Advertisement

Fuzzy Oil Drop Model Application—From Globular Proteins to Amyloids

  • M. Banach
  • L. Konieczny
  • I. RotermanEmail author
Chapter
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 8)

Abstract

The fuzzy oil drop model asserts the presence of a monocentric hydrophobic core in a protein, generated by the influence of water which directs hydrophobic residues towards the center, while exposing hydrophilic molecules on the surface. Applying the model to a range of proteins which vary in terms of structure and function reveals globally accordant structures and locally discordant fragments which disrupt the hydrophobic core and appear to mediate the protein’s biological function. Solenoids provide an example of structural elements which diverge from the fuzzy oil drop model by adopting a linear distribution of hydrophobicity. Such linear propagation, while unbounded in principle, is arrested by terminal “caps”, which mediate contact with water and therefore prevent the solenoid from growing indefinitely. Amyloids—a group of misfolding proteins—follow the same principles but lack suitable “caps” and may propagate without bound. In light of the fuzzy oil drop model, the factor most directly responsible for this phenomenon is anomalous interaction with the aqueous environment, where the expected monocentric distribution of hydrophobicity is replaced by a distribution based on the intrinsic hydrophobicity of each residue, thus preventing a hydrophobic core from emerging. In this work we present a set of proteins which represent progressive departures from the fuzzy oil drop model (i.e. from the theoretical distribution of hydrophobicity expressed by a 3D Gaussian). We also discuss the biological function and/or disfunction of each protein.

Keywords

Antifreeze proteins Solenoid Amyloid Misfolding Hydrophobicity 

Notes

Acknowledgements

The work was financially supported by Jagiellonian University—Medical College grants system—grant #006363.

Authors are very thankful to Piotr Nowakowski for translation and to Anna Smietanska for technical support.

