Raman and Infrared Spectra of Acoustical, Functional Modes of Proteins from All-Atom and Coarse-Grained Normal Mode Analysis

  • Adrien Nicolaï
  • Patrice Delarue
  • Patrick SenetEmail author
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 8)


The directions of the largest thermal fluctuations of the structure of a protein in its native state are the directions of its low-frequency modes (below 1 THz), named acoustical modes by analogy with the acoustical phonons of a material. The acoustical modes of a protein assist its conformational changes and are related to its biological functions. Low-frequency modes are difficult to detect experimentally. A survey of experimental data of low-frequency modes of proteins is presented. Theoretical approaches, based on normal mode analysis, are of first interest to understand the role of the acoustical modes in proteins. In this chapter, the fundamentals of normal mode analysis using all-atom models and coarse-grained elastic models are reviewed. Then, they are applied to: first, a protein studied in recent single molecule experiments, conalbumin and second, to a protein intimately related to human diseases: the 70 kDa Heat-Shock Protein (Hsp70). The conalbumin protein consists of two homologous N- and C-lobes and was recently used as a benchmark protein for Extraordinary Acoustic Raman (EAR) spectroscopy. Present all-atom calculations demonstrate that acoustical modes of conalbumin recently measured experimentally are both infrared and Raman active. The molecular chaperone Hsp70 is an exemplary model to illustrate the different properties of the low-frequency modes of a multi-domain protein which occurs in two well distinct structural states (open and closed states), which might be also detectable in the sub-THz frequency range by single molecule spectroscopy. The role of the low-frequency modes in the transition between the two states of Hsp70 is analyzed in details. It is shown that the low-frequency modes provide an easy means of communication between protein domains separated by a large distance.


  1. 1.
    Benedek, G., Ellis, J., Reichmuth, A., Ruggerone, P., Schief, H., Toennies, J.P.: Organ-pipe modes of sodium epitaxial multilayers on Cu(001) observed by inelastic helium-atom scattering. Phys. Rev. Lett. 69, 2951–2954 (1992)CrossRefGoogle Scholar
  2. 2.
    Senet, P., Lambin, P., Lucas, A.A.: Standing-wave optical phonons confined in ultrathin overlayers of ionic materials. Phys. Rev. Lett. 74, 570–573 (1995)CrossRefGoogle Scholar
  3. 3.
    deGennes, P.G., Papoular, M., Polarisation, matière et rayonnement. In: Volume in honor of Alfred Kastler, Presse Univ Fr, Paris (1969)Google Scholar
  4. 4.
    Gō, N.: Shape of the conformational energy surface near the global minimum and low-frequency vibrations in the native conformation of globular proteins. Biopolymers 17, 1373–1379 (1977)CrossRefGoogle Scholar
  5. 5.
    Petitcolas, W.L., Dowley, M.W.: Acoustical phonon spectra of biological polymers. Nature 212, 400–401 (1966)CrossRefGoogle Scholar
  6. 6.
    Keskin, O., Jernigan, R.L., Bahar, I.: Proteins with similar architecture exhibit similar large-scale dynamic behavior. Biophys. J. 78, 2093–2106 (2000)CrossRefGoogle Scholar
  7. 7.
    Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., Bahar, I.: Anisotropy of fluctuation dynamics of proteins with an elastic network. Biophys. J. 80, 505–515 (2001)CrossRefGoogle Scholar
  8. 8.
    Lamb, H.: On the vibration of an elastic sphere. Proc. London Math. Soc. 13, 189–212 (1881)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Koizumi, H., Tachibana, M., Kojima, K.: Elastic constants in tetragonal hen egg-white lysozyme crystals containing large amount of water. Phys. Rev. E 79, 061917 (2009)CrossRefGoogle Scholar
  10. 10.
    Bellissent-Funel, M.-C., Teixeira, J., Chen, S.H., Dorner, B., Middendorf, H.D., Crespi, H.L.: Low-frequency collective mode in dry and hydrated proteins. Biophys. J. 56, 713–716 (1989)CrossRefGoogle Scholar
  11. 11.
