1), 45–54 (2005b).  https://doi.org/10.1016/j.jinorgbio.2004.11.008CrossRefGoogle Scholar
  78. 78.
    Jiang, W., DeYonker, N.J., Wilson, A.K.: Multireference character for 3d transition-metal-containing molecules. J. Chem. Theory Comput. 8, 460–468 (2011)CrossRefGoogle Scholar
  79. 79.
    Kellner, D.G., Hung, S.C., Weiss, K.E., Sligar, S.G.: Kinetic characterization of compound I formation in the thermostable cytochrome P450 CYP119. J. Biol. Chem. 277(12), 9641–9644 (2002)CrossRefGoogle Scholar
  80. 80.
    Kent, T.A., Spartalian, K., Lang, G.: High magnetic field Mössbauer studies of deoxymyoglobin, deoxyhemoglobin, and synthetic analogues: theoretical interpretations. J. Chem. Phys. 71(12), 4899–4908 (1979).  https://doi.org/10.1063/1.438303CrossRefGoogle Scholar
  81. 81.
    Kitagawa, T., Teraoka, J.: The resonance Raman spectra of intermediate-spin ferrous porphyrin. Chem. Phys. Lett. 63, 443–446 (1979).  https://doi.org/10.1016/0009-2614(79)80685-5CrossRefGoogle Scholar
  82. 82.
    Knizia, G., Adler, T.B., Werner, H.J.: Simplified CCSD(T)-F12 methods: theory and benchmarks. J. Chem. Phys. 130(5), 054,104 (2009).  https://doi.org/10.1063/1.3054300CrossRefGoogle Scholar
  83. 83.
    Koch, W., Holthausen, M.C.: A Chemist’s Guide to Density Functional Theory, 2nd edn. Wiley-VCH, Verlag GmbH, Weinheim (2001)CrossRefGoogle Scholar
  84. 84.
    Koseki, J., Maezono, R., Tachikawa, M., Towler, M.D., Needs, R.J.: Quantum monte carlo study of porphyrin transition metal complexes. J. Chem. Phys. 129(8), 085103 (2008).  https://doi.org/10.1063/1.2966003CrossRefGoogle Scholar
  85. 85.
    Kozlowski, P.M., Spiro, T.G., Zgierski, M.Z.: DFT study of structure and vibrations in low-lying spin states of five-coordinated deoxyheme model. J. Phys. Chem. B 104(45), 10,659–10,666 (2000).  https://doi.org/10.1021/jp001463uCrossRefGoogle Scholar
  86. 86.
    Kulik, H.J., Cococcioni, M., Scherlis, D.A., Marziari, N.: Density functional theory in transition metal chemistry: a self-consistent Hubbard U approach. Phys. Rev. Lett. 97, 103,001–103,004 (2006)CrossRefGoogle Scholar
  87. 87.
    Lee, J.Y., Kang, N.S., Kang, Y.K.: Binding free energies of inhibitors to iron porphyrin complex as a model for cytochrome P450. Biopolymers 97, 219–228 (2012).  https://doi.org/10.1002/bip.22009CrossRefGoogle Scholar
  88. 88.
    Lee, T.J., Taylor, P.R.: A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quantum Chem. 36(S23), 199–207 (1989)CrossRefGoogle Scholar
  89. 89.
    Li, D., Wang, Y., Han, K.: Recent density functional theory model calculations of drug metabolism by cytochrome P450. Coord. Chem. Revs. 256(1112), 1137–1150 (2012).  https://doi.org/10.1016/j.ccr.2012.01.016CrossRefGoogle Scholar
  90. 90.
    Liao, M.S., Scheiner, S.: Electronic structure and bonding in metal porphyrins, metal=Fe Co, Ni. Cu. Zn. J. Chem. Phys. 117(1), 205–219 (2002).  https://doi.org/10.1063/1.1480872CrossRefGoogle Scholar
  91. 91.
    Liao, M.S., Huang, M.J., Watts, J.D.: Iron porphyrins with different imidazole ligands. A theoretical comparative study. J. Phys. Chem. A 114(35), 9554–9569 (2010).  https://doi.org/10.1021/jp1052216CrossRefGoogle Scholar
  92. 92.
    Lupinetti, A.J., Fau, S., Frenking, G., Strauss, S.H.: Theoretical analysis of the bonding between CO and positively charged atoms. J. Phys. Chem. A 101, 9551–9559 (1997)CrossRefGoogle Scholar
  93. 93.
    Malmqvist, P.Å., Pierloot, K., Shahi, A.R.M., Cramer, C.J., Gagliardi, L.: The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO\(_2\) and Cu\(_2\)O\(_2\) systems. J. Chem. Phys. 128(204), 109 (2008).  https://doi.org/10.1063/1.2920188CrossRefGoogle Scholar
  94. 94.
    Matsui, T., Unno, M., Ikeda-Saito, M.: Heme oxygenase reveals its strategy for catalyzing three successive oxygenation reactions. Acc. Chem. Res. 43(2), 240–247 (2010).  https://doi.org/10.1021/ar9001685. (pMID: 19827796)CrossRefGoogle Scholar
  95. 95.
