Advertisement

Explicit-Solvent All-Atom Molecular Dynamics of Peptide Aggregation

  • Maksim KouzaEmail author
  • Andrzej Kolinski
  • Irina Alexandra Buhimschi
  • Andrzej Kloczkowski
Chapter
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 8)

Abstract

Recent advances in computational technology have allowed us to simulate biomolecular processes on timescales that begin to reach the rates of peptide aggregation phenomena. Molecular dynamics simulations have evolved into a mature technique to the extent that they can be employed as a highly productive tool to gain meaningful insights into the structure, dynamics and molecular mechanisms of protein aggregation. In this chapter, we describe the basics of explicit solvent all-atom molecular dynamics simulations and its applications for studying early stages of aggregation processes of two short pentapeptides: KLVFF and FVFLM, related to Alzheimer’s disease and preeclampsia, respectively. We focus on certain important problems in the field of protein aggregation that explicit solvent all-atom molecular dynamics simulation studies could resolve. This includes how fibril formation rates depend on a number of factors such as the presence of short peptides and population of fibril-prone conformations. Specific applications of atomistic simulations in explicit solvent to address these two issues are discussed.

Notes

Acknowledgements

The authors thank Girik Malik for critical reading of the manuscript. M. K. acknowledges the Polish Ministry of Science and Higher Education for financial support through “Mobilnosc Plus” Program No. 1287/MOB/IV/2015/0. A. Kol. and M. K. would like to acknowledge support from the National Science Center grant [MAESTRO 2014/14/A/ST6/00088]. IAB acknowledges support from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) R01HD084628 and The Research Institute at Nationwide Children’s Hospital’s John E. Fisher Endowed Chair for Neonatal and Perinatal Research. A. Klo. acknowledges support from National Science Foundation grant DBI 1661391, and Bridge funds provided by The Research Institute at Nationwide Children’s Hospital. This research was supported in part by the High Performance Computing Facility at The Research Institute at Nationwide Children’s Hospital.

References

  1. 1.
    Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208–1209 (1957)CrossRefGoogle Scholar
  2. 2.
    Anfinsen, C.B.: Principles that govern folding of protein chains. Science 181(4096), 223–230 (1973)CrossRefGoogle Scholar
  3. 3.
    Balbach, J.J., Ishii, Y., Antzutkin, O.N., Leapman, R.D., Rizzo, N.W., Dyda, F., Reed, J., Tycko, R.: Amyloid fibril formation by Abeta(16–22), a seven-residue fragment of the Alzheimer’s beta-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39(45), 13748–13759 (2000)CrossRefGoogle Scholar
  4. 4.
    Barz, B., Wales, D.J., Strodel, B.: A kinetic approach to the sequence-aggregation relationship in disease-related protein assembly. J. Phys. Chem. B 118(4), 1003–1011 (2014)CrossRefGoogle Scholar
  5. 5.
    Berendsen, H.J.C, Postma, J.P.M., van Gunsteren, W.F., Hermans, J.: Interaction models for water in relation to protein hydration. Intermolecular Forces 14, 331–442 (1981)Google Scholar
  6. 6.
    Berg, B.A., Neuhaus, T.: Multicanonical algorithms for 1st order phase-transitions. Phys. Lett. B 267(2), 249–253 (1991)CrossRefGoogle Scholar
  7. 7.
    Berhanu, W.M., Alred, E.J., Hansmann, U.H.E.: Stability of Osaka mutant and wild-type fibril models. J. Phys. Chem. B 119(41), 13063–13070 (2015)CrossRefGoogle Scholar
  8. 8.
    Bernhardt, N.A., Xi, W.H., Wang, W., Hansmann, U.H.E.: Simulating protein fold switching by replica exchange with tunneling (vol 12, pg 5656, 2016). J. Chem. Theory Comput. 13(1), 393–394 (2017)CrossRefGoogle Scholar
  9. 9.
    Bhavaraju, M., Hansmann, U.H.E.: Effect of single point mutations in a form of systemic amyloidosis. Protein Sci. 24(9), 1451–1462 (2015)CrossRefGoogle Scholar
  10. 10.