    Edwards, C., Palmer, S.B., Emsley, P., Helliwell, J.R., Glover, I.D., Harris, G.W., Moss, D.S.: Thermal motion in protein crystals estimated using laser-generated ultrasound and Young’s modulus measurements. Acta Cryst. A 46, 315–320 (1990)CrossRefGoogle Scholar
  12. 12.
    Tachibana, M., Kojima, K., Ikuyama, R., Kobayashi, Y., Ataka, M.: Sound velocity and dynamic elastic constants of lysozyme single crystals. Chem. Phys. Lett. 332, 259–264 (2000)CrossRefGoogle Scholar
  13. 13.
    McCammon, J.A., Gelin, B.R., Karplus, M.: The hinge-bending mode in lysozyme. Nature 262, 325–326 (1976)CrossRefGoogle Scholar
  14. 14.
    Gō, N., Noguti, T., Nishikawa, T.: Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc. Natl. Acad. Sci. U S A 80, 3696–3700 (1983)CrossRefGoogle Scholar
  15. 15.
    Brooks, B., Karplus, M.: Harmonic dynamics of proteins: normal mode and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. U S A 80, 6571–6575 (1983)CrossRefGoogle Scholar
  16. 16.
    Levitt, M., Sander, C., Stern, P.S.: Protein normal mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J. Mol. Biol. 181, 423–447 (1985)CrossRefGoogle Scholar
  17. 17.
    Brooks, B., Karplus, M.: Normal modes for specific motions of macromolecules: application to hinge-bending mode of lysozyme. Proc. Natl. Acad. Sci. U S A 82, 4995–4999 (1985)CrossRefGoogle Scholar
  18. 18.
    Dykeman, E.C., Sankey, O.F.: Normal mode analysis and applications in biological physics. J. Phys.: Condens. Matter 22, 423202 (2010)Google Scholar
  19. 19.
    Hayward, S., Berendsen, H.J.C.: Systematic analysis of domain motions in proteins from conformational change: New results on citratesynthase and T4 lysozyme. Proteins 30, 144–154 (1998)CrossRefGoogle Scholar
  20. 20.
    Gerstein, M., Lesk, A.M., Chothia, C.: Structural mechanisms for domain movements in proteins. Biochemistry 33, 6739–6748 (1994)CrossRefGoogle Scholar
  21. 21.
    Gerstein, M., Krebs, W.A.: A database of macromolecular motions. Nucleic Acids Res. 26, 4280–4290 (1998)CrossRefGoogle Scholar
  22. 22.
    Gō, M., Gō, N.: Fluctuations of alpha-helix. Biopolymers 15, 1119–1127 (1976)CrossRefGoogle Scholar
  23. 23.
    Gō, N., Scheraga, H.A.: Analysis of the contribution of internal vibrations to the statistical weights of equilibrium conformations of macromolecules. J. Chem. Phys. 51, 4751–4767 (1969)CrossRefGoogle Scholar
  24. 24.
    Cui, Q., Li, G., Ma, J., Karplus, M.: A normal mode analysis of structural plasticity in the biomolecular motor F1-ATPase. J. Mol. Biol. 340, 345–372 (2004)CrossRefGoogle Scholar
  25. 25.
    Gaillard, T., Dejaegere, A., Stote, R.H.: Dynamics of beta3 integrin I-like and hybrid domains: insight from simulations on the mechanism of transition between open and closed forms. Proteins 76, 977–994 (2009)CrossRefGoogle Scholar
  26. 26.
    McCammon, J.A.: Protein dynamics. Rep. Prog. Phys. 47, 1–46 (1984)CrossRefGoogle Scholar
  27. 27.
    Bennett, W.S., Huber, R.: Structural and functional aspects of domain motions in proteins. CRCCR Rev. Bioch. Mol. 15, 291–384 (1984)CrossRefGoogle Scholar
  28. 28.