    McClure, D.S.: Electronic structure of transition-metal complex ions. Radiation Res. Suppl. 2, 218–242 (1960)CrossRefGoogle Scholar
  96. 96.
    Miralles, J., Daudey, J.P., Caballol, R.: Variational calculation of small energy differences. The singlet-triplet gap in [Cu\(_2\)Cl\(_6\)]\(^{2-}\). Chem. Phys. Lett. 198(6), 555–562 (1992).  https://doi.org/10.1016/0009-2614(92)85030-ECrossRefGoogle Scholar
  97. 97.
    Miralles, J., Castell, O., Caballol, R., Malrieu, J.P.: Specific CI calculation of energy differences: transition energies and bond energies. Chem. Phys. 172(1), 33–43 (1993).  https://doi.org/10.1016/0301-0104(93)80104-HCrossRefGoogle Scholar
  98. 98.
    Momenteau, M., Scheidt, W.R., Eigenbrot, C.W., Reed, C.A.: A deoxymyoglobin model with a sterically unhindered axial imidazole. J. Am. Chem. Soc. 110, 1207–1215 (1988).  https://doi.org/10.1021/ja00212a032CrossRefGoogle Scholar
  99. 99.
    Nakatsuji, H., Hasegawa, J., Ueda, H., Hada, M.: Ground and excited states of oxyheme: SAC/SAC-CI study. Chem. Phys. Lett. 250(34), 379–386 (1996).  https://doi.org/10.1016/0009-2614(96)00033-4CrossRefGoogle Scholar
  100. 100.
    Neese, F.: A spectroscopy oriented configuration interaction procedure. J. Chem. Phys. 119(18), 9428–9443 (2003).  https://doi.org/10.1063/1.1615956CrossRefGoogle Scholar
  101. 101.
    Neese, F., Valeev, E.F.: Revisiting the atomic natural orbital approach for basis sets: robust systematic basis sets for explicitly correlated and conventional correlated ab initio methods? J. Chem. Theory Comput. 7, 33–43 (2011).  https://doi.org/10.1021/ct100396yCrossRefGoogle Scholar
  102. 102.
    Norvell, J., Nunes, A., Schoenborn, B.: Neutron diffraction analysis of myoglobin: structure of the carbon monoxide derivative. Science 190(4214), 568–570 (1975).  https://doi.org/10.1126/science.1188354CrossRefGoogle Scholar
  103. 103.
    Obara, S., Kashiwagi, H.: Ab initio MO studies of electronic states and Mössbauer spectra of high-, intermediate-, and low-spin Fe(II)-porphyrin complexes. J. Chem. Phys. 77, 3155 (1982).  https://doi.org/10.1063/1.444239CrossRefGoogle Scholar
  104. 104.
    Ogliaro, F., Cohen, S., Filatov, M., Harris, N., Shaik, S.: The high-valent compound of cytochrome P450: the nature of the fe-s bond and the role of the thiolate ligand as an internal electron donor. Angew Chem. Int. Ed. 39(21), 3851–3855 (2000a)CrossRefGoogle Scholar
  105. 105.
    Ogliaro, F., Cohen, S., de Viser, S.P., Shaik, S.: Medium polarization and hydrogen bonding effects on compound I of cytochrome P450: what kind of radical is it really? J. Am. Chem. Soc. 122, 12,892–12,893 (2000b)CrossRefGoogle Scholar
  106. 106.
    Ogliaro, F., de Visser, S.P., Groves, J.T., Shaik, S.: Chameleon states: high-valent metal-oxo species of cytochrome P450 and its ruthenium analogue. Angew Chem. Int. Ed. 40, 2874–2878 (2001). 10.1002/1521-3773(20010803)40:15\(<\)2874::AID-ANIE2874\(>\)3.0.CO;2-9CrossRefGoogle Scholar
  107. 107.
    Olah, J., Harvey, J.: NO bonding to heme groups: DFT and correlated ab initio calculations. J. Phys. Chem. A 113, 7338–7345 (2009).  https://doi.org/10.1021/jp811316nCrossRefGoogle Scholar
  108. 108.
    de Oliveira, F.T., Chanda, A., Banerjee, D., Shan, X., Mondal, S., Lawrence Que, J., Bominaa, E.L., Münck, E., Collins, T.J.: Chemical and spectroscopic evidence for an Fe(V)-oxo complex. Science 315, 835–838 (2007).  https://doi.org/10.1126/science.1133417CrossRefGoogle Scholar
  109. 109.
    Olson, J.C., Phillips, G.N.: Myoglobin discriminates between O\(_2\), NO and CO by electrostatic interactions with the bound ligand. J. Biol. Inorg. Chem. 2, 544–552 (1997)CrossRefGoogle Scholar
  110. 110.