    Blaszczyk, M., Kurcinski, M., Kouza, M., Wieteska, L., Debinski, A., Kolinski, A., Kmiecik, S.: Modeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods 93, 72–83 (2016)CrossRefGoogle Scholar
  11. 11.
    Blokhuis, A.M., Groen, E.J.N., Koppers, M., van den Berg, L.H., Pasterkamp, R.J.: Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol. 125(6), 777–794 (2013)CrossRefGoogle Scholar
  12. 12.
    Boczko, E.M., Brooks, C.L.: First-Principles calculation of the folding free-energy of a 3-helix bundle protein. Science 269(5222), 393–396 (1995)CrossRefGoogle Scholar
  13. 13.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: Charmm—A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4(2), 187–217 (1983)CrossRefGoogle Scholar
  14. 14.
    Buhimschi, I., Jing, H.W., Axe, M., Ray, W., Zhao, G.M., Huang, C.S., Song, Y., Wysocki, V., Buhimschi, C.: Shotgun proteomics of the urine misfoldome identifies molecular signatures of preeclampsia subphenotypes. Am. J. Obstet. Gynecol. 212(1), S34 (2015)CrossRefGoogle Scholar
  15. 15.
    Buhimschi, I.A., Nayeri, U.A., Zhao, G., Shook, L.L., Pensalfini, A., Funai, E.F., Bernstein, I.M., Glabe, C.G., Buhimschi, C.S.: Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci. Transl. Med. 6(245), 245–292 (2014)CrossRefGoogle Scholar
  16. 16.
    Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101 (2007)CrossRefGoogle Scholar
  17. 17.
    Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J.: The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)CrossRefGoogle Scholar
  18. 18.
    Castillo, V., Grana-Montes, R., Sabate, R., Ventura, S.: Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes. Biotechnol. J. 6(6), 674–685 (2011)CrossRefGoogle Scholar
  19. 19.
    Chafekar, S.M., Malda, H., Merkx, M., Meijer, E.W., Viertl, D., Lashuel, H.A., Baas, F., Scheper, W.: Branched KLVFF tetramers strongly potentiate inhibition of beta-amyloid aggregation. ChemBioChem 8(15), 1857–1864 (2007)CrossRefGoogle Scholar
  20. 20.
    Chen, W.T., Hong, C.J., Lin, Y.T., Chang, W.H., Huang, H.T., Liao, J.Y., Chang, Y.J., Hsieh, Y.F., Cheng, C.Y., Liu, H.C., Chen, Y.R., Cheng, I.H.: Amyloid-beta (Abeta) D7H mutation increases oligomeric Abeta42 and alters properties of Abeta-zinc/copper assemblies. PLoS ONE 7(4), e35807 (2012)CrossRefGoogle Scholar
  21. 21.
    Chiti, F., Dobson, C.M.: Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86(86), 27–68 (2017)CrossRefGoogle Scholar
  22. 22.
    Coskuner, O., Wise-Scira, O., Perry, G., Kitahara, T.: The structures of the E22 delta mutant-type amyloid-beta alloforms and the impact of E22 delta mutation on the structures of the wild-type amyloid-beta alloforms. ACS Chem. Neurosci. 4(2), 310–320 (2013)CrossRefGoogle Scholar
  23. 23.
    Darden, T., York, D., Pedersen, L.: Particle mesh Ewald—An N.log(N) method for Ewald sums in large systems. J. Chem. Phys. 98(12), 10089–10092 (1993)CrossRefGoogle Scholar
  24. 24.
    Di Fede, G., Catania, M., Morbin, M., Rossi, G., Suardi, S., Mazzoleni, G., Merlin, M., Giovagnoli, A.R., Prioni, S., Erbetta, A., Falcone, C., Gobbi, M., Colombo, L., Bastone, A., Beeg, M., Manzoni, C., Francescucci, B., Spagnoli, A., Cantu, L., Del Favero, E., Levy, E., Salmona, M., Tagliavini, F.: A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science 323(5920), 1473–1477 (2009)CrossRefGoogle Scholar
  25. 25.
