Advertisement

Molecular Dynamics Studies on Amyloidogenic Proteins

  • Sylwia Rodziewicz-MotowidłoEmail author
  • Emilia Sikorska
  • Justyna Iwaszkiewicz
Chapter
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 8)

Abstract

Molecular dynamics simulations, coupled with experimental investigations could improve our understanding of the protein aggregation and fibrillization process of amyloidogenic proteins. Computational tools are being applied to solve the protein aggregation and fibrillization problem, providing insight into amyloid structures and aggregation mechanisms. Experimental studies of the nature of protein aggregation are unfortunately limited by the structure of aggregates and their insolubility in water. The difficulties have stimulated the development of new experimental methods, and intensive efforts to match computational results with the results of experimental investigations. The number of papers published on simulations of amyloidogenic proteins has increased rapidly during the last decade. The simulation systems covered a range from simple peptides (Alzheimer Aβ peptides or peptides being fragments of amyloidogenic proteins), to large proteins (transthyretin, prion protein, cystatin C, β2-microglobulin etc.). In studies of aggregation, very important is the integration of experimental and computational methods. Computational simulations constitute an “analytical tool” for obtaining and processing biological information and to make useful explanations of the physicochemical principles of amyloidogenesis, as well as to understand the role amino-acid sequences in amyloidogenic proteins. Very efficient theoretical models for prediction of protein aggregation propensities from primary structures have been proposed. At a minimal computational cost, some of these models can determine putative, aggregation-prone regions (“hot-spots”) within a protein sequence. The in silico simulations increase our understanding of the protein aggregation process. In this chapter the molecular studies of amyloidogenic proteins like prion protein, transthyretin and human cystatin C are presented. The MD studies of these proteins show the first steps during amyloids formation. In addition in this chapter the MD studies of protein fibrils are presented. Based on MD simulations of fibril models it is possible to interpret some experimental results and suggest a mechanism of elongation for the fibril protofilament formation.

References

  1. 1.
    Virchow, R.: Ueber eine im Gehirn und Rückenmark des Menschen aufgefundene Substanz mit der chemischen Reaction der Cellulose. Acad. Sci. (Paris) 37, 860–861 (1854)Google Scholar
  2. 2.
    Gertz, M.A., Lacy, M.Q., Dispenzieri, A., Hayman, S.R.: Amyloidosis. Best. Pract. Res. Clin. Haematol. 18, 709–727 (2005)CrossRefGoogle Scholar
  3. 3.
    Hawkins, P.N.: Diagnosis and treatment of amyloidosis. Ann. Rheum. Dis. 56, 631–633 (1997)CrossRefGoogle Scholar
  4. 4.
    Stryer, L., Berg, J.M.: Biochemistry 5e+ Hemoglobin Chapter for Biochem 6e. W H Freeman & Company, New York (2005)Google Scholar
  5. 5.
    Harper, J.D., Wong, S.S., Lieber, C.M., Lansbury, P.T.: Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125 (1997)CrossRefGoogle Scholar
  6. 6.
    Reixach, N., Deechongkit, S., Jiang, X., Kelly, J.W., Buxbaum, J.N.: Tissue damage in the amyloidoses: transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc. Natl. Acad. Sci. U S A 101, 2817–2822 (2004)CrossRefGoogle Scholar
  7. 7.
    Krebs, M.R.H., Macphee, C.E., Miller, A.F., Dunlop, I.E., Dobson, C.M., Donald, A.M.: The formation of spherulites by amyloid fibrils of bovine insulin. Proc. Natl. Acad. Sci. U.S.A. 101, 14420–14424 (2004)CrossRefGoogle Scholar
  8. 8.
    Gosal, W.S., Morten, I.J., Hewitt, E.W., Smith, D.A., Thomson, N.H., Radford, S.E.: Competing pathways determine fibril morphology in the self-assembly of beta2-microglobulin into amyloid. J. Mol. Biol. 351, 850–864 (2005)CrossRefGoogle Scholar
  9. 9.