    Olson, J.S., Mathews, A.J., Rohlfs, R.J., Springer, B.A., Egeberg, K.D., Sligar, S.G., Tame, J., Renaud, J.P., Nagai, K.: The role of the distal histidine in myoglobin and haemoglobin. Nature 336(6196), 265–266 (1988).  https://doi.org/10.1038/336265a0CrossRefGoogle Scholar
  111. 111.
    Ortiz de Montellano, P., James, J., De Voss, J.: Substrate oxidation by cytochrome P450 enzymes. In: Ortiz de Montellano, P. (ed.) Cytochrome P450: Structure, Mechanism and Biochemistry, pp. 183–245. Kluwer Academic/Plenum Publishers, Dordrecht (2005).  https://doi.org/10.1007/0-387-27447-2_6CrossRefGoogle Scholar
  112. 112.
    Ortiz de Montellano, P.R.: Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110, 932–948 (2010).  https://doi.org/10.1021/cr9002193CrossRefGoogle Scholar
  113. 113.
    Pan, Z., Zhang, R., Newcomb, M.: Kinetic studies of reactions of iron(IV)-oxo porphyrin radical cations with organic reductants. J. Inorg. Biochem. 100(4), 524–532 (2006).  https://doi.org/10.1016/j.jinorgbio.2005.12.022CrossRefGoogle Scholar
  114. 114.
    Pan, Z., Zhang, R., Fung, L.W.M., Newcomb, M.: Photochemical production of a highly reactive porphyrin-iron-oxo species. Inorg. Chem. 46(5), 1517–1519 (2007).  https://doi.org/10.1021/ic061972wCrossRefGoogle Scholar
  115. 115.
    Pan, Z., Wang, Q., Sheng, X., Horner, J.H., Newcomb, M.: Highly reactive porphyrin-iron-oxo derivatives produced by photolyses of metastable porphyrin-iron(IV) diperchlorates. J. Am. Chem. Soc. 131(7), 2621–2628 (2009).  https://doi.org/10.1021/ja807847qCrossRefGoogle Scholar
  116. 116.
    Pauling, L., Coryell, C.D.: The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc. Nat. Acad. Sci. 22, 210–216 (1936)CrossRefGoogle Scholar
  117. 117.
    Paulsen, H., Trautwein, A.X.: Density functional theory calculations for spin crossover complexes. Top. Curr. Chem. 235, 197–219 (2004).  https://doi.org/10.1007/b95428CrossRefGoogle Scholar
  118. 118.
    Perdew, J.P.: The functional zoo. In: Geerlings, P., DeProft, F., Langenaeker, W. (eds.) Density Functional Theory: A Bridge Between Chemistry and Physics, pp. 87–109. Vrije Universiteit Brussel Press, Brussels (1999)Google Scholar
  119. 119.
    Perdew, J.P., Kurth, S.: Density functionals for non-relativistic coulomb systems in the new century. In: Fiolhais C, Nogueira F, Marques M (eds) A Primer in Density Functional Theory, Lecture Notes in Physics, vol. 620, pp. 1–55, Chap 1. Springer, Berlin (2003).  https://doi.org/10.1007/3-540-37072-2_1zbMATHGoogle Scholar
  120. 120.
    Perdew, J.P., Ernzerhof, M., Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982–9985 (1996).  https://doi.org/10.1063/1.472933CrossRefGoogle Scholar
  121. 121.
    Perdew, J.P., Ruzsinszky, A., Constantin, L.A., Sun, J., Csonka, G.I.: Some fundamental issues in ground-state density functional theory: a guide for the perplexed. J. Chem. Theory Comput. 5, 902–908 (2009).  https://doi.org/10.1021/ct800531sCrossRefGoogle Scholar
  122. 122.
    Phillips, S.E.: Structure and refinement of oxymyoglobin at \(1.6\) Å resolution. J. Mol. Biol. 142(4), 531–554 (1980).  https://doi.org/10.1016/0022-2836(80)90262-4CrossRefGoogle Scholar
  123. 123.
    Phillips, S.E.V.: Structure of oxymyoglobin. Nature 273(5659), 247–248 (1978)CrossRefGoogle Scholar
  124. 124.
    Phillips, S.E.V., Schoenborn, B.P.: Neutron diffraction reveals oxygen-histidine hydrogen bond in oxymyoglobin. Nature 292, 81–82 (1981)CrossRefGoogle Scholar
  125. 125.
    Piela, L.: Ideas of Quantum Chemistry. Elsevier, polish edition (2006). Idee Chemii Kwantowej, PWN, 2005Google Scholar
  126. 126.
    Pierloot, K.: Nondynamic correlation effects in transition metal coordination compounds. In: Cundari, T.R. (ed.) Computational Organometallic Chemistry. Marcel Dekker Inc., New York (2001)Google Scholar
  127. 127.
    Pierloot, K.: The CASPT2 method in inorganic electronic spectroscopy: from ionic transition metal to covalent actinide complexes. Mol. Phys. 101(13), 2083–2094 (2003)CrossRefGoogle Scholar
  128. 128.
    Pierloot, K., Vancoillie, S.: Relative energy of the high-(\(^5\)T\(_{2g}\)) and low-(\(^1\)A\(_{1g}\)) spin states of [Fe(H2O)\(_6\)]\(^{2+}\), [Fe(NH\(_3\))\(_6\)]\(^{2+}\), and [Fe(bpy)\(_3\)]\(^{2+}\): CASPT2 versus density functional theory. J. Chem. Phys. 125(124), 303 (2006).  https://doi.org/10.1063/1.2353829CrossRefGoogle Scholar
  129. 129.
    Pierloot, K., Vancoillie, S.: Relative energy of the high-(\(^5\)T\(_{2g}\)) and low-(\(^1\)A\(_{1g}\)) spin states of the ferrous complexes [Fe(L)(NHS\(_4\))]: CASPT2 versus density functional theory. J. Chem. Phys. 128(034), 104 (2008)Google Scholar
  130. 130.
    Pierloot, K., Dumez, B., Widmark, P.O., Roos, B.: Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. IV. Medium size basis sets for the atoms H-Kr. Theor. Chim. Acta. 90, 87–114 (1995)CrossRefGoogle Scholar
  131. 131.
    Pierloot, K., Zhao, H., Vancoillie, S.: Copper corroles: the question of non-innocence. Inorg. Chem. 49, 10,316–10,329 (2010).  https://doi.org/10.1021/ic100866zCrossRefGoogle Scholar
  132. 132.
    Poli, R., Harvey, J.N.: Spin forbidden chemical reactions of transition metal compounds. New ideas and new computational challenges. Chem. Soc. Rev. 32, 1–8 (2003)CrossRefGoogle Scholar
  133. 133.
    Popescu, D.L., Chanda, A., Stadler, M., de Oliveira, F.T., Ryabov, A.D., Münck, E., Bominaar, E.L., Collins, T.J.: High-valent first-row transition-metal complexes of tetraamido (4N) and diamidodialkoxido or diamidophenolato (2N/2O) ligands: synthesis, structure, and magnetochemistry. Coord. Chem. Revs. 252, 2050–2071 (2008)CrossRefGoogle Scholar
  134. 134.
    Praneeth, V., Neese, F., Lehnert, N.: Spin density distribution in five- and six-coordinate iron(II)-porphyrin NO complexes evidenced by magnetic circular dichroism spectroscopy. Inorg. Chem. 44, 2570–2572 (2005)CrossRefGoogle Scholar
  135. 135.
    Radoń, M., Broclawik, E.: Peculiarities of the electronic structure of cytochrome P450 compound I: CASPT2 and DFT modeling. J. Chem. Theory Comput. 3(3), 728–734 (2007).  https://doi.org/10.1021/ct600363aCrossRefGoogle Scholar
  136. 136.
    Radoń, M., Pierloot, K.: Binding of CO, NO, and O\(_2\) to heme by density functional and multireference ab initio calculations. J. Phys. Chem. A 112(46), 11,824–11,832 (2008).  https://doi.org/10.1021/jp806075bCrossRefGoogle Scholar
  137. 137.
    Radoń, M., Srebro, M., Broclawik, E.: Conformational stability and spin states of cobalt(II) acetylacetonate: CASPT2 and DFT study. J. Chem. Theory Comput. 5(5), 1237–1244 (2009).  https://doi.org/10.1021/ct800571yCrossRefGoogle Scholar
  138. 138.
    Radoń, M., Broclawik, E., Pierloot, K.: Electronic structure of selected FeNO\(^7\) complexes in heme and non-heme architectures: A density functional and multireference ab initio study. J. Phys. Chem. B 114(3), 1518–1528 (2010).  https://doi.org/10.1021/jp910220rCrossRefGoogle Scholar
  139. 139.
    Radoń, M., Broclawik, E., Pierloot, K.: DFT and Ab Initio study of iron-oxo porphyrins: may they have a stable iron(V)-oxo electromer? J. Chem. Theory Comput. 7, 898–908 (2011).  https://doi.org/10.1021/ct1006168CrossRefGoogle Scholar
  140. 140.
    Ray, M., Golombek, A.P., Hendrich, M.P., Yap, G.P.A., Liable-Sands, L.M., Rheingold, A.L., Borovik, A.S.: Structure and magnetic properties of trigonal bipyramidal iron nitrosyl complexes. Inorg. Chem. 38, 3110–3115 (1999)CrossRefGoogle Scholar
  141. 141.
    Reiher, M., Salomon, O., Hess, B.A.: Reparameterization of hybrid functionals based on energy differences of states of different multiplicity. Theor. Chem. Acc. 107(1), 48–55 (2001).  https://doi.org/10.1007/s00214-001-0300-3CrossRefGoogle Scholar
  142. 142.
    Ribas-Ariño, J., Novoa, J.J.: The mechanism for the reversible oxygen addition to heme. A theoretical CASPT2 study. Chem. Commun. 2007, 3160–3162 (2007).  https://doi.org/10.1039/b704871hCrossRefGoogle Scholar
  143. 143.
    Rittle, J., Green, M.T.: Cytochrome P450 compound I: Capture, characterisation, and C–H bond activation kinetics. Science 330, 933–937 (2010).  https://doi.org/10.1126/science.1193478CrossRefGoogle Scholar
  144. 144.
    Rodriguez, J.H., Xia, Y.M., Debrunner, P.G.: Mössbauer spectroscopy of the spin coupled Fe\(^{2+}\)-FeNO\(^7\) centers of nitrosyl derivatives of deoxy hemerythrin and density functional theory of the FeNO\(^7\) (S = 3/2) motif. J. Am. Chem. Soc. 121(34), 7846–7863 (1999).  https://doi.org/10.1021/ja990129cCrossRefGoogle Scholar
  145. 145.
    Roos, B.O.: Multiconfigurational self consistent field theory. In: Roos, B.O., Widmark, P.O. (eds.) European Summerschool in Quantum Chemistry, vol. 2, pp. 287–360. Lund University, Lund (2003)Google Scholar
  146. 146.
    Roos, B.O., Taylor, P.R., Siegbahn, P.E.M.: A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 48(2), 157–173 (1980)MathSciNetCrossRefGoogle Scholar
  147. 147.
    Roos, B.O., Andersson, K., Fulscher, M., Malmqvist, P.Å., Serrano-Andres, L., Pierloot, K., Merchan, M.: Multiconfigurational perturbation theory: applications in electronic spectroscopy. In: Prigogine, I., Rice, S.A. (eds.) Advances in Chemical Physics: New Methods in Computational Quantum Mechanics, vol. 93, pp. 219–331. Wiley, New York (1996)Google Scholar
  148. 148.
    Roos, B.O., Lindh, R., Malmqvist, P.Å., Veryazov, V., Widmark, P.O.: New relativistic ANO basis sets for transition metal atoms. J. Phys. Chem. A 109, 6575–6579 (2005)CrossRefGoogle Scholar
  149. 149.
    Rosen, G.M., Tsai, P., Pou, S.: Mechanism of free-radical generation by nitric oxide synthase. Chem. Rev. 102(4), 1191–1200 (2002).  https://doi.org/10.1021/cr010187sCrossRefGoogle Scholar
  150. 150.
    Rovira, C.: Role of the His64 residue on the properties of the Fe-CO and Fe-O\(_2\) bonds in myoglobin. A CHARMM/DFT study. J. Mol. Struc. (Theochem) 632, 309–321 (2003).  https://doi.org/10.1016/S0166-1280(03)00308-7CrossRefGoogle Scholar
  151. 151.
    Rovira, C., Kunc, K., Hutter, J., Ballone, P., Parrinello, M.: Equilibrium geometries and electronic structure of iron-porphyrin complexes: A density functional study. J. Phys. Chem. A 101(47), 8914–8925 (1997).  https://doi.org/10.1021/jp9722CrossRefGoogle Scholar
  152. 152.
    Rovira, C., Kunc, K., Hutter, J., Ballone, P., Parrinello, M.: A comparative study of O\(_2\), CO, and NO binding to iron-porphyrin. Int. J. Quantum. Chem. 69(1), 31–35 (1998)CrossRefGoogle Scholar
  153. 153.
    Rydberg, P., Sigfridsson, E., Ryde, U.: On the role of the axial ligand in heme proteins: a theoretical study. J. Biol. Inorg. Chem. 9, 203–223 (2004).  https://doi.org/10.1007/s00775-003-0515-yCrossRefGoogle Scholar
  154. 154.
    Rydberg, P., Gloriam, D.E., Olsen, L.: The SMARTCyp cytochrome P450 metabolism prediction server. Bioinformatics 26, 2988–2989 (2010).  https://doi.org/10.1093/bioinformatics/btq584CrossRefGoogle Scholar
  155. 155.
    Scherlis, D.A., Cococcioni, M., Sit, P., Marzari, N.: Simulation of heme using DFT + U: a step toward accurate spin-state energetics. J. Phys. Chem. B 111, 7384–7391 (2007).  https://doi.org/10.1021/jp070549lCrossRefGoogle Scholar
  156. 156.
    Schöneboom, J.C., Lin, H., Reuter, N., Thiel, W., Cohen, S., Ogliaro, F., Shaik, S.: The elusive oxidant species of cytochrome P450 enzymes: characterisation by combined quantum mechanical/molecular mechanical (QM/MM) calculations. J. Am. Chem. Soc. 124, 8142–8151 (2002).  https://doi.org/10.1021/ja026279wCrossRefGoogle Scholar
  157. 157.
    Schöneboom, J.C., Neese, F., Thiel, W.: Toward identification of the compound I reactive intermediate in cytochrome P450 chemistry: a QM/MM study of its EPR and Mössbauer parameters. J. Am. Chem. Soc. 127(16), 5840–5853 (2005)CrossRefGoogle Scholar
  158. 158.