    Karplus, M., Petsko, G.A.: Molecular dynamics simulation in biology. Nature 347, 631–639 (1990)CrossRefGoogle Scholar
  29. 29.
    Berendsen, H.J.C., Hayward, S.: Collective protein dynamics in relation to function. Curr. Opin. Struct. Biol. 10, 165–169 (2000)CrossRefGoogle Scholar
  30. 30.
    Tama, F., Sanejouand, Y.H.: Conformational change of proteins arising from normal mode calculations. Protein Eng. 14, 1–6 (2001)CrossRefGoogle Scholar
  31. 31.
    Rod, T.H., Radkiewicz, J.L., Brooks, C.L.: Correlated motion and effect of distal mutations in dihydrofolate reductase. Proc. Natl. Acad. Sci. U S A 100, 6980–6985 (2003)CrossRefGoogle Scholar
  32. 32.
    Tobi, D., Bahar, I.: Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proc. Natl. Acad. Sci. U S A 102, 18908–18913 (2005)CrossRefGoogle Scholar
  33. 33.
    Dobbins, S.E., Lesk, V.I., Sternberg, M.J.E.: Insights into protein flexibility: the relationship between normal modes and conformational change upon protein-protein docking. Proc. Natl. Acad. Sci. U S A 105, 10390–10395 (2008)CrossRefGoogle Scholar
  34. 34.
    Bakan, A., Bahar, I.: The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induces upon inhibitor binding. Proc. Natl. Acad. Sci. U S A 106, 14349–14354 (2009)CrossRefGoogle Scholar
  35. 35.
    Benkovic, S.J., Hammes-Schiffer, S.: Enzyme motions inside and out. Science 312, 208–209 (2006)CrossRefGoogle Scholar
  36. 36.
    Nashine, V.C., Hammes-Schiffer, S., Benkovic, S.J.: Coupled motions in enzyme catalysis. Curr. Opin. Chem. Biol. 14, 644–651 (2010)CrossRefGoogle Scholar
  37. 37.
    Henzler-Wildman, K., Kern, D.: Dynamic personalities of proteins. Nature 450, 964–971 (2007)CrossRefGoogle Scholar
  38. 38.
    Zwier, M.C., Chong, L.T.: Reaching biological timescales with all-atom molecular dynamics simulations. Curr. Opin. Pharm. 10, 745–752 (2010)CrossRefGoogle Scholar
  39. 39.
    Nicolaï, A., Delarue, P., Senet, P.: Theoretical insights into sub-terahertz acoustic vibrations of proteins measured in single molecule experiments. J. Phys. Chem. Lett. 24(7), 5128–5136 (2016)CrossRefGoogle Scholar
  40. 40.
    Nicolaï, A., Senet, P., Delarue, P., Ripoll, D.R.: Human inducible Hsp70: structures, dynamics, and interdomain communication from all-atom molecular dynamics simulations. J. Chem. Theory Comput. 6, 2501–2519 (2010)CrossRefGoogle Scholar
  41. 41.
    Nicolaï, A., Senet, P., Delarue, P.: Conformational dynamics of full-length inducible human Hsp70 derived from microsecond molecular dynamics simulations in explicit solvent. J. Biomol. Struct. Dyn. (2012) (in press)Google Scholar
  42. 42.
    Noguti, T., Gō, N.: Structural basis of hierarchical multiple substrates of a protein. IV: rearrangements in atom packing and local determinations. Proteins 5, 125–131 (1989)CrossRefGoogle Scholar
  43. 43.
    Hayward, S., Kitao, A., Gō, N.: Harmonicity and anharmonicity in protein dynamics: a normal mode analysis and principal component analysis. Proteins 23, 177–186 (1995)CrossRefGoogle Scholar
  44. 44.
    Ma, J., Karplus, M.: Ligand-induced conformational changes in ras p21, a normal mode and energy minimization analysis. J. Mol. Biol. 274, 114–131 (1997)CrossRefGoogle Scholar
  45. 45.