    Ionescu-Zanetti, C., Khurana, R., Gillespie, J.R., Petrick, J.S., Trabachino, L.C., Minert, L.J., Carter, S.A., Fink, A.L.: Monitoring the assembly of Ig light-chain amyloid fibrils by atomic force microscopy. Proc. Natl. Acad. Sci. U S A 96, 13175–13179 (1999)CrossRefGoogle Scholar
  10. 10.
    Malisauskas, M., Zamotin, V., Jass, J., Noppe, W., Dobson, C.M., Morozova-Roche, L.A.: Amyloid protofilaments from the calcium-binding protein equine lysozyme: formation of ring and linear structures depends on pH and metal ion concentration. J. Mol. Biol. 330, 879–890 (2003)CrossRefGoogle Scholar
  11. 11.
    Wahlbom, M., Wang, X., Lindström, V., Carlemalm, E., Jaskolski, M., Grubb, A.: Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping. J. Biol. Chem. 282, 18318–18326 (2007)CrossRefGoogle Scholar
  12. 12.
    Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W., Glabe, C.G.: Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003)CrossRefGoogle Scholar
  13. 13.
    Rousseau, F., Wilkinson, H., Villanueva, J., Serrano, L., Schymkowitz, J.W.H., Itzhaki, L.S.: Domain swapping in p13suc1 results in formation of native-like, cytotoxic aggregates. J. Mol. Biol. 363, 496–505 (2006)CrossRefGoogle Scholar
  14. 14.
    Xu, S.: Aggregation drives “misfolding” in protein amyloid fiber formation. Amyloid 14, 119–131 (2007)CrossRefGoogle Scholar
  15. 15.
    Nguyen, H.D., Hall, C.K.: Spontaneous fibril formation by polyalanines; discontinuous molecular dynamics simulations. J. Am. Chem. Soc. 128, 1890–1901 (2006)CrossRefGoogle Scholar
  16. 16.
    Buchete, N.-V., Tycko, R., Hummer, G.: Molecular dynamics simulations of Alzheimer’s β-amyloid protofilaments. J. Mol. Biol. 353, 804–821 (2005)CrossRefGoogle Scholar
  17. 17.
    Haspel, N., Zanuy, D., Ma, B., Wolfson, H., Nussinov, R.: A comparative study of amyloid fibril formation by residues 15–19 of the human calcitonin hormone: a single beta-sheet model with a small hydrophobic core. J. Mol. Biol. 345, 1213–1227 (2005)CrossRefGoogle Scholar
  18. 18.
    Röhrig, U.F., Laio, A., Tantalo, N., Parrinello, M., Petronzio, R.: Stability and structure of oligomers of the Alzheimer peptide Abeta16-22: from the dimer to the 32-mer. Biophys. J. 91, 3217–3229 (2006)CrossRefGoogle Scholar
  19. 19.
    Deng, N.-J., Yan, L., Singh, D., Cieplak, P.: Molecular basis for the Cu2+ binding-induced destabilization of β2-microglobulin revealed by molecular dynamics simulation. Biophys. J. 90, 3865–3879 (2006)CrossRefGoogle Scholar
  20. 20.
    Yang, M., Lei, M., Huo, S.: Why is Leu55 → Pro55 transthyretin variant the most amyloidogenic: Insights from molecular dynamics simulations of transthyretin monomers. Protein Sci. 12, 1222–1231 (2003)CrossRefGoogle Scholar
  21. 21.
    Park, S., Saven, J.G.: Simulation of pH-dependent edge strand rearrangement in human beta-2 microglobulin. Protein Sci. 15, 200–207 (2005)CrossRefGoogle Scholar
  22. 22.
    Armen, R.S., Daggett, V.: Characterization of two distinct beta2-microglobulin unfolding intermediates that may lead to amyloid fibrils of different morphology. Biochemistry 44, 16098–16107 (2005)CrossRefGoogle Scholar
  23. 23.
