Advertisement

When Water Plays an Active Role in Electronic Structure. Insights from First-Principles Molecular Dynamics Simulations of Biological Systems

  • Giovanni La Penna
  • Oliviero Andreussi
Chapter
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 8)

Abstract

Changes of electronic structure and movements of positive holes (mostly protons and metal ions) are closely connected in biological processes. These changes occur in an environment mostly dominated by liquid water. Thanks to theoretical advances in first-principles computer simulations and to high performance computers, these two ingredients can be combined to set up reliable models. This is of particular help in understanding the role of metal cofactors in biology.

Notes

Acknowledgements

Several european high-performance computing infrastructures are greatly acknowledged for the resources provided along the years, particularly NIC (DE) and CINECA (IT). All the super–cell calculations reported here were possible thanks to the Quantum-Espresso community [86, 87] (see www.quantum-espresso.org for full documentation and many tutorials). All the drawings and movies were made with the VMD program [8] (see www.ks.uiuc.edu/Research/vmd for documentation and tutorials).

Supplementary material

272902_2_En_22_MOESM1_ESM.mpg (5.2 mb)
Supplementary material 1 (mpg 5348 KB)
272902_2_En_22_MOESM2_ESM.mpg (17.7 mb)
Supplementary material 2 (mpg 18112 KB)
272902_2_En_22_MOESM3_ESM.mpg (7.3 mb)
Supplementary material 3 (mpg 7482 KB)
272902_2_En_22_MOESM4_ESM.avi (8.6 mb)
Supplementary material 4 (avi 8853 KB)

References

  1. 1.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000).  https://doi.org/10.1093/nar/28.1.235, https://www.rcsb.orgCrossRefGoogle Scholar
  2. 2.
    Lawson, C.L., Patwardhan, A., Baker, M.L., Hryc, C., Garcia, E.S., Hudson, B.P., Lagerstedt, I., Ludtke, S.J., Pintilie, G., Sala, R., Westbrook, J.D., Berman, H.M., Kleywegt, G.J., Chiu, W.: EM databank unified data resource for 3d EM. Nucleic Acids Res. 44(D1), D396–D403 (2016).  https://doi.org/10.1093/nar/gkv1126, https://www.emdatabank.orgCrossRefGoogle Scholar
  3. 3.
    Weiner, P.K., Kollman, P.A.: Amber: Assisted model building with energy refinement. A general program for modeling molecules and their interactions. J. Comp. Chem. 2(3), 287–303 (1981).  https://doi.org/10.1002/jcc.540020311CrossRefGoogle Scholar
  4. 4.
    Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J.: The AMBER biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005).  https://doi.org/10.1002/jcc.20290CrossRefGoogle Scholar
  5. 5.
    Scheraga, H.A.: My 65 years in protein chemistry. Quart. Rev. Biophys. 48(2), 117–177 (2015).  https://doi.org/10.1017/S0033583514000134CrossRefGoogle Scholar
  6. 6.
    Schlick, T.: The 2013 nobel prize in chemistry celebrates computations in chemistry and biology. SIAM News 46(10) (2013). https://www.biomath.nyu.edu/index/papdir/fullengths/Nobel13.pdf
  7. 7.
    Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., Saenger, W.: Cyanobacterial photosystem II at 2.9 Å resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 16, 334 (2009).  https://doi.org/10.1038/NSMB.1559CrossRefGoogle Scholar
  8. 8.
    Humphrey, W., Dalke, A., Schulten, K.: VMD visual molecular dynamics. J. Molec. Graphics 14(1), 33–38 (1996).  https://doi.org/10.1016/0263-7855(96)00018-5, https://www.ks.uiuc.edu/Research/vmdCrossRefGoogle Scholar
  9. 9.
    Bertini, I., Gray, H.B., Stiefel, E.I., Valentine, J.S. (eds.): Biological Inorganic Chemistry: Structure and Reactivity. University Science Books, Sausalito, CA (2007)Google Scholar
  10. 10.
    Morante, S., Rossi, G.C.: A novel proof of the DFT formula for the interatomic force field of molecular dynamics. Ann. Phys. 377(Supplement C), 71–76 (2017).  https://doi.org/10.1016/j.aop.2016.12.011MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bryant, R.G., Johnson, M.A., Rossky, P.J.: Water. Acc. Chem. Res. 45(1), 1–2 (2012).  https://doi.org/10.1021/ar2003286CrossRefGoogle Scholar
  12. 12.
    Del Rosso, L., Celli, M., Ulivi, L.: New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice. Nat. Commun. 7, 13394 (2016).  https://doi.org/10.1038/ncomms13394
  13. 13.
    Bartels-Rausch, T., Bergeron, V., Cartwright, J.H.E., Escribano, R., Finney, J.L., Grothe, H., Gutiérrez, P.J., Haapala, J., Kuhs, W.F., Pettersson, J.B.C., Price, S.D., Sainz-Díaz, C.I., Stokes, D.J., Strazzulla, G., Thomson, E.S., Trinks, H., Uras-Aytemiz, N.: Ice structures, patterns, and processes: A view across the icefields. Rev. Mod. Phys. 84(2), 885–944 (2012).  https://doi.org/10.1103/RevModPhys.84.885CrossRefGoogle Scholar
  14. 14.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford, UK (1989)zbMATHGoogle Scholar
  15. 15.
    Mazza, M.G., Stokely, K., Pagnotta, S.E., Bruni, F., Stanley, H.E., Franzese, G.: More than one dynamic crossover in protein hydration water. Proc. Nat. Acad. Sci. U.S.A. 108(50), 19873–19878 (2011).  https://doi.org/10.1073/pnas.1104299108CrossRefGoogle Scholar
  16. 16.
    Ball, P.: H\(_2\)O: A Biography. Weidenfeld & Nicolson, London (1999)Google Scholar
  17. 17.
    Ben-Naim, A.: Molecular Theory of Water and Aqueous Solutions—Part I: Understanding Water. World Scientific, Singapore (2009).  https://doi.org/10.1142/7136
  18. 18.
    Lamoureux, G., Roux, B.: Modeling induced polarization with classical drude oscillators: Theory and molecular dynamics simulation algorithm. J. Chem. Phys. 119(6), 3025–3039 (2003).  https://doi.org/10.1063/1.1589749CrossRefGoogle Scholar
  19. 19.
    Jiang, W., Hardy, D., Phillips, J., MacKerell, A., Schulten, K., Roux, B.: High-performance scalable molecular dynamics simulations of a polarizable force field based on classical drude oscillators in NAMD. J. Phys. Chem. Lett. 2, 87–92 (2011).  https://doi.org/10.1021/jz101461dCrossRefGoogle Scholar
  20. 20.
    Ponder, J.W., Wu, C., Ren, P., Pande, V.S., Chodera, J.D., Schnieders, M.J., Haque, I., Mobley, D.L., Lambrecht, D.S., Di Stasio, R.A., Head-Gordon, M., Clark, G.N.I., Johnson, M.E., Head-Gordon, T.: Current status of the Amoeba polarizable force field. J. Phys. Chem. B 114(8), 2549–2564 (2010).  https://doi.org/10.1021/jp910674dCrossRefGoogle Scholar
  21. 21.
    Senftle, T.P., Hong, M.M., Sungwook Islam, S.B., Kylasa, Y., Zheng, Y.K., Shin, C., Junkermeier, R., Engel-Herbert, M.J., Janik, H.M., Aktulga, T., Verstraelen, A., Grama, A., van Duin, A.C.T.: The Reax-ff reactive force-field: Development, applications and future directions. Npj Comput. Mater. 2, 15011 (2016).  https://doi.org/10.1038/npjcompumats.2015.11
  22. 22.
    Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.J.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).  https://doi.org/10.1063/1.445869CrossRefGoogle Scholar
  23. 23.
    Parr, R.G., Yang, W.: Density Functional Theory of Atoms and Molecules. Oxford University Press, New York (1989)Google Scholar
  24. 24.
    Landau, L., Lifchitz, E.: Physique Statistique. MIR, Moscow, URSS (1984)zbMATHGoogle Scholar
  25. 25.
    Mennucci, B., Cammi, R. (eds.): Continuum Solvation Models in Chemical Physics: From Theory to Applications. Wiley, Hoboken (2008).  https://doi.org/10.1002/9780470515235Google Scholar
  26. 26.
    Tomasi, J., Mennucci, B., Cammi, R.: Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005).  https://doi.org/10.1021/cr9904009CrossRefGoogle Scholar
  27. 27.
    Klamt, A., Mennucci, B., Tomasi, J., Barone, V., Curutchet, C., Orozco, M., Luque, F.J.: On the performance of continuum solvation methods. a comment on “universal approaches to solvation modeling”. Acc. Chem. Res. 42(4), 489–492 (2009).  https://doi.org/10.1021/ar800187pCrossRefGoogle Scholar
  28. 28.
    Cramer, C.J., Truhlar, D.G.: Reply to comment on "a universal approach to solvation modeling". Acc. Chem. Res. 42(4), 493–497 (2009).  https://doi.org/10.1021/ar900004jCrossRefGoogle Scholar
  29. 29.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision C.01. Gaussian Inc., Wallingford, CT, USA (2010)Google Scholar
  30. 30.
    Muller, N.: Search for a realistic view of hydrophobic effects. Acc. Chem. Res. 23(1), 23–28 (1990).  https://doi.org/10.1021/ar00169a005CrossRefGoogle Scholar
  31. 31.
    Ben-Naim, A.: Molecular Theory of Water and Aqueous Solutions Part II: The Role of Water in Protein Folding, Self-assembly and Molecular Recognition. World Scientific, Singapore (2011).  https://doi.org/10.1142/8154
  32. 32.
    Senn, H.M., Thiel, W.: QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. 48, 1198–1229 (2009).  https://doi.org/10.1002/anie.200802019CrossRefGoogle Scholar
  33. 33.
    Barone, V., Improta, R., Rega, N.: Quantum mechanical computations and spectroscopy: From small rigid molecules in the gas phase to large flexible molecules in solution. Acc. Chem. Res. 41(5), 605–616 (2008).  https://doi.org/10.1021/ar7002144CrossRefGoogle Scholar
  34. 34.
    Marx, D., Hutter, J.: Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  35. 35.
    Pastore, G., Smargiassi, E., Buda, F.: Theory of ab initio molecular dynamics calculations. Phys. Rev. A 44, 6334–6347 (1991).  https://doi.org/10.1103/PhysRevA.44.6334CrossRefGoogle Scholar
  36. 36.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).  https://doi.org/10.1103/PhysRevLett.77.3865CrossRefGoogle Scholar
  37. 37.
    Becke, A.D.: Density-functional thermochemistry. iii. the role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).  https://doi.org/10.1063/1.464913CrossRefGoogle Scholar
  38. 38.
    Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008).  https://doi.org/10.1103/PhysRevLett.100.136406
  39. 39.
    Schwegler, E., Grossman, J., Gygi, F., Galli, G.: Towards an assessment of the accuracy of density functional theory for first-principles simulations of water II. J. Chem. Phys. 121, 5400 (2004).  https://doi.org/10.1063/1.1782074CrossRefGoogle Scholar
  40. 40.
    Schwegler, E., Sharma, M., Gygi, F., Galli, G.: Melting of ice under pressure. Proc. Nat. Acad. Sci. U.S.A. 105(39), 14779–14783 (2008).  https://doi.org/10.1073/pnas.0808137105CrossRefGoogle Scholar
  41. 41.
    Lazić, P., Atodiresei, N., Alaei, M., Caciuc, V., Blügel, S., Brako, R.: Junolo - Jülich nonlocal code for parallel post-processing evaluation of VdW-DF correlation energy. Comput. Phys. Commun. 181(2), 371–379 (2010).  https://doi.org/10.1016/j.cpc.2009.09.016CrossRefzbMATHGoogle Scholar
  42. 42.
    Kulik, H.J., Cococcioni, M., Scherlis, D.A., Marzari, N.: Density functional theory in transition-metal chemistry: A self-consistent hubbard \(U\) approach. Phys. Rev. Lett. 97(10), 103001 (2006).  https://doi.org/10.1103/PhysRevLett.97.103001
  43. 43.
    Car, R., Parrinello, M.: Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).  https://doi.org/10.1103/PhysRevLett.55.2471CrossRefGoogle Scholar
  44. 44.
    Wolf, D., Keblinski, P., Phillpot, S.R., Eggebrecht, J.: Exact method for the simulation of coulombic systems spherically truncated, pairwise r-1 summation. J. Chem. Phys. 110, 8254–8282 (1999).  https://doi.org/10.1063/1.478738CrossRefGoogle Scholar
  45. 45.
    Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).  https://doi.org/10.1103/PhysRevB.41.7892CrossRefGoogle Scholar
  46. 46.
    Giannozzi, P., De Angelis, F., Car, R.: First-princple molecular dynamics with ultrasoft pseudopotentials: Parallel implementation and application to extended bioinorganic systems. J. Chem. Phys. 120, 5903–5915 (2004).  https://doi.org/10.1063/1.1652017CrossRefGoogle Scholar
  47. 47.
    Fattebert, J.L., Gygi, F.: Density functional theory for efficient ab initio molecular dynamics simulations in solution. J. Comput. Chem. 23(6), 662–666 (2002).  https://doi.org/10.1002/jcc.10069
  48. 48.
    Fattebert, J.L., Gygi, F.: First-principles molecular dynamics simulations in a continuum solvent. Int. J. Quantum Chem. 93(2), 139–147 (2003).  https://doi.org/10.1002/qua.10548CrossRefGoogle Scholar
  49. 49.
    Petrosyan, S.A., Rigos, A.A., Arias, T.A.: Joint density-functional theory: Ab initio study of Cr2O3 surface chemistry in solution. J. Phys. Chem. B 109(32), 15436–15444 (2005).  https://doi.org/10.1021/jp044822kCrossRefGoogle Scholar
  50. 50.
    Scherlis, D.A., Fattebert, J.L., Gygi, F., Cococcioni, M., Marzari, N.: A unified electrostatic and cavitation model for first-principles molecular dynamics in solution. J. Chem. Phys. 124(7), 74103 (2006).  https://doi.org/10.1063/1.2168456CrossRefGoogle Scholar
  51. 51.
    Dabo, I., Cancès, E., Li, Y., Marzari, N.: Towards first-principles electrochemistry. arXiv preprint arXiv:0901.0096 (2008)
  52. 52.
    Sanchez, V.M., Sued, M., Scherlis, D.A.: First-principles molecular dynamics simulations at solid-liquid interfaces with a continuum solvent. J. Chem. Phys. 131(17), 174108 (2009).  https://doi.org/10.1063/1.3254385CrossRefGoogle Scholar
  53. 53.
    Dziedzic, J., Helal, H.H., Skylaris, C.K., Mostofi, A.A., Payne, M.C.: Minimal parameter implicit solvent model for ab initio electronic-structure calculations. Europhys. Lett. 95(4), 43001 (2011).  https://doi.org/10.1209/0295-5075/95/43001CrossRefGoogle Scholar
  54. 54.
    Andreussi, O., Dabo, I., Marzari, N.: Revised self-consistent continuum solvation in electronic-structure calculations. J. Chem. Phys. 136(6), 064102 (2012).  https://doi.org/10.1063/1.3676407CrossRefGoogle Scholar
  55. 55.
    Cococcioni, M., Mauri, F., Ceder, G., Marzari, N.: Electronic-enthalpy functional for finite systems under pressure. Phys. Rev. Lett. 94(14), 145501 (2005).  https://doi.org/10.1103/PhysRevLett.94.145501
  56. 56.
    Dupont, C., Andreussi, O., Marzari, N.: Self-consistent continuum solvation (sccs): The case of charged systems. J. Chem. Phys. 139(21), 214110 (2013).  https://doi.org/10.1063/1.4832475CrossRefGoogle Scholar