    Ma, J., Karplus, M.: The allosteric mechanism of the chaperone GroEL: a dynamic analysis. Proc. Natl. Acad. Sci. U S A 95, 8502–8507 (1998)CrossRefGoogle Scholar
  46. 46.
    Gaillard, T., Martin, E., San Sebastian, E., Cossio, F.P., Lopez, X., Dejaegere, A., Stote, R.H.: Comparative normal mode analysis of LFA-1 integrin I-domains. J. Mol. Biol. 374, 231–249 (2007)CrossRefGoogle Scholar
  47. 47.
    Houdusse, A., Karplus, M., Cecchini, M.: Allosteric communication in myosin V: from small conformational changes to large directed movements. PLoS Comput. Biol. 4(8), e1000129 (2008)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Durand, P., Trinquier, G., Sanejouand, Y.: New approach for determining low-frequency normal modes in macromolecules. Biopolymers 34, 759–771 (1994)CrossRefGoogle Scholar
  49. 49.
    Tama, F., Gadea, F.X., Marques, O., Sanejouand, Y.H.: Building-block approach for determining low-frequency normal modes of macromolecules. Proteins 41, 1–7 (2000)CrossRefGoogle Scholar
  50. 50.
    Tirion, M.M.: Low-amplitude elastic motions in proteins from a single-parameter atomic analysis. Phys. Rev. Lett. 77, 1905–1908 (1996)CrossRefGoogle Scholar
  51. 51.
    Hinsen, K.: Analysis of domain motions by approximate normal mode calculations. Proteins 33, 417–429 (1998)CrossRefGoogle Scholar
  52. 52.
    Bahar, I., Atilgan, A.R., Erman, B.: Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des. 2, 173–181 (1997)CrossRefGoogle Scholar
  53. 53.
    Navizet, I., Lavery, R., Jernigan, R.L.: Myosin flexibility: structural domains and collective vibrations. Proteins 54, 384–393 (2004)CrossRefGoogle Scholar
  54. 54.
    Bahar, I., Rader, A.J.: Coarse-grained normal mode analysis in structural biology. Curr. Opin. Struct. Biol. 15, 586–592 (2005)CrossRefGoogle Scholar
  55. 55.
    Yang, L., Song, G., Jernigan, R.L.: How well we can understand large-scale protein motions using normal modes of elastic network model. Biophys. J. 83, 1620–1630 (2007)Google Scholar
  56. 56.
    Ferraro, J.R.: Introductory Raman Spectroscopy, 2nd edn. Academic Press, Boston, Amsterdam (2002)Google Scholar
  57. 57.
    Krishtal, A., Senet, P., Van Alsenoy, C.: Local softness, softness dipole, and polariz- abilities of functional groups: application to the side chains of the 20 amino acids. J. Chem. Phys. 131, 044312 (2009)CrossRefGoogle Scholar
  58. 58.
    Kutzner, C., Van der Spoel, D., Lindahl, E., Hess B.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)CrossRefGoogle Scholar
  59. 59.
    Born, M., Huang, K.: Dynamical theory of crystal lattice. In: Texts in the Physical Sciences. Oxford Classic (1998)Google Scholar
  60. 60.
    Frauenfelder, H.F., Parak, F., Young, R.D.: Conformational substates in proteins. Ann. Rev. Biophys. Chem. 17, 451–479 (1988)CrossRefGoogle Scholar
  61. 61.
    Senet, P., Maisuradze, G.G., Foulie, C., Delarue, P., Scheraga, H.A.: How main-chain of proteins explore the free-energy landscape in native states. Proc. Natl. Acad. Sci. U S A 105, 19708–19713 (2008)CrossRefGoogle Scholar
  62. 62.
    Cote, Y., Senet, P., Delarue, P., Maisuradze, G.G., Scheraga, H.A.: Anomalous diffusion and dynamical correlation between the side chains and the main chain of proteins in their native states. Proc. Natl. Acad. Sci. U S A 109, 10346–10351 (2012)CrossRefGoogle Scholar
  63. 63.
    Cote, Y., Senet, P., Delarue, P., Maisuradze, G.G., Scheraga, H.A.: Nonexponential decay of internal rotation correlation functions of native proteins and self-similar structural fluctuations. Proc. Natl. Acad. Sci. U S A 107, 19844–19849 (2010)CrossRefGoogle Scholar
  64. 64.
    Kitao, A., Hayward, S., Go, N.: Energy-landscape of a native protein: jumping-among-minima model. Proteins 33, 496–517 (1998)CrossRefGoogle Scholar
  65. 65.
    Wales, D.: Energy Landscapes. Cambridge University Press, Cambridge (2003)Google Scholar
  66. 66.
    Kitao, A., Go, N.: Investigating protein dynamics in collective coordinate space. Curr. Opin. Struct. Biol. 9, 164–169 (1999)CrossRefGoogle Scholar
  67. 67.
    Vinh, N.Q., Allen, S.J., Plaxco, K.W.: DIelectric spectroscopy of proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions. J. Am. Chem. Soc. 133, 8942–8947 (2011)CrossRefGoogle Scholar
  68. 68.
    Middendorf, H.D.: Biophysical applications of quasi-elastic and inelastic neutron scattering. Ann. Rev. Biophys. Bioeng. 13, 425–451 (1984)CrossRefGoogle Scholar
  69. 69.
    Middendorf, H.D., Hayward, R.L., Parker, S.F., Bradshaw, J., Miller, A.: Vibrational neutron spectroscopy of collagen and model polypeptides. Biophys. J. 69, 660–673 (1995)CrossRefGoogle Scholar
  70. 70.
    Harney, T., James, D., Miller, A., White, J.W.: Phonons and the elastic moduli of collagen and muscle. Nature 267, 285–287 (1977)CrossRefGoogle Scholar
  71. 71.
    Cusak, S., Doster, W.: Temperature dependence of the low-frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering. Biophys. J. 58, 243–251 (1990)CrossRefGoogle Scholar
  72. 72.
    Berney, C.V., Renugopalakrishnan, V., Bhatnagar, R.S.: Collagen. An inelastic neutron-scattering study of low-frequency vibrational modes. Biophys. J. 52, 343–345 (1987)CrossRefGoogle Scholar
  73. 73.
    Bartunik, H.D.: Intramolecular low-frequency vibrations in lysozyme by neutron time-of-flight spectroscopy. Biopolymers 21, 43–50 (1982)CrossRefGoogle Scholar
  74. 74.
    Middendorf, H.D.: Neutron studies of the dynamics of globular proteins. Phys. B 182, 415–420 (1992)CrossRefGoogle Scholar
  75. 75.
    Diehl, M., Doster, W., Petry, W., Schober, H.: Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering. Biophys. J. 73, 2726–2732 (1997)CrossRefGoogle Scholar
  76. 76.
    Lushnikov, S.G., Svaindze, A.V., Sashin, I.L.: Vibrational density of states of hen egg white lysozyme. JETP Lett. 82, 31–35 (2005)CrossRefGoogle Scholar
  77. 77.
    Paciaroni, A., Orecchini, A., Haertlein, M., Moulin, M., Conti Nibali, V., De Francesco, A., Petrillo, C., Sacchetti, F.: Vibrational collective dynamics of dry proteins in the terahertz region. J. Phys. Chem. B 116, 3861–3865 (2012)CrossRefGoogle Scholar
  78. 78.
    Brown, K.G., Erfurth, S.C., Small, E.W., Petitcolas, W.L.: Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy. Proc. Natl. Acad. Sci. U S A 69, 1467–1469 (1972)CrossRefGoogle Scholar
  79. 79.
    Genzel, L., Keilmann, F., Martin, T.P., Winterling, G., Yacoby, Y., Fröhlich, H., Makinen, M.W.: Low-frequency Raman spectra of lysozyme. Biopolymers 15, 219–225 (1976)CrossRefGoogle Scholar
  80. 80.
    Painter, P.C., Mosher, L.E., Rhoads, C.: Low-frequency modes in Raman spectra of proteins. Biolpolymers 21, 1469–1472 (1982)CrossRefGoogle Scholar
  81. 81.
    Urabe, H., Sugawara, Y., Ataka, M., Rupprecht, A.: Low-frequency Raman spectra of lysozyme crystals and oriented DNA films: dynamics of crystal water. Biophys. J. 74, 1533–1540 (1998)CrossRefGoogle Scholar
  82. 82.
    Hédoux, A., Ionov, R., Willart, J.F., Lerbret, A., Affouard, F., Guinet, Y., Descamps, M., Prévost, D., Paccou, L., Danéde, F.: Evidence of a two-stage thermal denaturation process in lysozyme: a Raman scaterring and differential scanning calorimetry investigation. J. Chem. Phys. 124, 014703 (2006)CrossRefGoogle Scholar
  83. 83.
    Crupi, C., D’Angelo, G., Wanderlingh, U., Vasi, C.: Raman spectroscopic and low-temperature calorimetric investigation of the low-energy vibrational dynamics of hen egg-lysozyme. Philos. Mag. 91, 1956–1965 (2011)CrossRefGoogle Scholar
  84. 84.
    Sassi, P., Perticaroli, S., Comez, L., Lupi, L., Paolantoni, M., Fioretto, D., Morresi, A.: Reversible and irreversible denaturation processes in globular proteins: from collective to molecular spectroscopic analysis. J. Raman Spectrosc. 43, 273–279 (2012)CrossRefGoogle Scholar
  85. 85.
    Shuker, R., Gamon, R.W.: Raman-scattering selection rule breaking and the density of states in amorphous materials. Phys. Rev. Lett. 25, 222–225 (1970)CrossRefGoogle Scholar
  86. 86.
    Zorn, R.: The boson peak demystified? Physics 4, 44 (2011)CrossRefGoogle Scholar
  87. 87.
    Chumakov, A.I., Monaco, G., Crichton, W.A., Bosak, A., Rüffer, R., Meyer, A., Kargl, F., Comez, L., Fioretto, D., Giefers, H., Roitsch, S., Wortmann, G., Manghnani, M.H., Hushur, A., Williams, Q., Balogh, J., Parliński, K., Jochym, P., Piekarz, P.: Equivalence of the boson peak in glasses to the transverse acoustic van Hove singularity in crystals. Phys. Rev. Lett. 106, 225501 (2011)CrossRefGoogle Scholar
  88. 88.
    Leyser, H., Doster, W., Diehl, M.: Far-infrared emission by boson peak vibrations in a globular protein. Phys. Rev. Lett. 82, 2987–2989 (1999)CrossRefGoogle Scholar
  89. 89.
    Tarek, M., Tobias, D.J.: Effects of solvent packing on side chain and backbone contributions to the protein boson peak. J. Chem. Phys. 115, 1607–1612 (2001)CrossRefGoogle Scholar
  90. 90.
    Doster, W., Cusak, S., Petry, W.: Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337, 754–756 (1989)CrossRefGoogle Scholar
  91. 91.
    McCammon, J.A., Karplus, M., Gelin, B.R.: Dynamics of folded proteins. Nature 267, 585–590 (1977)CrossRefGoogle Scholar
  92. 92.
    Moeller, K.D., Williams, G.P., Steinhauser, S., Hirschmugl, C., Smith, J.C.: Hydration-dependent far-infrared absorption in lysozyme detected using synchrotron radiation. Biophys. J. 61, 276–280 (1992)CrossRefGoogle Scholar
  93. 93.
    Das, G.: Principal component analysis based methodology to distinguish protein SERS spectra. J. Mol. Struct. 993, 500–505 (2011)CrossRefGoogle Scholar
  94. 94.
    De Angelis, F., Gentile, F., Mecarini, F., Das, G., Moretti, M., Candeloro, P., Coluccio, M.L., Cojoc, G., Accardo, A., Liberale, C., Zaccaria, R.P., Perozziello, G., Tirinato, L., Toma, A., Cuda, G., Cingolani, R., Di Fabrizio, E.: Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 5, 682 (2012)CrossRefGoogle Scholar
  95. 95.
    Oladepo, S.A., Xiong, K., Hong, Z.M., Asher, S.A., Handen, J., Lednev, I.K.: UV resonance Raman investigations of peptide and protein structure dynamics. Chem. Rev. 112, 2604–2628 (2012)CrossRefGoogle Scholar
  96. 96.
    Li, H., Nafie, L.A.: Simultaneous acquisition of all four forms of circular polarization Raman optical activity: results for α-pinene and lysozyme. J. Raman Spectrosc. 43, 89–94 (2012)CrossRefGoogle Scholar
  97. 97.
    Wheaton, S., Gelfand, R.M., Gordon, R.: Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution. Nat. Photonics 9, 68–72 (2015)CrossRefGoogle Scholar
  98. 98.
    Li, F., Jin, L., Xu, Z., Zhang, S.: Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1, 011103 (2014)CrossRefGoogle Scholar
  99. 99.
    Achar, B.N.N., Barsch, G.R., Cross, L.E.: Static shell model calculation of electrostriction and third order elastic coefficients of perovskite oxides. Ferroelectrics 37, 495–498 (1981)CrossRefGoogle Scholar
  100. 100.
    Schade, A.L., Caroline, L.: Raw hen egg white and the role of iron in growth inhibition of shigella dysenteriae, staphylococcus aureus, escherichia coli, and saccharomyces cerevisiae. Science 100, 14–15 (1944)CrossRefGoogle Scholar
  101. 101.
    Mizutani, K., Mikami, B., Aibara, S., Hirose, M.: Structure of aluminium-bound ovotransferrin at 2.15 angstroms resolution. Acta Crystallogr. D 61, 1636–1642 (2005)CrossRefGoogle Scholar
  102. 102.
    Lindahl, E., Hess, B., van der Spoel, D.: Gromacs 3.0: a package fro molecular simulation and trajectory analysis. J. Mol. Mod. 7, 306–317 (2001)CrossRefGoogle Scholar
  103. 103.
    Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O., Shaw, D.E.: Improved side-chain torsion potentials for the amber Ff99SB protein force field. Proteins 78, 1950–1958 (2010)Google Scholar
  104. 104.
    Hartl, F.U., Hayer-Hartl, M.: Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002)CrossRefGoogle Scholar
  105. 105.
    Bukau, B., Deuerling, E., Pfund, C., Craig, E.A.: Getting newly synthesized proteins into shape. Cell 101, 119–122 (2000)CrossRefGoogle Scholar
  106. 106.
    Young, J.C., Agashe, V.R., Siegers, K., Hartl, F.U.: Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol. 5, 781–791 (2004)CrossRefGoogle Scholar
  107. 107.
    Saibil, H.R.: Chaperones machines in action. Curr. Opin. Struct. Biol. 18, 35–42 (2008)CrossRefGoogle Scholar
  108. 108.
    Selkoe, D.J.: Folding proteins in fatal ways. Nature 426, 900–904 (2003)CrossRefGoogle Scholar
  109. 109.
    Garrido, C., Brunet, M., Didelot, C., Zermati, Y., Schmitt, E., Kroemer, G.: Heat shock proteins 27 and 70: anti-apoptic proteins with tumorigenic properties. Cell Cycle 5, 2592–2601 (2006)CrossRefGoogle Scholar
  110. 110.
    Buchburger, A., Theyssen, H., Schröder, H., McCarty, J.S., Virgallita, G., Milkereit, P., Reinstein, J., Bukau, B.: Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. J. Biol. Chem. 270, 16903–16910 (1995)CrossRefGoogle Scholar
  111. 111.
    Brehmer, D., Rudiger, S., Gassler, C.S., Klostermeier, D., Packschies, L., Reinstein, J., Mayer, M.P., Bukau, B.: Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nature 8, 427–432 (2001)Google Scholar
  112. 112.