    Santini, S., Derreumaux, P.: Helix H1 of the prion protein is rather stable against environmental perturbations: molecular dynamics of mutation and deletion variants of PrP(90-231). Cell. Mol. Life Sci. 61, 951–960 (2004)CrossRefGoogle Scholar
  24. 24.
    DeMarco, M.L., Daggett, V.: From conversion to aggregation: protofibril formation of the prion protein. Proc. Natl. Acad. Sci. U S A 101, 2293–2298 (2004)CrossRefGoogle Scholar
  25. 25.
    Rodziewicz-Motowidło, S., Wahlbom, M., Wang, X., Lagiewka, J., Janowski, R., Jaskolski, M., Grubb, A., Grzonka, Z.: Checking the conformational stability of cystatin C and its L68Q variant by molecular dynamics studies: why is the L68Q variant amyloidogenic? J. Struct. Biol. 154, 68–78 (2006)CrossRefGoogle Scholar
  26. 26.
    DuBay, K.F.K., Pawar, A.P.A., Chiti, F.F., Zurdo, J.J., Dobson, C.M.C., Vendruscolo, M.M.: Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. J. Mol. Biol. 341, 10–10 (2004)CrossRefGoogle Scholar
  27. 27.
    Fernandez-Escamilla, A.-M., Rousseau, F., Schymkowitz, J., Serrano, L.: Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol. 22, 1302–1306 (2004)CrossRefGoogle Scholar
  28. 28.
    Tartaglia, G.G., Cavalli, A., Pellarin, R., Caflisch, A.: Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci. 14, 2723–2734 (2005)CrossRefGoogle Scholar
  29. 29.
    Ma, B., Nussinov, R.: Simulations as analytical tools to understand protein aggregation and predict amyloid conformation. Curr. Opin. Chem. Biol. 10, 445–452 (2006)CrossRefGoogle Scholar
  30. 30.
    Borreguero, J.M., Urbanc, B., Lazo, N.D., Buldyrev, S.V., Teplow, D.B., Stanley, H.E.: Folding events in the 21-30 region of amyloid beta-protein (Abeta) studied in silico. Proc. Natl. Acad. Sci. U S A 102, 6015–6020 (2005)CrossRefGoogle Scholar
  31. 31.
    Wei, G., Mousseau, N., Derreumaux, P.: Sampling the self-assembly pathways of KFFE hexamers. Biophys. J. 87, 9–9 (2004)CrossRefGoogle Scholar
  32. 32.
    Baumketner, A., Shea, J.-E.: Free energy landscapes for amyloidogenic tetrapeptides dimerization. Biophys. J. 89, 1493–1503 (2005)CrossRefGoogle Scholar
  33. 33.
    Han, W., Wu, Y.-D.: A strand-loop-strand structure is a possible intermediate in fibril elongation: long time simulations of amyloid-beta peptide (10-35). J. Am. Chem. Soc. 127, 15408–15416 (2005)CrossRefGoogle Scholar
  34. 34.
    Ma, B., Nussinov, R.: Molecular dynamics simulations of the unfolding of 2-microglobulin and its variants. Protein Eng. Des. Sel. 16, 561–575 (2003)CrossRefGoogle Scholar
  35. 35.
    Moraitakis, G., Goodfellow, J.M.: Simulations of human lysozyme: probing the conformations triggering amyloidosis. Biophys. J. 84, 10–10 (2003)CrossRefGoogle Scholar
  36. 36.
    Tsai, H.-H.G., Reches, M., Tsai, C.-J., Gunasekaran, K., Gazit, E., Nussinov, R.: Energy landscape of amyloidogenic peptide oligomerization by parallel-tempering molecular dynamics simulation: significant role of Asn ladder. Proc. Natl. Acad. Sci. U S A 102, 8174–8179 (2005)CrossRefGoogle Scholar
  37. 37.
    Wu, K.-P., Weinstock, D.S., Narayanan, C., Levy, R.M., Baum, J.: Structural reorganization of alpha-synuclein at low pH observed by NMR and REMD simulations. J. Mol. Biol. 391, 784–796 (2009)CrossRefGoogle Scholar
  38. 38.