References

  1. 1.
    Roterman, I., Konieczny, L., Banach, M., Marchewka, D., Kalinowska, B., Baster, Z., Tomanek, M., Piwowar, M.: Simulation of protein folding process. In: Liwo A. (ed) Computational Methods To Study the Structure And Dynamics of Biomolecules and Biomolecular Processes, pp. 599–638. Springer (2014)Google Scholar
  2. 2.
    Ko, T.P., Robinson, H., Gao, Y.G., Cheng, C.H., DeVries, A.L., Wang, A.H.: The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-A resolution reveals structural microheterogeneity of protein and solvation. Biophys. J. 84, 1228–1237 (2003)CrossRefGoogle Scholar
  3. 3.
    Mol, C.D., Kuo, C.F., Thayer, M.M., Cunningham, R.P., Tainer, J.A.: Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 374, 381–386 (1995)CrossRefGoogle Scholar
  4. 4.
    Hall, D.R., Leonard, G.A., Reed, C.D., Watt, C.I., Berry, A., Hunter, W.N.: The crystal structure of Escherichia coli class II fructose-1, 6-bisphosphate aldolase in complex with phosphoglycolohydroxamate reveals details of mechanism and specificity. J. Mol. Biol. 287, 383–394 (1999)CrossRefGoogle Scholar
  5. 5.
    Li, C., Guo, X., Jia, Z., Xia, B., Jin, C.: Solution structure of an antifreeze protein CfAFP-501 from Choristoneura fumiferana. J. Biomol. NMR. 32(3), 251–6 (2005)CrossRefGoogle Scholar
  6. 6.
    Schütz, A.K., Vagt, T., Huber, M., Ovchinnikova, O.Y., Cadalbert, R., Wall, J., Güntert, P., Böckmann, A., Glockshuber, R., Meier, B.H.: Atomic-resolution three-dimensional structure of amyloid β fibrils bearing the Osaka mutation. Angew. Chem. Int. Ed. Engl. 54, 331–335 (2015)CrossRefGoogle Scholar
  7. 7.
    Kalinowska, B., Banach, M., Konieczny, L., Roterman, I.: Application of divergence entropy to characterize the structure of the hydrophobic core in DNA interacting proteins. Entropy 17(3), 1477–1507 (2015).  https://doi.org/10.3390/e17031477CrossRefGoogle Scholar
  8. 8.
    Banach, M., Kalinowska, B., Konieczny, L., Roterman, I.: Role of disulfide bonds in stabilizing the conformation of selected enzymes—an approach based on divergence entropy applied to the structure of hydrophobic core in proteins. Entropy 18(3), 67 (2016).  https://doi.org/10.3390/e18030067CrossRefGoogle Scholar
  9. 9.
    Schutzius, T.M., Jung, S., Maitra, T., Graeber, G., Köhme, M., Poulikakos, D.: Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature 527(7576), 82–85 (2015).  https://doi.org/10.1038/nature15738CrossRefGoogle Scholar
  10. 10.
    Modig, K., Qvist, J., Marshall, C.B., Davies, P.L., Halle, B.: High water mobility on the ice-binding surface of a hyperactive antifreeze protein. Phys. Chem. Chem. Phys. 12(35), 10189–10197 (2010).  https://doi.org/10.1039/c002970j. Epub 2010 Jul 29CrossRefGoogle Scholar
  11. 11.
    Miskowiec, A., Buck, Z.N., Hansen, F.Y., Kaiser, H., Taub, H., Tyagi, M., Diallo, S.O., Mamontov, E., Herwig, K.W.: On the structure and dynamics of water associated with single-supported zwitterionic and anionic membranes. J. Chem. Phys. 146(12), 125102 (2017).  https://doi.org/10.1063/1.4978677CrossRefGoogle Scholar
  12. 12.
    Banach, M., Konieczny, L., Roterman, I.: The fuzzy oil drop model, based on hydrophobicity density distribution, generalizes the influence of water environment on protein structure and function. J. Theor. Biol. 359, 6–17 (2014)CrossRefGoogle Scholar
  13. 13.
    Roterman, I., Banach, M., Konieczny, L.: Application of the fuzzy oil drop model describes amyloid as a ribbonlike micelle. Entropy 19(4), 167 (2017).  https://doi.org/10.3390/e19040167CrossRefGoogle Scholar
  14. 14.
    Roterman, I., Banach, M., Kalinowska, B., Konieczny, L.: Influence of the aqueous environment on protein structure—a plausible hypothesis concerning the mechanism of amyloidogenesis. Entropy 18(10), 351 (2016)CrossRefGoogle Scholar
  15. 15.
    Banach, M., Konieczny, L., Roterman, I.: Why do antifreeze proteins require a solenoid? Biochimie 144, 74–84 (2018)CrossRefGoogle Scholar
  16. 16.
    Serpell, L.C.: Alzheimer’s amyloid fibrils: structure and assembly. Biochim. Biophys. Acta 1502, 16–30 (2000)CrossRefGoogle Scholar
  17. 17.
    Kuntz Jr., I.D., Kauzmann, W.: Hydration of proteins and polypeptides. Adv. Protein Chem. 28, 239–345 (1974)CrossRefGoogle Scholar
  18. 18.
    Kauzmann, W.: Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 1–63 (1959)CrossRefGoogle Scholar
  19. 19.
    Tanford, C.: How protein chemists learned about the hydrophobic factor. Protein Sci. 6(6), 1358–1366 (1997)CrossRefGoogle Scholar
  20. 20.
    Tanford, C., Pain, R.H., Otchin, N.S.: Equilibrium and kinetics of the unfolding of lysozyme (muramidase) by guanidine hydrochloride. J. Mol. Biol. 15(2), 489–504 (1966)CrossRefGoogle Scholar
  21. 21.
    Kirshner, A.G., Tanford, C.: The dissociation of hemoglobin by inorganic salts. Biochemistry 3, 291–296 (1964)CrossRefGoogle Scholar
  22. 22.
    Tanford, C.: Extension of the theory of linked functions to incorporate the effects of protein hydration. J. Mol. Biol. 39(3), 539–544 (1969)CrossRefGoogle Scholar
  23. 23.
    Tanford, C.: Protein denaturation. Adv. Protein Chem. 23, 121–282 (1968)CrossRefGoogle Scholar
  24. 24.
    Tanford, C.: Formation of the native structure of proteins: inferences from the kinetics of denaturation and renaturation. Ciba Found. Symp. 7, 125–146 (1972)Google Scholar
  25. 25.
    Nozaki, Y., Tanford, C.: The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J. Biol. Chem. 246(7), 2211–2217 (1971)Google Scholar
  26. 26.
    Tanford, C., Nozaki, Y., Reynolds, J.A., Makino, S.: Molecular characterization of proteins in detergent solutions. Biochemistry 13(11), 2369–2376 (1974)CrossRefGoogle Scholar
  27. 27.
    Tanford, C.: Protein-lipid interactions. Neurosci Res. Program Bull. 11(3), 193–195 (1973)Google Scholar
  28. 28.
    Baldwin, R.L., Rose, G.D.: How the hydrophobic factor drives protein folding. Proc Natl Acad Sci U S A. 113(44), 12462–12466 (2016)CrossRefGoogle Scholar
  29. 29.
    Baldwin, R.L.: Dynamic hydration shell restores Kauzmann’s 1959 explanation of how the hydrophobic factor drives protein folding. Proc. Natl. Acad. Sci. U S A 111(36), 13052–13056 (2014)CrossRefGoogle Scholar
  30. 30.
    Richardson, J.S., Richardson, D.C., Tweedy, N.B., Gernert, K.M., Quinn, T.P., Hecht, M.H., Erickson, B.W., Yan, Y., McClain, R.D., Donlan, M.E., et al.: Looking at proteins: representations, folding, packing, and design. Biophysical society national lecture, 1992. Biophys. J. 63(5), 1185–1209 (1992)CrossRefGoogle Scholar
  31. 31.
    Richardson, J.S.: Introduction: protein motifs. FASEB J. 8(15), 1237–1239 (1994)CrossRefGoogle Scholar
  32. 32.
    Richardson, J.S.: The protein surface is a moving target. Structure 12(6), 912–913 (2004)CrossRefGoogle Scholar
  33. 33.
    Chothia, C.: Hydrophobic bonding and accessible surface area in proteins. Nature 248(446), 338–339 (1974)CrossRefGoogle Scholar
  34. 34.
    Chothia, C.: Principles that determine the structure of proteins. Annu. Rev. Biochem. 53, 537–572 (1984)CrossRefGoogle Scholar
  35. 35.
    Chothia, C., Janin, J.: Orthogonal packing of beta-pleated sheets in proteins. Biochemistry 21(17), 3955–3965 (1982)CrossRefGoogle Scholar
  36. 36.
    Lesk, A.M., Chothia, C.: Solvent accessibility, protein surfaces, and protein folding. Biophys. J. 32(1), 35–47 (1980)CrossRefGoogle Scholar
  37. 37.
    Chothia, C.: The nature of the accessible and buried surfaces in proteins. J. Mol. Biol. 105(1), 1–12 (1976)CrossRefGoogle Scholar
  38. 38.
    Janin, J., Miller, S., Chothia, C.: Surface, subunit interfaces and interior of oligomeric proteins. J. Mol. Biol. 204(1), 155–164 (1988)CrossRefGoogle Scholar
  39. 39.
    Miller, S., Janin, J., Lesk, A.M., Chothia, C.: Interior and surface of monomeric proteins. J. Mol. Biol. 196(3), 641–656 (1987)CrossRefGoogle Scholar
  40. 40.
    Miller, S., Lesk, A.M., Janin, J., Chothia, C.: The accessible surface area and stability of oligomeric proteins. Nature 328(6133), 834–836 (1987)CrossRefGoogle Scholar
  41. 41.
    Creighton, T.E., Chothia, C.: Protein structure. Selecting Buried Residues. Nat. 339(6219), 14–15 (1989)Google Scholar
  42. 42.
    Gerstein, M., Chothia, C.: Packing at the protein-water interface. Proc. Natl. Acad. Sci. U S A 93(19), 10167–10172 (1996)CrossRefGoogle Scholar
  43. 43.
    Gong, H., Porter, L.L., Rose, G.D.: Counting peptide-water hydrogen bonds in unfolded proteins. Protein Sci. 20(2), 417–427 (2011)CrossRefGoogle Scholar
  44. 44.
    Gong, H., Rose, G.D.: Assessing the solvent-dependent surface area of unfolded proteins using an ensemble model. Proc. Natl. Acad. Sci. U S A 105(9), 3321–3326 (2008)CrossRefGoogle Scholar
  45. 45.
    Fitzkee, N.C., Rose, G.D.: Sterics and solvation winnow accessible conformational space for unfolded proteins. J. Mol. Biol. 353(4), 873–887 (2005)CrossRefGoogle Scholar
  46. 46.
    Creamer, T.P., Srinivasan, R., Rose, G.D.: Modeling unfolded states of proteins and peptides. II. Backbone Solvent Accessibility. Biochem. 36(10), 2832–2835 (1997)Google Scholar
  47. 47.
    Rose, G.D., Wolfenden, R.: Hydrogen bonding, hydrophobicity, packing, and protein folding. Annu. Rev. Biophys. Biomol. Struct. 22, 381–415 (1993)CrossRefGoogle Scholar
  48. 48.
    Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H., Zehfus, M.H.: Hydrophobicity of amino acid residues in globular proteins. Science 229(4716), 834–838 (1985)CrossRefGoogle Scholar
  49. 49.
    Dill, K.A., Truskett, T.M., Vlachy, V., Hribar-Lee, B.: Modeling water, the hydrophobic effect, and ion solvation. Annu. Rev. Biophys. Biomol. Struct. 34, 173–199 (2005)CrossRefGoogle Scholar
  50. 50.
    Southall, N.T., Dill, K.A.: Potential of mean force between two hydrophobic solutes in water. Biophys. Chem. 101–102, 295–307 (2002)CrossRefGoogle Scholar
  51. 51.
    Chan, H.S., Dill, K.A.: Solvation: how to obtain microscopic energies from partitioning and solvation experiments. Annu. Rev. Biophys. Biomol. Struct. 26, 425–459 (1997)CrossRefGoogle Scholar
  52. 52.
    Alonso, D.O., Dill, K.A.: Solvent denaturation and stabilization of globular proteins. Biochemistry 30(24), 5974–5985 (1991)CrossRefGoogle Scholar
  53. 53.
    Dill, K.A., Shortle, D.: Denatured states of proteins. Annu. Rev. Biochem. 60, 795–825 (1991)CrossRefGoogle Scholar
  54. 54.
    Chan, H.S., Dill, K.A.: Origins of structure in globular proteins. Proc. Natl. Acad. Sci. U S A 87(16), 6388–6392 (1990)CrossRefGoogle Scholar
  55. 55.
    Mobley, D.L., Bayly, C.I., Cooper, M.D., Shirts, M.R., Dill, K.A.: Correction to small molecule hydration free energies in explicit solvent: an extensive test of fixed-charge atomistic simulations. J. Chem. Theory Comput. 11(3), 1347 (2015)CrossRefGoogle Scholar
  56. 56.
    Drechsel, N.J., Fennell, C.J., Dill, K.A., Villà-Freixa, J.: TRIFORCE: tessellated semianalytical solvent exposed surface areas and derivatives. J. Chem. Theory Comput. 10(9), 4121–4132 (2014)CrossRefGoogle Scholar
  57. 57.
    Cohen, P., Dill, K.A., Jaswal, S.S.: Modeling the solvation of nonpolar amino acids in guanidinium chloride solutions. J Phys Chem B. 118(36), 10618–10623 (2014)CrossRefGoogle Scholar
  58. 58.
    Rocklin, G.J., Mobley, D.L., Dill, K.A., Hünenberger, P.H.: Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. J. Chem. Phys. 139(18), 184103 (2013)CrossRefGoogle Scholar
  59. 59.
    Lukšič, M., Urbic, T., Hribar-Lee, B., Dill, K.A.: Simple model of hydrophobic hydration. J. Phys. Chem. B. 116(21), 6177–6186 (2012)CrossRefGoogle Scholar
  60. 60.
    Fennell, C.J., Dill, K.A.: Physical modeling of aqueous solvation. J. Stat. Phys. 145(2), 209–226 (2011)CrossRefzbMATHGoogle Scholar
  61. 61.
    Schmit, J.D., Ghosh, K., Dill, K.: What drives amyloid molecules to assemble into oligomers and fibrils? Biophys. J. 100(2), 450–458 (2011)CrossRefGoogle Scholar
  62. 62.
    Chiti, F., Dobson, C.M.: Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006)CrossRefGoogle Scholar
  63. 63.
    Chiti, F., Dobson, C.M.: Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86, 27–68 (2017)CrossRefGoogle Scholar
  64. 64.
    Buhimschi, I.A., Nayeri, U.A., Zhao, G., Shook, L.L., Pensalfini, A., Funai, E.F., Bernstein, I.M., Glabe, C.G., Buhimschi, C.S.: Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci. Transl. Med. 6(245), 245ra92 (2014)CrossRefGoogle Scholar
  65. 65.
    Kouza, M., Banerji, A., Kolinski, A., Buhimschi, I.A., Kloczkowski, A.: Oligomerization of FVFLM peptides and their ability to inhibit beta amyloid peptides aggregation: consideration as a possible model. Phys. Chem. Chem. Phys. 19(4), 2990–2999 (2017)CrossRefGoogle Scholar
  66. 66.
    Roterman, I., Banach, M., Konieczny, L.: Propagation of fibrillar structural forms in proteins stopped by naturally occurring short polypeptide chain fragments. Pharmaceuticals 10(4), 89 (2017)CrossRefGoogle Scholar
  67. 67.
    Roterman, I., Banach, M., Konieczny, L.: Towards the design of anti-amyloid short peptide helices. Bioinformation 14(1), 1–7 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Bioinformatics and TelemedicineJagiellonian University—Medical CollegeKrakowPoland
  2. 2.Faculty of Physics, Astronomy and Applied Computer ScienceJagiellonian UniversityKrakowPoland
  3. 3.Chair of Medical BiochemistryJagiellonian University—Medical CollegeKrakowPoland

Personalised recommendations