    Schütz, M., Werner, H.J.: Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD). J. Chem. Phys. 114(2), 661–681 (2001).  https://doi.org/10.1063/1.1330207CrossRefGoogle Scholar
  159. 159.
    Schwarz, W.H.E.: An introduction to relativistic quantum chemistry. In: Barysz, M., Ishikawa, Y. (eds.) Relativistic Methods for Chemists, Challenges and Advances in Computational Chemistry and Physics, vol. 10, pp. 1–62. Springer, The Netherlands (2010).  https://doi.org/10.1007/978-1-4020-9975-5_1CrossRefGoogle Scholar
  160. 160.
    Shaanan, B.: The ironoxygen bond in human oxyhaemoglobin. Nature 296, 683–684 (1982).  https://doi.org/10.1038/296683a0CrossRefGoogle Scholar
  161. 161.
    Shaanan, B.: Structure of human oxyhaemoglobin at \(2.1\) Å resolution. J. Mol. Biol. 171(1), 31–59 (1983).  https://doi.org/10.1016/S0022-2836(83)80313-1CrossRefGoogle Scholar
  162. 162.
    Shaik, S., Chen, H.: Lessons on O\(_2\) and NO bonding to heme from ab initio multireference/multiconfiguration and DFT calculations. J. Biol. Inorg. Chem. 16, 841–855 (2011).  https://doi.org/10.1007/s00775-011-0763-1CrossRefGoogle Scholar
  163. 163.
    Shaik, S., De Visser, S.: Computational approaches to cytochrome P450 function. In: Ortiz de Montellano, P. (ed.) Cytochrome P450: Structure, Mechanism and Biochemistry, pp. 45–85. Kluwer Academic/Plenum Publishers, Dordrecht (2005).  https://doi.org/10.1007/0-387-27447-2_2CrossRefGoogle Scholar
  164. 164.
    Shaik, S., Kumar, D., de Visser, S.P., Altun, A., Thiel, W.: Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem. Rev. 105(6), 2279–2328 (2005)CrossRefGoogle Scholar
  165. 165.
    Shaik, S., Cohen, S., Wang, Y., Chen, H., Kumar, D., Thiel, W.: P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations. Chem. Rev. 110(2), 949–1017 (2010)CrossRefGoogle Scholar
  166. 166.
    Shaik, S., Chen, H., Janardanan, D.: Exchange-enhanced reactivity in bond activation by metaloxo enzymes and synthetic reagents. Nat. Chem. 3, 19–27 (2011).  https://doi.org/10.1038/nchem.943CrossRefGoogle Scholar
  167. 167.
    Sheng, X., Horner, J.H., Newcomb, M.: Spectra and kinetic studies of the compound I derivative of cytochrome P450 119. J. Am. Chem. Soc. 130(40), 13,310–13,320 (2008).  https://doi.org/10.1021/ja802652bCrossRefGoogle Scholar
  168. 168.
    Siegbahn, P.E.M., Himo, F.: The quantum chemical cluster approach for modeling enzyme reactions. Wiley Interdisc Rev: Comput Mol Sci 1, 323–336 (2011)Google Scholar
  169. 169.
    Siegbahn, P.E.M., Blomberg, M.R.A., Chen, S.L.: Significant van der Waals effects in transition metal complexes. J. Chem. Theory Comput. 6, 2040–2044 (2010).  https://doi.org/10.1021/ct100213eCrossRefGoogle Scholar
  170. 170.
    Sigfridson, E., Ryde, U.: On the significance of hydrogen bonds for the discrimination between CO and O\(_2\) by myoglobin. J. Biol. Inorg. Chem. 4(1), 99–110 (1999)CrossRefGoogle Scholar
  171. 171.
    Sigfridson, E., Ryde, U.: Theoretical study of the discrimination between O\(_2\) and CO by myoglobin. J. Inorg. Biochem. 91(1), 101–115 (2002)CrossRefGoogle Scholar
  172. 172.
    Sigfridsson, E., Ryde, U.: The importance of porphyrin distortions for the ferrochelatase reaction. J. Biol. Inorg. Chem. 8, 273–282 (2003)CrossRefGoogle Scholar
  173. 173.
    Sigfridsson, E., Olsson, M.H.M., Ryde, U.: A comparison of the inner-sphere reorganization energies of cytochromes, iron-sulfur clusters, and blue copper proteins. J. Phys. Chem. B 105(23), 5546–5552 (2001).  https://doi.org/10.1021/jp0037403CrossRefGoogle Scholar
  174. 174.
    Sligar, S.G.: Coupling of spin, substrate, and redox equilibriums in cytochrome P450. Biochemistry 15(24), 5399–5406 (1976)CrossRefGoogle Scholar
  175. 175.
    Spolitak, T., Dawson, J.H., Ballou, D.P.: Reaction of ferric cytochrome P450cam with peracids: kinetic characterization of intermediates on the reaction pathway. J. Biol. Chem. 280, 20,300–20,309 (2005).  https://doi.org/10.1074/jbc.M501761200CrossRefGoogle Scholar
  176. 176.
    Springer, B.A., Egeberg, K.D., Slighar, S.G., Rohlfs, R.J., Mathews, A.J., Olson, J.C.: Discrimination between oxygen and carbon monoxide and inhibition of autooxydation by mioglobin. J. Biol. Chem. 264(6), 3057–3060 (1989)Google Scholar
  177. 177.
    Springer, B.A., Sligar, S.G., Olson, J.S., Phillips, G.N.J.: Mechanisms of ligand recognition in myoglobin. Chem. Rev. 94(3), 699–714 (1994).  https://doi.org/10.1021/cr00027a007CrossRefGoogle Scholar
  178. 178.
    Stawoska, I., Orzel, Ł., Łabuz, P., Stochel, G., van Eldik, R.: Application of high pressure laser flash photolysis in studies on selected hemoprotein reactions. Biochim. Biophys. Acta 1784(11), 1481–1492 (2008).  https://doi.org/10.1016/j.bbapap.2008.08.006CrossRefGoogle Scholar
  179. 179.
    Strauss, S.H., Silver, M.E., Long, K.M., Thompson, R.G., Hudgens, R.A., Spartalian, K., Ibers, J.A.: Comparison of the molecular and electronic structures of (2,3,7,8,12,13,17,18-octaethylporphyrinato)iron(II) and (trans-7,8-dihydro-2,3,7,8,12,13,17,18-octaethylporphyrinato)iron(II). J. Am. Chem. Soc. 107(14), 4207–4215 (1985).  https://doi.org/10.1021/ja00300a021CrossRefGoogle Scholar
  180. 180.
    Strickland, N., Harvey, J.N.: Spin-forbidden ligand binding to the ferrous-heme group: Ab initio and DFT studies. J. Phys. Chem. B 111, 841–852 (2007)CrossRefGoogle Scholar
  181. 181.
    Strickland, N., Mulholland, A.J., Harvey, J.N.: The Fe-CO bond energy in myoglobin: A QM/MM study of the effect of tertiary structure. Biophys. J. 90, 27–29 (2006).  https://doi.org/10.1529/biophysj.105.078097CrossRefGoogle Scholar
  182. 182.
    Sun, X., Wang, H., Feng, D.: Binding properties of CO, NO, and O\(_2\) to P450 heme: a density functional study. Chin. J. Phys. Chem. 20, 552–556 (2007).  https://doi.org/10.1088/1674-0068/20/05/552-556CrossRefGoogle Scholar
  183. 183.
    Szabo, A., Ostlund, N.S.: Modern quantum chemistry. In: Introduction to Advanced Electronic Structure Theory. Dover Publications Inc, New York (1989)Google Scholar
  184. 184.
    Tomson, N.C., Crimmin, M.R., Petrenko, T., Rosebrugh, L.E., Sproules, S., Boyd, W.C., Bergman, R.G., DeBeer, S., Toste, F.D., Wieghardt, K.: A step beyond the feltham-enemark notation: spectroscopic and correlated ab initio computational support for an antiferromagnetically coupled M(II)-(NO)\(^-\) description of Tp*M(NO) (M = Co, Ni). J. Am. Chem. Soc. 133(46), 18,785–18,801 (2011).  https://doi.org/10.1021/ja206042kCrossRefGoogle Scholar
  185. 185.
    Traylor, T.G., Sharma, V.S.: Why no? Biochemistry 31(11), 2847–2849 (1992).  https://doi.org/10.1021/bi00126a001CrossRefGoogle Scholar
  186. 186.
    Turner, J.W., Schultz, F.A.: Coupled electron-transfer and spin-exchange reactions. Coord. Chem. Revs. 219, 81–97 (2001).  https://doi.org/10.1016/S0010-8545(01)00322-8CrossRefGoogle Scholar
  187. 187.
    Ugalde, J.M., Dunietz, B., Dreuw, A., Head-Gordon, M., Boyd, R.J.: The spin dependence of the spatial size of Fe(II) and of the structure of Fe(II)-porphyrins. J. Phys. Chem. A 108(21), 4653–4657 (2004).  https://doi.org/10.1021/jp0489119CrossRefGoogle Scholar
  188. 188.
    Vancoillie, S., Malmqvist, P.Å., Pierloot, K.: Calculation of EPR g tensors for transition-metal complexes based on multiconfigurational perturbation theory (CASPT2). ChemPhysChem 8(12), 1803–1815 (2007)CrossRefGoogle Scholar
  189. 189.
    Vancoillie, S., Zhao, H., Radoń, M., Pierloot, K.: Performance of CASPT2 and DFT for relative spin-state energetics of heme models. J. Chem. Theory Comput. 6(2), 576–582 (2010).  https://doi.org/10.1021/ct900567cCrossRefGoogle Scholar
  190. 190.