    Li, M.S., Klimov, D.K., Straub, J.E., Thirumalai, D.: Probing the mechanisms of fibril formation using lattice models. J. Chem. Phys. 129, 175101 (2008)CrossRefGoogle Scholar
  39. 39.
    Zhang, J., Muthukumar, M.: Simulations of nucleation and elongation of amyloid fibrils. J. Chem. Phys. 130, 035102 (2009)CrossRefGoogle Scholar
  40. 40.
    Rojas, A., Liwo, A., Browne, D., Scheraga, H.A.: Mechanism of fiber assembly: treatment of Aβ peptide aggregation with a coarse-grained united-residue force field. J. Mol. Biol. 404, 537–552 (2010)CrossRefGoogle Scholar
  41. 41.
    Fawzi, N.L., Chubukov, V., Clark, L.A., Brown, S., Head-Gordon, T.: Influence of denatured and intermediate states of folding on protein aggregation. Protein Sci. 14, 993–1003 (2005)CrossRefGoogle Scholar
  42. 42.
    Auer, S., Dobson, C.M., Vendruscolo, M.: Characterization of the nucleation barriers for protein aggregation and amyloid formation. HFSP J. 1, 137–146 (2007)CrossRefGoogle Scholar
  43. 43.
    Smith, A.V., Hall, C.K.: Protein refolding versus aggregation: computer simulations on an intermediate-resolution protein model. J. Mol. Biol. 312, 16–16 (2001)CrossRefGoogle Scholar
  44. 44.
    Thirumalai, D., Klimov, D.K., Dima, R.I.: Emerging ideas on the molecular basis of protein and peptide aggregation. Curr. Opin. Struct. Biol. 13, 14–14 (2003)CrossRefGoogle Scholar
  45. 45.
    Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M., Jaskólski, M.: Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat. Struct. Mol. Biol. 8, 316–320 (2001)CrossRefGoogle Scholar
  46. 46.
    Bennett, M.J., Sawaya, M.R., Eisenberg, D.: Deposition diseases and 3D domain swapping. Structure 14, 811–824 (2006)CrossRefGoogle Scholar
  47. 47.
    Armen, R.S., DeMarco, M.L., Alonso, D.O.V., Daggett, V.: Pauling and Corey’s alpha-pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease. Proc. Natl. Acad. Sci. U S A 101, 11622–11627 (2004)CrossRefGoogle Scholar
  48. 48.
    Ma, B., Nussinov, R.: The Stability of monomeric intermediates controls amyloid formation: Aβ25-35 and its N27Q mutant. Biophys. J. 90, 10–10 (2006)Google Scholar
  49. 49.
    Gu, W., Wang, T., Zhu, Y., Shi, J., Liu, H.: Molecular dynamics simulation of the unfolding of the human prion protein domain under low pH and high temperature conditions. Biophys. Chem. 104, 16–16 (2003)CrossRefGoogle Scholar
  50. 50.
    Alonso, D.O., Alm, E., Daggett, V.: Characterization of the unfolding pathway of the cell-cycle protein p13suc1 by molecular dynamics simulations: implications for domain swapping. Structure 8, 101–110 (2000)CrossRefGoogle Scholar
  51. 51.
    Gsponer, J., Ferrara, P., Caflisch, A.: Flexibility of the murine prion protein and its Asp178Asn mutant investigated by molecular dynamics simulations. J. Mol. Graph. Model. 20, 169–182 (2001)CrossRefGoogle Scholar
  52. 52.
    Alonso, D.O., DeArmond, S.J., Cohen, F.E., Daggett, V.: Mapping the early steps in the pH-induced conformational conversion of the prion protein. Proc. Natl. Acad. Sci. U S A 98, 2985–2989 (2001)CrossRefGoogle Scholar
  53. 53.
    Yang, M., Lei, M., Bruschweiler, R., Huo, S.: Initial conformational changes of human transthyretin under partially denaturing conditions. Biophys. J. 89, 11–11 (2005)Google Scholar
  54. 54.