    Dobson, C.M.: Protein folding and misfolding. Nature 426(6968), 884–890 (2003)CrossRefGoogle Scholar
  26. 26.
    Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Elsevier (1996)Google Scholar
  27. 27.
    Frydman-Marom, A., Rechter, M., Shefler, I., Bram, Y., Shalev, D.E., Gazit, E.: Cognitive-performance recovery of Alzheimer’s disease model mice by modulation of early soluble amyloidal assemblies. Angew. Chem. Int. Ed. Engl. 48(11), 1981–1986 (2009)CrossRefGoogle Scholar
  28. 28.
    Garbuzynskiy, S.O., Lobanov, M.Y., Galzitskaya, O.V.: FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 26(3), 326–332 (2010)CrossRefGoogle Scholar
  29. 29.
    Gazit, E.: Self assembly of short aromatic peptides into amyloid fibrils and related nanostructures. Prion 1(1), 32–35 (2007)CrossRefGoogle Scholar
  30. 30.
    Gordon, D.J., Tappe, R., Meredith, S.C.: Design and characterization of a membrane permeable N-methyl amino acid-containing peptide that inhibits Abeta(1–40) fibrillogenesis. J. Peptide Res. 60(1), 37–55 (2002)CrossRefGoogle Scholar
  31. 31.
    Hamaguchi, T., Ono, K., Yamada, M.: Anti-amyloidogenic therapies: strategies for prevention and treatment of Alzheimer’s disease. Cell. Mol. Life Sci. 63(13), 1538–1552 (2006)CrossRefGoogle Scholar
  32. 32.
    Hansmann, U.H.E.: Parallel tempering algorithm for conformational studies of biological molecules. Chem. Phys. Lett. 281(1–3), 140–150 (1997)CrossRefGoogle Scholar
  33. 33.
    Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M.: LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18(12), 1463–1472 (1997)CrossRefGoogle Scholar
  34. 34.
    Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008)CrossRefGoogle Scholar
  35. 35.
    Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C.: Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins-Struct. Funct. Bioinf. 65(3), 712–725 (2006)CrossRefGoogle Scholar
  36. 36.
    Hukushima, K., Nemoto, K.: Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65(6), 1604–1608 (1996)CrossRefGoogle Scholar
  37. 37.
    Jing, H.W., Zhao, G.M., Axe, M., Buhimschi, C.S., Wysocki, V., Buhimschi, I.A.: Protein enrichment using Congo red (CR) affinity enhances characterization of the urine misfoldome in preeclampsia (PE). Am. J. Obstet. Gynecol. 214(1), S408 (2016)CrossRefGoogle Scholar
  38. 38.
    Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983)CrossRefGoogle Scholar
  39. 39.
    Jorgensen, W.L., Tiradorives, J.: The opls potential functions for proteins-energy minimizations for crystals of cyclic-peptides and crambin. J. Am. Chem. Soc. 110(6), 1657–1666 (1988)CrossRefGoogle Scholar
  40. 40.
    Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A.E., Kolinski, A.: Coarse-grained protein models and their applications. Chem. Rev. 116(14), 7898–7936 (2016)CrossRefGoogle Scholar
  41. 41.
    Kolinski, A.: Protein modeling and structure prediction with a reduced representation. Acta Biochim. Pol. 51(2), 349–371 (2004)Google Scholar
  42. 42.
    Kouza, M., Banerji, A., Kolinski, A., Buhimschi, I.A., Kloczkowski, A.: Oligomerization of FVFLM peptides and their ability to inhibit beta amyloid peptides aggregation: consideration as a possible model. Phys. Chem. Chem. Phys. 19(4), 2990–2999 (2017)CrossRefGoogle Scholar
  43. 43.
    Kouza, M., Co, N.T., Nguyen, P.H., Kolinski, A., Li, M.S.: Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models. J. Chem. Phys. 142(14), 04B610_1 (2015)CrossRefGoogle Scholar
  44. 44.
    Kouza, M., Faraggi, E., Kolinski, A., Kloczkowski, A.: The GOR method of protein secondary structure prediction, and its application as protein aggregation prediction tool. In: Zhou, Y., Kloczkowski, A., Faraggi, E., Yang, Y. (eds.) Prediction of Protein Secondary Structure. vol. 1484, pp. 7–24. Humana Press, New York (2017)Google Scholar
  45. 45.
    Kouza, M., Hansmann, U.H.E.: Velocity scaling for optimizing replica exchange molecular dynamics. J. Chem. Phys. 134(4), 01B630 (2011)CrossRefGoogle Scholar
  46. 46.
    Kouza, M., Hu, C.K., Li, M.S.: New force replica exchange method and protein folding pathways probed by force-clamp technique. J. Chem. Phys. 128(4), 01B618 (2008)CrossRefGoogle Scholar
  47. 47.
    Kouza, M., Hu, C.K., Li, M.S., Kolinski, A.: A structure-based model fails to probe the mechanical unfolding pathways of the titin I27 domain. Journal of Chemical Physics 139(6), 08B615 (2013)CrossRefGoogle Scholar
  48. 48.
    Kouza, M., Hu, C.K., Zung, H., Li, M.S.: Protein mechanical unfolding: Importance of non-native interactions. J. Chem. Phys. 131(21), 12B608 (2009)CrossRefGoogle Scholar
  49. 49.
    Kouza, M., Lan, P.D., Gabovich, A.M., Kolinski, A., Li, M.S.: Switch from thermal to force-driven pathways of protein refolding. J. Chem. Phys. 146(13), 135101 (2017)CrossRefGoogle Scholar
  50. 50.
    Kubelka, J., Hofrichter, J., Eaton, W.A.: The protein folding ‘speed limit’. Curr. Opin. Struct. Biol. 14(1), 76–88 (2004)CrossRefGoogle Scholar
  51. 51.
    Li, M.S., Co, N.T., Reddy, G., Hu, C.K., Straub, J.E., Thirumalai, D.: Factors governing fibrillogenesis of polypeptide chains revealed by lattice models. Phys. Rev. Lett. 105(21), 218101 (2010)Google Scholar
  52. 52.
    Lindorff-Larsen, K., Maragakis, P., Piana, S., Shaw, D.E.: Picosecond to millisecond structural dynamics in human ubiquitin. J. Phys. Chem. B 120(33), 8313–8320 (2016)CrossRefGoogle Scholar
  53. 53.
    Liwo, A., He, Y., Scheraga, H.A.: Coarse-grained force field: general folding theory. Phys. Chem. Chem. Phys. 13(38), 16890–16901 (2011)CrossRefGoogle Scholar
  54. 54.
    Lu, J.X., Qiang, W., Yau, W.M., Schwieters, C.D., Meredith, S.C., Tycko, R.: Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154(6), 1257–1268 (2013)CrossRefGoogle Scholar
  55. 55.
    Lu, Y., Wei, G.H., Derreumaux, P.: Effects of G33A and G33I mutations on the structures of monomer and dimer of the amyloid-beta fragment 29–42 by replica exchange molecular dynamics simulations. J. Phys. Chem. B 115(5), 1282–1288 (2011)CrossRefGoogle Scholar
  56. 56.
    Luhrs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Doeli, H., Schubert, D., Riek, R.: 3D structure of Alzheimer’s amyloid-beta(1–42) fibrils. Proc. Natl. Acad. Sci. U S A 102(48), 17342–17347 (2005)CrossRefGoogle Scholar
  57. 57.
    Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., de Vries, A.H.: The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111(27), 7812–7824 (2007)CrossRefGoogle Scholar
  58. 58.
    Mazor, Y., Gilead, S., Benhar, I., Gazit, E.: Identification and characterization of a novel molecular-recognition and self-assembly domain within the islet amyloid polypeptide. J. Mol. Biol. 322(5), 1013–1024 (2002)CrossRefGoogle Scholar
  59. 59.