    Liu, Q., Hendrickson, W.A.: Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131, 106–120 (2007)CrossRefGoogle Scholar
  113. 113.
    Polier, S., Dragovic, Z., Hartl, F.U., Bracher, A.: Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 131, 106–120 (2008)Google Scholar
  114. 114.
    Schuermann, P.J., Jiang, J.W., Cuellar, J., Llorca, O., Wang, L.P., Gimenez, L.E., Jin, S.P., Taylor, A.B., Demeler, B., Morano, K.A., Hartl, P.J., Valpuesta, J.M., Lafer, E.M., Sousa, R.: Structure of the Hsp110: Hsc70 nucleotide exchange machine. Mol. Cell 31, 232–243 (2008)CrossRefGoogle Scholar
  115. 115.
    Wilbanks, S.M., Chen, L., Tsuruta, H., Hodgson, K.O., McKay, D.B.: Solution small-angle X-ray scattering study of the molecular chaperone Hsc70 and its subfragments. Biochem 34, 12095–12106 (1995)CrossRefGoogle Scholar
  116. 116.
    Shi, L., Kataka, M., Fink, A.L.: Conformational characterization of DnaK and its complexes by small-angle X-ray scattering. Biochem 35, 3297–3308 (1996)CrossRefGoogle Scholar
  117. 117.
    Bertelsen, E.B., Chang, L., Gestwicki, J.E., Zuiderweg, E.R.P.: Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. U S A 106, 8471–8476 (2009)CrossRefGoogle Scholar
  118. 118.
    Golas, E., Maisuradze, G.G., Senet, P., Oldziej, S., Czaplewski, C., Scheraga, H.A., Liwo, A.: Simulation of the opening and closing of Hsp70 chaperones by coarse-grained molecular dynamics. J. Chem. Theory Comput. 8, 1750–1764 (2012)CrossRefGoogle Scholar
  119. 119.
    Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J.: Interaction models for water in relation to protein hydration. In: Pullman, B. (ed.), pp. 331–338. D. ReidelGoogle Scholar
  120. 120.
    Scott, W.R.P., Hünenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., Krüger, P., van Gunsteren, W.F.: The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103, 3596–3607 (1999)CrossRefGoogle Scholar
  121. 121.
    Nicolaï, A., Barakat, F., Delarue, P., Senet, P.: Fingerprints of conformational states of human Hsp70 at sub-THz frequencies. ACS Omega 6(1), 1067–1074 (2016)CrossRefGoogle Scholar
  122. 122.
    Cecchini, M., Houdusse, A., Karplus, M.: Allosteric communication in myosin V: from small conformational changes to large directed movements. PLoS Comput. Biol. 4, e1000129 (2008)MathSciNetCrossRefGoogle Scholar
  123. 123.
    Swain, J.F., Dinler, G., Sivendran, R., Montgomery, D.L., Stotz, M., Gierasch, L.M.: Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol. Cell 26, 27–39 (2007)CrossRefGoogle Scholar
  124. 124.
    Bhattacharya, A., Kurochkin, A.V., Yip, G.N.B., Zhang, Y., Bertelsen, E.B., Zuiderweg, E.R.P.: Allostery in Hsp70 chaperones is transduced by subdomain rotations. J. Mol. Biol. 388, 475–490 (2009)CrossRefGoogle Scholar
  125. 125.
    Zhuravleva, A., Gierasch, L.M.: Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Proc. Natl. Acad. Sci. U S A 108, 6987–6992 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adrien Nicolaï
    • 1
  • Patrice Delarue
    • 1
  • Patrick Senet
    • 1
    Email author
  1. 1.Laboratoire Interdisciplinaire Carnot de Bourgogne, Unité Mixte de Recherche 6303 Centre National de la Recherche Scientifique-Université de BourgogneUniversité de Bourgogne Franche-ComtéDijon CedexFrance

Personalised recommendations