  57. 57.
    Andreussi, O., Marzari, N.: Electrostatics of solvated systems in periodic boundary conditions. Phys. Rev. B 90(24), 245101 (2014).  https://doi.org/10.1103/PhysRevB.90.245101
  58. 58.
    Timrov, I., Andreussi, O., Biancardi, A., Marzari, N., Baroni, S.: Self-consistent continuum solvation for optical absorption of complex molecular systems in solution. J. Chem. Phys. 142(3), 034111 (2015).  https://doi.org/10.1063/1.4905604CrossRefGoogle Scholar
  59. 59.
    Fisicaro, G., Genovese, L., Andreussi, O., Mandal, S., Nair, N., Marzari, N., Goedecker, S.: Soft-sphere continuum solvation in electronic-structure calculations. J. Chem. Theory Comput. 13(8), 3829 (2017).  https://doi.org/10.1021/acs.jctc.7b00375CrossRefGoogle Scholar
  60. 60.
    Letchworth-Weaver, K., Arias, T.A.: Joint density functional theory of the electrode-electrolyte interface: Application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge. Phys. Rev. B 86(7), 075140 (2012).  https://doi.org/10.1103/PhysRevB.86.075140
  61. 61.
    Fortunelli, A., Goddard, W.A., Sha, Y., Yu, T.H., Sementa, L., Barcaro, G., Andreussi, O.: Dramatic increase in the oxygen reduction reaction for platinum cathodes from tuning the solvent dielectric constant. Angewandte Chem. Int. Ed. 53(26), 6669–6672 (2014).  https://doi.org/10.1002/anie.201403264CrossRefGoogle Scholar
  62. 62.
    Hamada, I., Sugino, O., Bonnet, N., Otani, M.: Improved modeling of electrified interfaces using the effective screening medium method. Phys. Rev. B 88(15), 155427 (2013).  https://doi.org/10.1103/PhysRevB.88.155427
  63. 63.
    Montemore, M.M., Andreussi, O., Medlin, J.W.: Hydrocarbon adsorption in an aqueous environment: A computational study of alkyls on Cu(111). J. Chem. Phys. 145(7), 074702 (2016).  https://doi.org/10.1063/1.4961027CrossRefGoogle Scholar
  64. 64.
    Sementa, L., Andreussi, O., Goddard III, W.A., Fortunelli, A.: Catalytic activity of Pt\(_38\) in the oxygen reduction reaction from first-principles simulations. Catal. Sci. Technol. 6(18), 6901–6909 (2016).  https://doi.org/10.1039/C6CY00750CCrossRefGoogle Scholar
  65. 65.
    Onsager, L.: Electric moments of molecules in liquids. J. Am. Chem. Soc. 58(8), 1486–1493 (1936).  https://doi.org/10.1021/ja01299a050CrossRefGoogle Scholar
  66. 66.
    Knight, C., Voth, G.A.: The curious case of the hydrated proton. Acc. Chem. Res. 45(1), 101–109 (2012).  https://doi.org/10.1021/ar200140hCrossRefGoogle Scholar
  67. 67.
    Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Molec. Phys. 52, 255–268 (1984).  https://doi.org/10.1080/00268978400101201MathSciNetCrossRefGoogle Scholar
  68. 68.
    Frenkel, D., Smit, B.: Understanding Molecular Simulation. Academic Press, San Diego (1996)zbMATHGoogle Scholar
  69. 69.
    Wales, D.J.: Energy Landscapes. Cambridge University Press, Cambridge, UK (2003)Google Scholar
  70. 70.
    Laio, A., Gervasio, F.L.: Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 71(126), 601–622 (2008).  https://doi.org/10.1088/0034-4885/71/12/126601CrossRefGoogle Scholar
  71. 71.
    Łuczkowski, M., Kozłowski, H., Stawikowski, M., Rolka, K., Gaggelli, E., Valensin, D., Valensin, G.: Is the monomeric prion octapeptide repeat PHGGWGQq a specific ligand for Cu\(^{2+}\) ions? J. Chem. Soc., Dalton Trans. 2002, 2269–2274 (2002).  https://doi.org/10.1039/B201040M
  72. 72.
    Burns, C.S., Aronoff-Spencer, E., Dunham, C.M., Lario, P., Avdievich, N.I., Antholine, W.E., Olmstead, M.M., Vrielink, A., Gerfen, G.J., Peisach, J., Scott, W.G., Millhauser, G.L.: Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Biochemistry 41, 3991–4001 (2002)CrossRefGoogle Scholar
  73. 73.
    Miura, T., Suzuki, K., Kohata, N., Takeuchi, H.: Metal binding modes of Alzheimer’s amyloid \(\beta \)-peptide in insoluble aggregates and soluble complexes. Biochemistry 39(23), 7024–7031 (2000).  https://doi.org/10.1021/bi0002479CrossRefGoogle Scholar
  74. 74.
    Furlan, S., La Penna, G., Guerrieri, F., Morante, S., Rossi, G.: Ab initio simulations of Cu binding sites on the N-terminal region of the prion protein. J. Biol. Inorg. Chem. 12, 571–583 (2007).  https://doi.org/10.1007/s00775-007-0218-xCrossRefGoogle Scholar
  75. 75.
    Furlan, S., La Penna, G.: Metal ions and protons compete for ligand atoms in disordered peptides: Examples from computer simulations of copper binding to the prion tandem repeat. Coord. Chem. Rev. 256, 2234–2244 (2012).  https://doi.org/10.1016/j.ccr.2012.03.036CrossRefGoogle Scholar
  76. 76.
    Hureau, C., Balland, V., Coppel, Y., Solari, P.L., Fonda, E., Faller, P.: Importance of dynamical processes in the coordination chemistry and redox conversion of copper amyloid-\(\beta \) complexes. J. Biol. Inorg. Chem. 14, 995–1000 (2009).  https://doi.org/10.1007/s00775-009-0570-0CrossRefGoogle Scholar
  77. 77.
    Furlan, S., La Penna, G., Perico, A.: Modeling the free energy of polypeptides in different environments. Macromolecules 41, 2938–2948 (2008).  https://doi.org/10.1021/ma7022155CrossRefGoogle Scholar
  78. 78.
    Miller, Y., Ma, B., Nussinov, R.: Zinc ions promote alzheimer a\(\beta \) aggregation via population shift of polymorphic states. Proc. Nat. Acad. Sci. U.S.A. 107(21), 9490–9495 (2010).  https://doi.org/10.1073/pnas.0913114107CrossRefGoogle Scholar
  79. 79.
    Furlan, S., Hureau, C., Faller, P., La Penna, G.: Modeling the Cu\(^+\) binding in the 1–16 region of the amyloid-\(\beta \) peptide involved in alzheimer’s disease. J. Phys. Chem. B 114, 15119–15133 (2010).  https://doi.org/10.1021/jp102928hCrossRefGoogle Scholar
  80. 80.
    La Penna, G., Hureau, C., Andreussi, O., Faller, P.: Identifying, by first-principles simulations, Cu[amyloid-\(\beta \)] species making Fenton-type reactions in Alzheimers disease. J. Phys. Chem. B 117, 16455–16467 (2013).  https://doi.org/10.1021/jp410046wCrossRefGoogle Scholar
  81. 81.
    La Penna, G., Hureau, C., Faller, P.: A cu-amyloid \(\beta \) complex activating Fenton chemistry in Alzheimer’s disease: Learning with multiple first-principles simulations. AIP Conf. Proc. 1618(1), 112–114 (2014).  https://doi.org/10.1063/1.4897690
  82. 82.
    Kanan, M.W., Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co\(^{2+}\). Science 321(5892), 1072–1075 (2008).  https://doi.org/10.1126/science.1162018CrossRefGoogle Scholar
  83. 83.
    Mattioli, G., Giannozzi, P., Amore Bonapasta, A., Guidoni, L.: Reaction pathways for oxygen evolution promoted by cobalt catalyst. J. Am. Chem. Soc. 135(41), 15353–15363 (2013).  https://doi.org/10.1021/ja401797vCrossRefGoogle Scholar
  84. 84.
    Parsico, M., Granucci, G.: Continuum Solvation Models in Chemical Physics: From Theory to Applications. In: Wiley, H. (ed.), Chapter Photochemistry in condensed phase.  https://doi.org/10.1002/9780470515235Google Scholar
  85. 85.
    Mosca Conte, A., Violante, C., Missori, M., Bechstedt, F., Teodonio, L., Ippoliti, E., Carloni, P., Guidoni, L., Pulci, O.: Theoretical optical spectroscopy of complex systems. J. Electron Spectrosc. Relat. Phenom. 189(S), 46–55 (2013).  https://doi.org/10.1016/j.elspec.2013.02.002CrossRefGoogle Scholar
  86. 86.
    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Paolo, U., Wentzcovitch, R.M.: Quantum Espresso: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).  https://doi.org/10.1088/0953-8984/21/39/395502, https://www.quantum-espresso.orgGoogle Scholar
  87. 87.
    Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., Di Stasio Jr, R.A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.Y., Kokalj, A., Kücükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H.V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X., Baroni, S.: Advanced capabilities for materials modelling with Quantum Espresso. J. Phys. Condens. Matter 29(46), 465901 (2017).  https://doi.org/10.1088/1361-648X/aa8f79Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Chemistry of Organo-Metallic CompoundsNational Research Council of ItalySesto fiorentino (Firenze)Italy
  2. 2.Department of PhysicsUniversity of North TexasDentonUSA

Personalised recommendations