    Skoulakis, S., Goodfellow, J.M.: The pH-dependent stability of wild-type and mutant transthyretin oligomers. Biophys. J. 84, 10–10 (2003)CrossRefGoogle Scholar
  55. 55.
    Mu, Y., Nordenskiöld, L., Tam, J.P.: Folding, misfolding, and amyloid protofibril formation of WW domain FBP28. Biophys. J. 90, 10–10 (2006)Google Scholar
  56. 56.
    Nowak, M.: Immunoglobulin kappa light chain and its amyloidogenic mutants: a molecular dynamics study. Proteins 55, 11–21 (2004)CrossRefGoogle Scholar
  57. 57.
    Prusiner, S.B.: Biology and genetics of prion diseases. Annu. Rev. Microbiol. 48, 655–686 (1994)CrossRefGoogle Scholar
  58. 58.
    Prusiner, S.B.: Neurodegenerative diseases and prions. N. Engl. J. Med. 344, 1516–1526 (2001)CrossRefGoogle Scholar
  59. 59.
    Stahl, N., Prusiner, S.B.: Prions and prion proteins (1991)CrossRefGoogle Scholar
  60. 60.
    Riesner, D.: Biochemistry and structure of PrP(C) and PrP(Sc). Br. Med. Bull. 66, 21–33 (2003)CrossRefGoogle Scholar
  61. 61.
    Zahn, R.: NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. 97, 145–150 (2000)CrossRefGoogle Scholar
  62. 62.
    Cox, D.L., Lashuel, H., Lee, K.Y.C., Singh, R.R.P.: The materials science of protein aggregation. MRS Bull. 30, 452–457 (2005)CrossRefGoogle Scholar
  63. 63.
    Lansbury, P.T., Lashuel, H.A.: A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443, 774–779 (2006)CrossRefGoogle Scholar
  64. 64.
    Dima, R.I., Thirumalai, D.: Exploring the propensities of helices in PrPC to form β sheet using NMR structures and sequence alignments. Biophys. J. 83, 1268–1280 (2002)CrossRefGoogle Scholar
  65. 65.
    Lu, X., Wintrode, P.L., Surewicz, W.K.: Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proc. Natl. Acad. Sci. U S A 104, 1510–1515 (2007)CrossRefGoogle Scholar
  66. 66.
    Cohen, F.E., Pan, K.M., Huang, Z., Baldwin, M., Fletterick, R.J., Prusiner, S.B.: Structural clues to prion replication. Science 264, 530–531 (1994)CrossRefGoogle Scholar
  67. 67.
    Dima, R.I., Thirumalai, D.: Probing the instabilities in the dynamics of helical fragments from mouse PrPC. Proc. Natl. Acad. Sci. U S A 101, 15335–15340 (2004)CrossRefGoogle Scholar
  68. 68.
    Kunes, K.C., Clark, S.C., Cox, D.L., Singh, R.R.P.: Left handed beta helix models for mammalian prion fibrils. Prion 2, 81–90 (2008)CrossRefGoogle Scholar
  69. 69.
    Cobb, N.J., Apetri, A.C., Surewicz, W.K.: Prion protein amyloid formation under native-like conditions involves refolding of the C-terminal alpha-helical domain. J. Biol. Chem. 283, 34704–34711 (2008)CrossRefGoogle Scholar
  70. 70.
    Prusiner, S.B., McKinley, M.P., Bowman, K.A., Bolton, D.C., Bendheim, P.E., Groth, D.F., Glenner, G.G.: Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35, 349–358 (1983)CrossRefGoogle Scholar
  71. 71.
    El-Bastawissy, E., Knaggs, M.H., Gilbert, I.H.: Molecular dynamics simulations of wild-type and point mutation human prion protein at normal and elevated temperature. J. Mol. Graph. Model. 20, 145–154 (2001)CrossRefGoogle Scholar
  72. 72.
    Parchment, O.G., Essex, J.W.: Molecular dynamics of mouse and Syrian hamster PrP: implications for activity. Proteins 38, 327–340 (2000)CrossRefGoogle Scholar
  73. 73.
    Zuegg, J., Gready, J.E.: Molecular dynamics simulations of human prion protein: importance of correct treatment of electrostatic interactions. Biochemistry 38, 13862–13876 (1999)CrossRefGoogle Scholar
  74. 74.
    Hornemann, S., Glockshuber, R.: A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH. Proc. Natl. Acad. Sci. U S A 95, 6010–6014 (1998)CrossRefGoogle Scholar
  75. 75.
    Swietnicki, W., Morillas, M., Chen, S.G., Gambetti, P., Surewicz, W.K.: Aggregation and fibrillization of the recombinant human prion protein huPrP90-231. Biochemistry 39, 424–431 (2000)CrossRefGoogle Scholar
  76. 76.
    Swietnicki, W., Petersen, R., Gambetti, P., Surewicz, W.K.: pH-dependent stability and conformation of the recombinant human prion protein PrP(90-231). J. Biol. Chem. 272, 27517–27520 (1997)CrossRefGoogle Scholar
  77. 77.
    Zhang, H., Stockel, J., Mehlhorn, I., Groth, D., Baldwin, M.A., Prusiner, S.B., James, T.L., Cohen, F.E.: Physical studies of conformational plasticity in a recombinant prion protein. Biochemistry 36, 3543–3553 (1997)CrossRefGoogle Scholar
  78. 78.
    Jackson, G.S., Hosszu, L.L., Power, A., Hill, A.F., Kenney, J., Saibil, H., Craven, C.J., Waltho, J.P., Clarke, A.R., Collinge, J.: Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283, 1935–1937 (1999)CrossRefGoogle Scholar
  79. 79.
    Guo, J., Ren, H., Ning, L., Liu, H., Yao, X.: Exploring structural and thermodynamic stabilities of human prion protein pathogenic mutants D202N, E211Q and Q217R. J. Struct. Biol. 178, 225–232 (2012)CrossRefGoogle Scholar
  80. 80.
    Collinge, J.: Prion diseases of humans and animals: their causes and molecular basis. Ann. Rev. Neurosci. 519–550 (2001)CrossRefGoogle Scholar
  81. 81.
    Mead, S.: Prion disease genetics. Eur. J. Hum. Genet. 14, 273–281 (2006)CrossRefGoogle Scholar
  82. 82.
    van der Kamp, M.W., Daggett, V.: The consequences of pathogenic mutations to the human prion protein. Protein Eng. Des. Sel. 22, 461–468 (2009)CrossRefGoogle Scholar
  83. 83.
    Rossetti, G., Cong, X., Caliandro, R., Legname, G., Carloni, P.: Common structural traits across pathogenic mutants of the human prion protein and their implications for familial prion diseases. J. Mol. Biol. 411, 13–13 (2011)CrossRefGoogle Scholar
  84. 84.
    Hamilton, J.A., Steinrauf, L.K., Braden, B.C., Liepnieks, J., Benson, M.D., Holmgren, G., Sandgren, O., Steen, L.: The x-ray crystal structure refinements of normal human transthyretin and the amyloidogenic Val-30–> Met variant to 1.7-A resolution. J. Biol. Chem. 268, 2416–2424 (1993)Google Scholar
  85. 85.
    Sebastião, M.P., Saraiva, M.J., Damas, A.M.: The crystal structure of amyloidogenic Leu55–> Pro transthyretin variant reveals a possible pathway for transthyretin polymerization into amyloid fibrils. J. Biol. Chem. 273, 24715–24722 (1998)CrossRefGoogle Scholar
  86. 86.
    Hammarström, P.: Trans-suppression of misfolding in an amyloid disease. Science 293, 2459–2462 (2001)CrossRefGoogle Scholar
  87. 87.
    Hammarström, P., Jiang, X., Hurshman, A.R., Powers, E.T., Kelly, J.W.: Sequence-dependent denaturation energetics: a major determinant in amyloid disease diversity. Proc. Natl. Acad. Sci. U S A 99(Suppl 4), 16427–16432 (2002)CrossRefGoogle Scholar
  88. 88.
    Schneider, F., Hammarström, P., Kelly, J.W.: Transthyretin slowly exchanges subunits under physiological conditions: a convenient chromatographic method to study subunit exchange in oligomeric proteins. Protein Sci. 10, 1606–1613 (2001)CrossRefGoogle Scholar
  89. 89.
    Hurshman, A.R., White, J.T., Powers, E.T., Kelly, J.W.: Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. Biochemistry 43, 7365–7381 (2004)CrossRefGoogle Scholar
  90. 90.
    Jiang, X., Smith, C.S., Petrassi, H.M., Hammarström, P., White, J.T., Sacchettini, J.C., Kelly, J.W.: An engineered transthyretin monomer that is nonamyloidogenic, unless it is partially denatured. Biochemistry 40, 11442–11452 (2001)CrossRefGoogle Scholar
  91. 91.
    Armen, R.S., Alonso, D.O.V., Daggett, V.: Anatomy of an amyloidogenic intermediate - conversion of β-sheet to α-sheet structure in transthyretin at acidic pH. Structure 12, 17–17 (2004)CrossRefGoogle Scholar
  92. 92.
    Liu, K., Cho, H.S., Hoyt, D.W., Nguyen, T.N., Olds, P., Kelly, J.W., Wemmer, D.E.: Deuterium-proton exchange on the native wild-type transthyretin tetramer identifies the stable core of the individual subunits and indicates mobility at the subunit interface. J. Mol. Biol. 303, 555–565 (2000)CrossRefGoogle Scholar
  93. 93.
    Saraiva, M.J.: Transthyretin mutations in hyperthyroxinemia and amyloid diseases. Hum. Mutat. 17, 493–503 (2001)CrossRefGoogle Scholar
  94. 94.
    Lashuel, H.A., Lai, Z., Kelly, J.W.: Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild-type, V30M, and L55P amyloid fibril formation. Biochemistry 37, 17851–17864 (1998)CrossRefGoogle Scholar
  95. 95.
    Hörnberg, A., Eneqvist, T., Olofsson, A., Lundgren, E., Sauer-Eriksson, A.E.: A comparative analysis of 23 structures of the amyloidogenic protein transthyretin. J. Mol. Biol. 302, 21–21 (2000)CrossRefGoogle Scholar
  96. 96.
    Wojtczak, A., Neumann, P., Cody, V.: Structure of a new polymorphic monoclinic form of human transthyretin at 3 Å resolution reveals a mixed complex between unliganded and T4-bound tetramers of TTR. Acta Crystallogr. D: Biol. Crystallogr. 57, 957–967 (2001)CrossRefGoogle Scholar
  97. 97.
    Hörnberg, A., Olofsson, A., Eneqvist, T., Lundgren, E., Sauer-Eriksson, A.E.: The beta-strand D of transthyretin trapped in two discrete conformations. Biochim. Biophys. Acta 1700, 93–104 (2004)CrossRefGoogle Scholar
  98. 98.
    Banerjee, A., Bairagya, H.R., Mukhopadhyay, B.P.B., Nandi, T.K., Bera, A.K.: Structural insight to mutated Y116S transthyretin by molecular dynamics simulation. Indian J. Biochem. Biophys. 47, 197–202 (2010)Google Scholar
  99. 99.
    Xu, X., Wang, X., Xiao, Z., Li, Y., Wang, Y.: Probing the structural and functional link between mutation- and pH-dependent hydration dynamics and amyloidosis of transthyretin. Soft Matter 8, 324–336 (2011)CrossRefGoogle Scholar
  100. 100.
    Abrahamson, M., Barrett, A.J., Salvesen, G., Grubb, A.: Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J. Biol. Chem. 261, 11282–11289 (1986)Google Scholar
  101. 101.
    Grubb, A.O.: Cystatin C-properties and use as diagnostic marker. In: Advances in Clinical Chemistry. Elsevier, pp. 63–99 (2001)Google Scholar
  102. 102.
    Grzonka, Z., Jankowska, E., Kasprzykowski, F., et al.: Structural studies of cysteine proteases and their inhibitors. Acta Biochim. Pol. 48, 1–20 (2001)Google Scholar
  103. 103.
    Ghiso, J., Jensson, O., Frangione, B.: Amyloid fibrils in hereditary cerebral hemorrhage with amyloidosis of Icelandic type is a variant of gamma-trace basic protein (cystatin C). Proc. Natl. Acad. Sci. U S A 83, 2974–2978 (1986)CrossRefGoogle Scholar
  104. 104.
    Abrahamson, M.: Molecular basis for amyloidosis related to hereditary brain hemorrhage. Scand. J. Clin. Lab. Invest. Suppl. 226, 47–56 (1996)CrossRefGoogle Scholar
  105. 105.
    Olafsson, I., Grubb, A.O.: Hereditary cystatin C amyloid angiopathy. Amyloid 7, 70–79 (2000)CrossRefGoogle Scholar
  106. 106.
    Gerhartz, B., Ekiel, I., Abrahamson, M.: Two stable unfolding intermediates of the disease-causing L68Q variant of human cystatin C. Biochemistry 37, 17309–17317 (1998)CrossRefGoogle Scholar
  107. 107.
    Abrahamson, M., Grubb, A.: Increased body temperature accelerates aggregation of the Leu-68–> Gln mutant cystatin C, the amyloid-forming protein in hereditary cystatin C amyloid angiopathy. Proc. Natl. Acad. Sci. U S A 91, 1416–1420 (1994)CrossRefGoogle Scholar
  108. 108.
    Jankowska, E., Wiczk, W., Grzonka, Z.: Thermal and guanidine hydrochloride-induced denaturation of human cystatin C. Eur. Biophys. J. 33, 454–461 (2004)CrossRefGoogle Scholar
  109. 109.
    Nilsson, M., Wang, X., Rodziewicz-Motowidlo, S., Janowski, R., Lindström, V., Onnerfjord, P., Westermark, G., Grzonka, Z., Jaskolski, M.M., Grubb, A.A.: Prevention of domain swapping inhibits dimerization and amyloid fibril formation of cystatin C: use of engineered disulfide bridges, antibodies, and carboxymethylpapain to stabilize the monomeric form of cystatin C. J. Biol. Chem. 279, 24236–24245 (2004)CrossRefGoogle Scholar
  110. 110.
    Liu, H.-L., Lin, Y.-M., Zhao, J.-H., Hsieh, M.-C., Lin, H.-Y., Huang, C.-H., Fang, H.-W., Ho, Y., Chen, W.-Y.: Molecular dynamics simulations of human cystatin C and its L68Q varient to investigate the domain swapping mechanism. J. Biomol. Struct. Dyn. 25, 135–144 (2007)CrossRefGoogle Scholar
  111. 111.
    Lin, Y.-M., Liu, H.-L., Zhao, J.-H., Huang, C.-H., Fang, H.-W., Ho, Y., Chen, W.-Y.: Molecular dynamics simulations to investigate the domain swapping mechanism of human cystatin C. Biotechnol. Prog. 23, 577–584 (2008)CrossRefGoogle Scholar
  112. 112.
    Yu, Y., Wang, Y., He, J., Liu, Y., Li, H., Zhang, H., Song, Y.: Structural and dynamic properties of a new amyloidogenic chicken cystatin mutant I108T. J. Biomol. Struct. Dyn. 27, 641–649 (2010)CrossRefGoogle Scholar
  113. 113.
    Ekiel, I., Abrahamson, M., Fulton, D.B., et al.: NMR structural studies of human cystatin C dimers and monomers. J. Mol. Biol. 271, 12–12 (1997)CrossRefGoogle Scholar
  114. 114.
    Sinha, N., