When Water Plays an Active Role in Electronic Structure. Insights from First-Principles Molecular Dynamics Simulations of Biological Systems

  • Giovanni La Penna
  • Oliviero Andreussi
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 8)


Changes of electronic structure and movements of positive holes (mostly protons and metal ions) are closely connected in biological processes. These changes occur in an environment mostly dominated by liquid water. Thanks to theoretical advances in first-principles computer simulations and to high performance computers, these two ingredients can be combined to set up reliable models. This is of particular help in understanding the role of metal cofactors in biology.



Several european high-performance computing infrastructures are greatly acknowledged for the resources provided along the years, particularly NIC (DE) and CINECA (IT). All the super–cell calculations reported here were possible thanks to the Quantum-Espresso community [86, 87] (see for full documentation and many tutorials). All the drawings and movies were made with the VMD program [8] (see for documentation and tutorials).

Supplementary material

272902_2_En_22_MOESM1_ESM.mpg (5.2 mb)
Supplementary material 1 (mpg 5348 KB)
272902_2_En_22_MOESM2_ESM.mpg (17.7 mb)
Supplementary material 2 (mpg 18112 KB)
272902_2_En_22_MOESM3_ESM.mpg (7.3 mb)
Supplementary material 3 (mpg 7482 KB)
272902_2_En_22_MOESM4_ESM.avi (8.6 mb)
Supplementary material 4 (avi 8853 KB)


  1. 1.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)., https://www.rcsb.orgCrossRefGoogle Scholar
  2. 2.
    Lawson, C.L., Patwardhan, A., Baker, M.L., Hryc, C., Garcia, E.S., Hudson, B.P., Lagerstedt, I., Ludtke, S.J., Pintilie, G., Sala, R., Westbrook, J.D., Berman, H.M., Kleywegt, G.J., Chiu, W.: EM databank unified data resource for 3d EM. Nucleic Acids Res. 44(D1), D396–D403 (2016)., https://www.emdatabank.orgCrossRefGoogle Scholar
  3. 3.
    Weiner, P.K., Kollman, P.A.: Amber: Assisted model building with energy refinement. A general program for modeling molecules and their interactions. J. Comp. Chem. 2(3), 287–303 (1981). Scholar
  4. 4.
    Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J.: The AMBER biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005). Scholar
  5. 5.
    Scheraga, H.A.: My 65 years in protein chemistry. Quart. Rev. Biophys. 48(2), 117–177 (2015). Scholar
  6. 6.
    Schlick, T.: The 2013 nobel prize in chemistry celebrates computations in chemistry and biology. SIAM News 46(10) (2013).
  7. 7.
    Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., Saenger, W.: Cyanobacterial photosystem II at 2.9 Å resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 16, 334 (2009). Scholar
  8. 8.
    Humphrey, W., Dalke, A., Schulten, K.: VMD visual molecular dynamics. J. Molec. Graphics 14(1), 33–38 (1996)., Scholar
  9. 9.
    Bertini, I., Gray, H.B., Stiefel, E.I., Valentine, J.S. (eds.): Biological Inorganic Chemistry: Structure and Reactivity. University Science Books, Sausalito, CA (2007)Google Scholar
  10. 10.
    Morante, S., Rossi, G.C.: A novel proof of the DFT formula for the interatomic force field of molecular dynamics. Ann. Phys. 377(Supplement C), 71–76 (2017). Scholar
  11. 11.
    Bryant, R.G., Johnson, M.A., Rossky, P.J.: Water. Acc. Chem. Res. 45(1), 1–2 (2012). Scholar
  12. 12.
    Del Rosso, L., Celli, M., Ulivi, L.: New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice. Nat. Commun. 7, 13394 (2016).
  13. 13.
    Bartels-Rausch, T., Bergeron, V., Cartwright, J.H.E., Escribano, R., Finney, J.L., Grothe, H., Gutiérrez, P.J., Haapala, J., Kuhs, W.F., Pettersson, J.B.C., Price, S.D., Sainz-Díaz, C.I., Stokes, D.J., Strazzulla, G., Thomson, E.S., Trinks, H., Uras-Aytemiz, N.: Ice structures, patterns, and processes: A view across the icefields. Rev. Mod. Phys. 84(2), 885–944 (2012). Scholar
  14. 14.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford, UK (1989)zbMATHGoogle Scholar
  15. 15.
    Mazza, M.G., Stokely, K., Pagnotta, S.E., Bruni, F., Stanley, H.E., Franzese, G.: More than one dynamic crossover in protein hydration water. Proc. Nat. Acad. Sci. U.S.A. 108(50), 19873–19878 (2011). Scholar
  16. 16.
    Ball, P.: H\(_2\)O: A Biography. Weidenfeld & Nicolson, London (1999)Google Scholar
  17. 17.
    Ben-Naim, A.: Molecular Theory of Water and Aqueous Solutions—Part I: Understanding Water. World Scientific, Singapore (2009).
  18. 18.
    Lamoureux, G., Roux, B.: Modeling induced polarization with classical drude oscillators: Theory and molecular dynamics simulation algorithm. J. Chem. Phys. 119(6), 3025–3039 (2003). Scholar
  19. 19.
    Jiang, W., Hardy, D., Phillips, J., MacKerell, A., Schulten, K., Roux, B.: High-performance scalable molecular dynamics simulations of a polarizable force field based on classical drude oscillators in NAMD. J. Phys. Chem. Lett. 2, 87–92 (2011). Scholar
  20. 20.
    Ponder, J.W., Wu, C., Ren, P., Pande, V.S., Chodera, J.D., Schnieders, M.J., Haque, I., Mobley, D.L., Lambrecht, D.S., Di Stasio, R.A., Head-Gordon, M., Clark, G.N.I., Johnson, M.E., Head-Gordon, T.: Current status of the Amoeba polarizable force field. J. Phys. Chem. B 114(8), 2549–2564 (2010). Scholar
  21. 21.
    Senftle, T.P., Hong, M.M., Sungwook Islam, S.B., Kylasa, Y., Zheng, Y.K., Shin, C., Junkermeier, R., Engel-Herbert, M.J., Janik, H.M., Aktulga, T., Verstraelen, A., Grama, A., van Duin, A.C.T.: The Reax-ff reactive force-field: Development, applications and future directions. Npj Comput. Mater. 2, 15011 (2016).
  22. 22.
    Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.J.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983). Scholar
  23. 23.
    Parr, R.G., Yang, W.: Density Functional Theory of Atoms and Molecules. Oxford University Press, New York (1989)Google Scholar
  24. 24.
    Landau, L., Lifchitz, E.: Physique Statistique. MIR, Moscow, URSS (1984)zbMATHGoogle Scholar
  25. 25.
    Mennucci, B., Cammi, R. (eds.): Continuum Solvation Models in Chemical Physics: From Theory to Applications. Wiley, Hoboken (2008). Scholar
  26. 26.
    Tomasi, J., Mennucci, B., Cammi, R.: Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005). Scholar
  27. 27.
    Klamt, A., Mennucci, B., Tomasi, J., Barone, V., Curutchet, C., Orozco, M., Luque, F.J.: On the performance of continuum solvation methods. a comment on “universal approaches to solvation modeling”. Acc. Chem. Res. 42(4), 489–492 (2009). Scholar
  28. 28.
    Cramer, C.J., Truhlar, D.G.: Reply to comment on "a universal approach to solvation modeling". Acc. Chem. Res. 42(4), 493–497 (2009). Scholar
  29. 29.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision C.01. Gaussian Inc., Wallingford, CT, USA (2010)Google Scholar
  30. 30.
    Muller, N.: Search for a realistic view of hydrophobic effects. Acc. Chem. Res. 23(1), 23–28 (1990). Scholar
  31. 31.
    Ben-Naim, A.: Molecular Theory of Water and Aqueous Solutions Part II: The Role of Water in Protein Folding, Self-assembly and Molecular Recognition. World Scientific, Singapore (2011).
  32. 32.
    Senn, H.M., Thiel, W.: QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. 48, 1198–1229 (2009). Scholar
  33. 33.
    Barone, V., Improta, R., Rega, N.: Quantum mechanical computations and spectroscopy: From small rigid molecules in the gas phase to large flexible molecules in solution. Acc. Chem. Res. 41(5), 605–616 (2008). Scholar
  34. 34.
    Marx, D., Hutter, J.: Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  35. 35.
    Pastore, G., Smargiassi, E., Buda, F.: Theory of ab initio molecular dynamics calculations. Phys. Rev. A 44, 6334–6347 (1991). Scholar
  36. 36.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). Scholar
  37. 37.
    Becke, A.D.: Density-functional thermochemistry. iii. the role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993). Scholar
  38. 38.
    Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008).
  39. 39.
    Schwegler, E., Grossman, J., Gygi, F., Galli, G.: Towards an assessment of the accuracy of density functional theory for first-principles simulations of water II. J. Chem. Phys. 121, 5400 (2004). Scholar
  40. 40.
    Schwegler, E., Sharma, M., Gygi, F., Galli, G.: Melting of ice under pressure. Proc. Nat. Acad. Sci. U.S.A. 105(39), 14779–14783 (2008). Scholar
  41. 41.
    Lazić, P., Atodiresei, N., Alaei, M., Caciuc, V., Blügel, S., Brako, R.: Junolo - Jülich nonlocal code for parallel post-processing evaluation of VdW-DF correlation energy. Comput. Phys. Commun. 181(2), 371–379 (2010). Scholar
  42. 42.
    Kulik, H.J., Cococcioni, M., Scherlis, D.A., Marzari, N.: Density functional theory in transition-metal chemistry: A self-consistent hubbard \(U\) approach. Phys. Rev. Lett. 97(10), 103001 (2006).
  43. 43.
    Car, R., Parrinello, M.: Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985). Scholar
  44. 44.
    Wolf, D., Keblinski, P., Phillpot, S.R., Eggebrecht, J.: Exact method for the simulation of coulombic systems spherically truncated, pairwise r-1 summation. J. Chem. Phys. 110, 8254–8282 (1999). Scholar
  45. 45.
    Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990). Scholar
  46. 46.
    Giannozzi, P., De Angelis, F., Car, R.: First-princple molecular dynamics with ultrasoft pseudopotentials: Parallel implementation and application to extended bioinorganic systems. J. Chem. Phys. 120, 5903–5915 (2004). Scholar
  47. 47.
    Fattebert, J.L., Gygi, F.: Density functional theory for efficient ab initio molecular dynamics simulations in solution. J. Comput. Chem. 23(6), 662–666 (2002).
  48. 48.
    Fattebert, J.L., Gygi, F.: First-principles molecular dynamics simulations in a continuum solvent. Int. J. Quantum Chem. 93(2), 139–147 (2003). Scholar
  49. 49.
    Petrosyan, S.A., Rigos, A.A., Arias, T.A.: Joint density-functional theory: Ab initio study of Cr2O3 surface chemistry in solution. J. Phys. Chem. B 109(32), 15436–15444 (2005). Scholar
  50. 50.
    Scherlis, D.A., Fattebert, J.L., Gygi, F., Cococcioni, M., Marzari, N.: A unified electrostatic and cavitation model for first-principles molecular dynamics in solution. J. Chem. Phys. 124(7), 74103 (2006). Scholar
  51. 51.
    Dabo, I., Cancès, E., Li, Y., Marzari, N.: Towards first-principles electrochemistry. arXiv preprint arXiv:0901.0096 (2008)
  52. 52.
    Sanchez, V.M., Sued, M., Scherlis, D.A.: First-principles molecular dynamics simulations at solid-liquid interfaces with a continuum solvent. J. Chem. Phys. 131(17), 174108 (2009). Scholar
  53. 53.
    Dziedzic, J., Helal, H.H., Skylaris, C.K., Mostofi, A.A., Payne, M.C.: Minimal parameter implicit solvent model for ab initio electronic-structure calculations. Europhys. Lett. 95(4), 43001 (2011). Scholar
  54. 54.
    Andreussi, O., Dabo, I., Marzari, N.: Revised self-consistent continuum solvation in electronic-structure calculations. J. Chem. Phys. 136(6), 064102 (2012). Scholar
  55. 55.
    Cococcioni, M., Mauri, F., Ceder, G., Marzari, N.: Electronic-enthalpy functional for finite systems under pressure. Phys. Rev. Lett. 94(14), 145501 (2005).
  56. 56.
    Dupont, C., Andreussi, O., Marzari, N.: Self-consistent continuum solvation (sccs): The case of charged systems. J. Chem. Phys. 139(21), 214110 (2013). Scholar
  57. 57.
    Andreussi, O., Marzari, N.: Electrostatics of solvated systems in periodic boundary conditions. Phys. Rev. B 90(24), 245101 (2014).
  58. 58.
    Timrov, I., Andreussi, O., Biancardi, A., Marzari, N., Baroni, S.: Self-consistent continuum solvation for optical absorption of complex molecular systems in solution. J. Chem. Phys. 142(3), 034111 (2015). Scholar
  59. 59.
    Fisicaro, G., Genovese, L., Andreussi, O., Mandal, S., Nair, N., Marzari, N., Goedecker, S.: Soft-sphere continuum solvation in electronic-structure calculations. J. Chem. Theory Comput. 13(8), 3829 (2017). Scholar
  60. 60.
    Letchworth-Weaver, K., Arias, T.A.: Joint density functional theory of the electrode-electrolyte interface: Application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge. Phys. Rev. B 86(7), 075140 (2012).
  61. 61.
    Fortunelli, A., Goddard, W.A., Sha, Y., Yu, T.H., Sementa, L., Barcaro, G., Andreussi, O.: Dramatic increase in the oxygen reduction reaction for platinum cathodes from tuning the solvent dielectric constant. Angewandte Chem. Int. Ed. 53(26), 6669–6672 (2014). Scholar
  62. 62.
    Hamada, I., Sugino, O., Bonnet, N., Otani, M.: Improved modeling of electrified interfaces using the effective screening medium method. Phys. Rev. B 88(15), 155427 (2013).
  63. 63.
    Montemore, M.M., Andreussi, O., Medlin, J.W.: Hydrocarbon adsorption in an aqueous environment: A computational study of alkyls on Cu(111). J. Chem. Phys. 145(7), 074702 (2016). Scholar
  64. 64.
    Sementa, L., Andreussi, O., Goddard III, W.A., Fortunelli, A.: Catalytic activity of Pt\(_38\) in the oxygen reduction reaction from first-principles simulations. Catal. Sci. Technol. 6(18), 6901–6909 (2016). Scholar
  65. 65.
    Onsager, L.: Electric moments of molecules in liquids. J. Am. Chem. Soc. 58(8), 1486–1493 (1936). Scholar
  66. 66.
    Knight, C., Voth, G.A.: The curious case of the hydrated proton. Acc. Chem. Res. 45(1), 101–109 (2012). Scholar
  67. 67.
    Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Molec. Phys. 52, 255–268 (1984). Scholar
  68. 68.
    Frenkel, D., Smit, B.: Understanding Molecular Simulation. Academic Press, San Diego (1996)zbMATHGoogle Scholar
  69. 69.
    Wales, D.J.: Energy Landscapes. Cambridge University Press, Cambridge, UK (2003)Google Scholar
  70. 70.
    Laio, A., Gervasio, F.L.: Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 71(126), 601–622 (2008). Scholar
  71. 71.
    Łuczkowski, M., Kozłowski, H., Stawikowski, M., Rolka, K., Gaggelli, E., Valensin, D., Valensin, G.: Is the monomeric prion octapeptide repeat PHGGWGQq a specific ligand for Cu\(^{2+}\) ions? J. Chem. Soc., Dalton Trans. 2002, 2269–2274 (2002).
  72. 72.
    Burns, C.S., Aronoff-Spencer, E., Dunham, C.M., Lario, P., Avdievich, N.I., Antholine, W.E., Olmstead, M.M., Vrielink, A., Gerfen, G.J., Peisach, J., Scott, W.G., Millhauser, G.L.: Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Biochemistry 41, 3991–4001 (2002)CrossRefGoogle Scholar
  73. 73.
    Miura, T., Suzuki, K., Kohata, N., Takeuchi, H.: Metal binding modes of Alzheimer’s amyloid \(\beta \)-peptide in insoluble aggregates and soluble complexes. Biochemistry 39(23), 7024–7031 (2000). Scholar
  74. 74.
    Furlan, S., La Penna, G., Guerrieri, F., Morante, S., Rossi, G.: Ab initio simulations of Cu binding sites on the N-terminal region of the prion protein. J. Biol. Inorg. Chem. 12, 571–583 (2007). Scholar
  75. 75.
    Furlan, S., La Penna, G.: Metal ions and protons compete for ligand atoms in disordered peptides: Examples from computer simulations of copper binding to the prion tandem repeat. Coord. Chem. Rev. 256, 2234–2244 (2012). Scholar
  76. 76.
    Hureau, C., Balland, V., Coppel, Y., Solari, P.L., Fonda, E., Faller, P.: Importance of dynamical processes in the coordination chemistry and redox conversion of copper amyloid-\(\beta \) complexes. J. Biol. Inorg. Chem. 14, 995–1000 (2009). Scholar
  77. 77.
    Furlan, S., La Penna, G., Perico, A.: Modeling the free energy of polypeptides in different environments. Macromolecules 41, 2938–2948 (2008). Scholar
  78. 78.
    Miller, Y., Ma, B., Nussinov, R.: Zinc ions promote alzheimer a\(\beta \) aggregation via population shift of polymorphic states. Proc. Nat. Acad. Sci. U.S.A. 107(21), 9490–9495 (2010). Scholar
  79. 79.
    Furlan, S., Hureau, C., Faller, P., La Penna, G.: Modeling the Cu\(^+\) binding in the 1–16 region of the amyloid-\(\beta \) peptide involved in alzheimer’s disease. J. Phys. Chem. B 114, 15119–15133 (2010). Scholar
  80. 80.
    La Penna, G., Hureau, C., Andreussi, O., Faller, P.: Identifying, by first-principles simulations, Cu[amyloid-\(\beta \)] species making Fenton-type reactions in Alzheimers disease. J. Phys. Chem. B 117, 16455–16467 (2013). Scholar
  81. 81.
    La Penna, G., Hureau, C., Faller, P.: A cu-amyloid \(\beta \) complex activating Fenton chemistry in Alzheimer’s disease: Learning with multiple first-principles simulations. AIP Conf. Proc. 1618(1), 112–114 (2014).
  82. 82.
    Kanan, M.W., Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co\(^{2+}\). Science 321(5892), 1072–1075 (2008). Scholar
  83. 83.
    Mattioli, G., Giannozzi, P., Amore Bonapasta, A., Guidoni, L.: Reaction pathways for oxygen evolution promoted by cobalt catalyst. J. Am. Chem. Soc. 135(41), 15353–15363 (2013). Scholar
  84. 84.
    Parsico, M., Granucci, G.: Continuum Solvation Models in Chemical Physics: From Theory to Applications. In: Wiley, H. (ed.), Chapter Photochemistry in condensed phase. Scholar
  85. 85.
    Mosca Conte, A., Violante, C., Missori, M., Bechstedt, F., Teodonio, L., Ippoliti, E., Carloni, P., Guidoni, L., Pulci, O.: Theoretical optical spectroscopy of complex systems. J. Electron Spectrosc. Relat. Phenom. 189(S), 46–55 (2013). Scholar
  86. 86.
    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Paolo, U., Wentzcovitch, R.M.: Quantum Espresso: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009)., https://www.quantum-espresso.orgGoogle Scholar
  87. 87.
    Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., Di Stasio Jr, R.A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.Y., Kokalj, A., Kücükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H.V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X., Baroni, S.: Advanced capabilities for materials modelling with Quantum Espresso. J. Phys. Condens. Matter 29(46), 465901 (2017). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Chemistry of Organo-Metallic CompoundsNational Research Council of ItalySesto fiorentino (Firenze)Italy
  2. 2.Department of PhysicsUniversity of North TexasDentonUSA

Personalised recommendations