    Vancoillie, S., Zhao, H., Tran, V.T., Hendrickx, M.F.A., Pierloot, K.: Multiconfigurational second-order perturbation theory restricted active space (RASPT2) studies on mononuclear first-row transition-metal systems. J. Chem. Theory Comput. 7, 3961–3977 (2011).  https://doi.org/10.1021/ct200597hCrossRefGoogle Scholar
  191. 191.
    Wanat, A., Schneppensieper, T., Stochel, G., van Eldik, R., Bill, E., Wieghardt, K.: Kinetics, mechanism, and spectroscopy of the reversible binding of nitric oxide to aquated iron(II). An undergraduate text book reaction revisited. Inorg. Chem. 41, 4–10 (2002).  https://doi.org/10.1021/ic010628qCrossRefGoogle Scholar
  192. 192.
    Wang, Q., Sheng, X., Horner, J.H., Newcomb, M.: Quantitative production of compound I from a cytochrome P450 enzyme at low temperatures. kinetics, activation parameters, and kinetic isotope effects for oxidation of benzyl alcohol. J. Am. Chem. Soc. 131(30), 10629–10636 (2009).  https://doi.org/10.1021/ja9031105CrossRefGoogle Scholar
  193. 193.
    Weigend, F., Häser, M., Patzelt, H., Ahlrichs, R.: Ri-mp2: Optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 294, 143–152 (1998)CrossRefGoogle Scholar
  194. 194.
    Weiss, J.J.: Nature of the ironoxygen bond in oxyhaemoglobin. Nature 202, 83–84 (1964).  https://doi.org/10.1038/202083b0CrossRefGoogle Scholar
  195. 195.
    Weiss, R., Mandon, D., Wolter, T., Trautwein, A.X., Müther, M., Bill, E., Gold, A., Jayaraj, K., Terner, J.: Delocalization over the heme and the axial ligands of one of the two oxidizing equivalents stored above the ferric state in the peroxidase and catalase compound-i intermediates: indirect participation of the proximal axial ligand of iron in the oxidation reactions catalyzed by heme-based peroxidases and catalases? J. Biol. Inorg. Chem. 1(4), 377–383 (1996).  https://doi.org/10.1007/s007750050069CrossRefGoogle Scholar
  196. 196.
    Westcott, B.L., Enemark, J.L.: Transition metal nitrosyls. In: Solomon, E.I., Lever, A.B.P. (eds.) Inorganic Electronic Structure and Spectroscopy, vol. 2, pp. 403–450. Wiley, New York (1999)Google Scholar
  197. 197.
    Williams, R.: Metallo-enzyme catalysis: the entatic state. J. Mol. Catal. A 30, 1–26 (1985).  https://doi.org/10.1016/0304-5102(85)80013-4CrossRefGoogle Scholar
  198. 198.
    Yamamoto, S., Kashiwagi, H.: CASSCF study on the Fe-O\(_2\) bond in a dioxygen heme complex. Chem. Phys. Lett. 161(1), 85–89 (1989)CrossRefGoogle Scholar
  199. 199.
    Yamamoto, S., Teraoka, J., Kashiwagi, H.: Ab initio RHF and CASSCF studies on Fe–O bond in high-valent iron-oxoporphyrins. J. Chem. Phys. 88, 303–312 (1988)CrossRefGoogle Scholar
  200. 200.
    Ye, S., Neese, F.: Accurate modeling of spin-state energetics in spin-crossover systems with modern density functional theory. Inorg. Chem. 49(3), 772–774 (2010).  https://doi.org/10.1021/ic902365aCrossRefGoogle Scholar
  201. 201.
    Zhang, R., Newcomb, M.: Laser flash photolysis generation of high-valent transition metal-oxo species: insights from kinetic studies in real time. Acc. Chem. Res. 41(3), 468–477 (2008).  https://doi.org/10.1021/ar700175kCrossRefGoogle Scholar
  202. 202.
    Zhang, R., Nagraj, N., Lansakara-P, D.S.P., Hager, L.P., Newcomb, M.: Kinetics of two-electron oxidations by the compound I derivative of chloroperoxidase, a model for cytochrome P450 oxidants. Org. Lett. 8(13), 2731–2734 (2006).  https://doi.org/10.1021/ol060762kCrossRefGoogle Scholar
  203. 203.
    Zhao, Y., Truhlar, D.G.: Density functional for spectroscopy: No long-range self-interaction error, good performance for rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J. Phys. Chem. A 110(49), 13,126–13,130 (2006a).  https://doi.org/10.1021/jp066479k. (pMID: 17149824)CrossRefGoogle Scholar
  204. 204.
    Zhao, Y., Truhlar, D.G.: A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125(194), 101 (2006b).  https://doi.org/10.1063/1.2370993CrossRefGoogle Scholar
  205. 205.
    Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).  https://doi.org/10.1007/s00214-007-0310-xCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Academic Computer Center CYFRONET AGHKrakówPoland
  2. 2.Faculty of ChemistryJagiellonian University in KrakowKrakówPoland
  3. 3.Jerzy Haber Institute of CatalysisPolish Academy of SciencesKrakówPoland

Personalised recommendations