    Mccammon, J.A., Gelin, B.R., Karplus, M.: Dyn. Folded Proteins. Nature 267(5612), 585–590 (1977)CrossRefGoogle Scholar
  60. 60.
    Micheletti, C., Laio, A., Parrinello, M.: Reconstructing the density of states by history-dependent metadynamics. Phys. Rev. Lett. 92(17), 170601 (2004)Google Scholar
  61. 61.
    Moreno-Gonzalez, I., Soto, C.: Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin. Cell Dev. Biol. 22(5), 482–487 (2011)CrossRefGoogle Scholar
  62. 62.
    Morriss-Andrews, A., Shea, J.E.: Simulations of protein aggregation: insights from atomistic and coarse-grained models. J. Phys. Chem. Lett. 5(11), 1899–1908 (2014)CrossRefGoogle Scholar
  63. 63.
    Morriss-Andrews, A., Shea, J.E.: Computational studies of protein aggregation: methods and applications. Annu. Rev. Phys. Chem. 66(66), 643–666 (2015)CrossRefGoogle Scholar
  64. 64.
    Nam, H.B., Kouza, M., Hoang, Z., Li, M.S.; Relationship between population of the fibril-prone conformation in the monomeric state and oligomer formation times of peptides: Insights from all-atom simulations. J. Chem. Phys. 132(16), 04B613 (2010)CrossRefGoogle Scholar
  65. 65.
    Nguyen, P.H., Li, M.S., Stock, G., Straub, J.E., Thirumalai, D.: Monomer adds to preformed structured oligomers of Abeta-peptides by a two-stage dock-lock mechanism. Proc. Natl. Acad. Sci. U S A 104(1), 111–116 (2007)CrossRefGoogle Scholar
  66. 66.
    Ono, K., Condron, M.M., Teplow, D.B.: Effects of the English (H6R) and Tottori (D7N) familial Alzheimer disease mutations on amyloid beta-protein assembly and toxicity. J. Biol. Chem. 285(30), 23184–23195 (2010)Google Scholar
  67. 67.
    Peter, E.K., Pivkin, I.V., Shea, J.E.: A canonical replica exchange molecular dynamics implementation with normal pressure in each replica. J. Chem. Phys. 145(4), 044903 (2016)CrossRefGoogle Scholar
  68. 68.
    Petkova, A.T., Yau, W.M., Tycko, R.: Experimental constraints on quaternary structure in Alzheimer’s beta-amyloid fibrils. Biochemistry 45(2), 498–512 (2006)CrossRefGoogle Scholar
  69. 69.
    Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)CrossRefGoogle Scholar
  70. 70.
    Proctor, E.A., Fee, L., Tao, Y.Z., Redler, R.L., Fay, J.M., Zhang, Y.L., Lv, Z.J., Mercer, I.P., Deshmukh, M., Lyubchenko, Y.L., Dokholyan, N.V.: Nonnative SOD1 trimer is toxic to motor neurons in a model of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. U S A 113(3), 614–619 (2016)CrossRefGoogle Scholar
  71. 71.
    Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith, J.C., Kasson, P.M., van der Spoel, D., Hess, B., Lindahl, E.: GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7), 845–854 (2013)CrossRefGoogle Scholar
  72. 72.
    Rhee, Y.M., Sorin, E.J., Jayachandran, G., Lindahl, E., Pande, V.S.: Simulations of the role of water in the protein-folding mechanism. Proc. Natl. Acad. Sci. U S A 101(17), 6456–6461 (2004)CrossRefGoogle Scholar
  73. 73.
    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315), 1109–1112 (1997)CrossRefGoogle Scholar
  74. 74.
    Rojas, A.V., Liwo, A., Scheraga, H.A.: A study of the alpha-helical intermediate preceding the aggregation of the amino-terminal fragment of the beta amyloid peptide (Abeta(1–28)). J. Phys. Chem. B 115(44), 12978–12983 (2011)CrossRefGoogle Scholar
  75. 75.
    Scheraga, H.A., Khalili, M., Liwo, A.: Protein-folding dynamics: overview of molecular simulation techniques. Annu. Rev. Phys. Chem. 58, 57–83 (2007)CrossRefGoogle Scholar
  76. 76.
    Scott, W.R.P., Hunenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., Kruger, P., van Gunsteren, W.F.: The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103(19), 3596–3607 (1999)CrossRefGoogle Scholar
  77. 77.
    Selkoe, D.J.: Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81(2), 741–766 (2001)CrossRefGoogle Scholar
  78. 78.
    Shakhnovich, E.: Protein folding thermodynamics and dynamics: Where physics, chemistry, and biology meet. Chem. Rev. 106(5), 1559–1588 (2006)CrossRefGoogle Scholar
  79. 79.
    Siwy, C.M., Lockhart, C., Klimov, D.K.: Is the conformational ensemble of Alzheimer’s Abeta 10–40 peptide force field dependent? Plos Computat. Biol. 13(1), e1005314 (2017)Google Scholar
  80. 80.
    Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314(1–2), 141–151 (1999)CrossRefGoogle Scholar
  81. 81.
    Tartaglia, G.G., Vendruscolo, M.: The Zyggregator method for predicting protein aggregation propensities. Chem. Soc. Rev. 37(7), 1395–1401 (2008)CrossRefGoogle Scholar
  82. 82.
    Tenidis, K., Waldner, M., Bernhagen, J., Fischle, W., Bergmann, M., Weber, M., Merkle, M.L., Voelter, W., Brunner, H., Kapurniotu, A.: Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. J. Mol. Biol. 295(4), 1055–1071 (2000)CrossRefGoogle Scholar
  83. 83.
    Thirumalai, D., Reddy, G., Straub, J.E.: Role of water in protein aggregation and amyloid polymorphism. Acc. Chem. Res. 45(1), 83–92 (2012)CrossRefGoogle Scholar
  84. 84.
    Tjernberg, L.O., Lilliehook, C., Callaway, D.J.E., Naslund, J., Hahne, S., Thyberg, J., Terenius, L., Nordstedt, C.: Controlling amyloid beta-peptide fibril formation with protease-stable ligands (vol 272, pg 12601, 1997). J. Biol. Chem. 272(28), 17894–17895 (1997)Google Scholar
  85. 85.
    Tjernberg, L.O., Naslund, J., Lindqvist, F., Johansson, J., Karlstrom, A.R., Thyberg, J., Terenius, L., Nordstedt, C.: Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 271(15), 8545–8548 (1996)CrossRefGoogle Scholar
  86. 86.
    Tomiyama, T., Nagata, T., Shimada, H., Teraoka, R., Fukushima, A., Kanemitsu, H., Takuma, H., Kuwano, R., Imagawa, M., Ataka, S., Wada, Y., Yoshioka, E., Nishizaki, T., Watanabe, Y., Mori, H.: A new amyloid mu variant favoring oligomerization in Alzheimer’s-type dementia. Ann. Neurol. 63(3), 377–387 (2008)CrossRefGoogle Scholar
  87. 87.
    Tong, M., Cheng, S.B., Chen, Q., DeSousa, J., Stone, P.R., James, J.L., Chamley, L.W., Sharma, S.: Aggregated transthyretin is specifically packaged into placental nano-vesicles in preeclampsia. Sci. Rep. 7, 6694 (2017)Google Scholar
  88. 88.
    Viet, M.H., Ngo, S.T., Lam, N.S., Li, M.S.: Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity. J. Phys. Chem. B 115(22), 7433–7446 (2011)CrossRefGoogle Scholar
  89. 89.
    Viet, M.H., Nguyen, P.H., Derreumaux, P., Li, M.S.: Effect of the English familial disease mutation (H6R) on the monomers and dimers of Abeta40 and Abeta42. ACS Chem. Neurosci. 5(8), 646–657 (2014)CrossRefGoogle Scholar
  90. 90.
    Viet, M.H., Nguyen, P.H., Ngo, S.T., Li, M.S., Derreumaux, P.: Effect of the Tottori familial disease mutation (D7N) on the monomers and dimers of Abeta40 and Abeta42. ACS Chem. Neurosci. 4(11), 1446–1457 (2013)CrossRefGoogle Scholar
  91. 91.
    Wabik, J., Kmiecik, S., Gront, D., Kouza, M., Kolinski, A.: Combining coarse-grained protein models with replica-exchange all-atom molecular dynamics. Int. J. Mol. Sci. 14(5), 9893–9905 (2013)CrossRefGoogle Scholar
  92. 92.
    Walti, M.A., Ravotti, F., Arai, H., Glabe, C.G., Wall, J.S., Bockmann, A., Guntert, P., Meier, B.H., Riek, R.: Atomic-resolution structure of a disease-relevant Abeta(1–42) amyloid fibril. Proc. Natl. Acad. Sci. U S A 113(34), E4976–E4984 (2016)CrossRefGoogle Scholar
  93. 93.
    Wang, J.N., Zhu, W.L., Li, G.H., Hansmann, U.H.E.: Velocity-scaling optimized replica exchange molecular dynamics of proteins in a hybrid explicit/implicit solvent. J. Chem. Phys. 135(8), 084115 (2011)CrossRefGoogle Scholar
  94. 94.
    Wu, C., Shea, J.E.: Coarse-grained models for protein aggregation. Curr. Opin. Struct. Biol. 21(2), 209–220 (2011)CrossRefGoogle Scholar
  95. 95.
    Xi, W.H., Hansmann, U.H.E.: Ring-like N-fold models of Abeta(42) fibrils. Sci. Rep. 7, 40787 (2017)Google Scholar
  96. 96.
    Xi, W.H., Vanderford, E.K., Hansmann, U.H.E.: Out-of-register Abeta(42) assemblies as models for neurotoxic oligomers and fibrils. J. Chem. Theory Comput. 14(2), 1099–1110 (2018)CrossRefGoogle Scholar
  97. 97.
    Xi, W.H., Wang, W.H., Abbott, G., Hansmann, U.H.E.: Stability of a recently found triple-beta-stranded Abeta 1–42 fibril motif. J. Phys. Chem. B 120(20), 4548–4557 (2016)CrossRefGoogle Scholar
  98. 98.
    Xiao, Y.L., Ma, B.Y., McElheny, D., Parthasarathy, S., Long, F., Hoshi, M., Nussinov, R., Ishii, Y.: Abeta(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat. Struct. Mol. Biol. 22(6), 499 (2015)CrossRefGoogle Scholar
  99. 99.
    Yan, L.M., Velkova, A., Tatarek-Nossol, M., Andreetto, E., Kapurniotu, A.: LAPP mimic blocks Abeta cytotoxic self-assembly: cross-suppression of amyloid toxicity of Abeta and IAPP suggests a molecular link between Alzheimer’s disease and type II diabetes. Angew. Chem. Int. Ed. 46(8), 1246–1252 (2007)CrossRefGoogle Scholar
  100. 100.
    Yasar, F., Bernhardt, N.A., Hansmann, U.H.E.: Replica-exchange-with-tunneling for fast exploration of protein landscapes. J. Chem. Phys. 143(22), 224102 (2015)CrossRefGoogle Scholar
  101. 101.
    Kouza, M., Co, N.T., Li, M.S., Kmiecik, S., Kolinski, A., Kloczkowski, A., Buhimschi, I.A.: Kinetics and mechanical stability of the fibril state control fibril formation time of polypeptide chains: A computational study. J. Chem. Phys. 148, 215106 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maksim Kouza
    • 1
    Email author
  • Andrzej Kolinski
    • 1
  • Irina Alexandra Buhimschi
    • 3
    • 4
  • Andrzej Kloczkowski
    • 2
    • 4
  1. 1.Faculty of ChemistryUniversity of WarsawWarsawPoland
  2. 2.Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children’s HospitalColumbusUSA
  3. 3.Center for Perinatal Research, The Research Institute at Nationwide Children’s HospitalColumbusUSA
  4. 4.Department of PediatricsThe Ohio State University College of MedicineColumbusUSA

Personalised recommendations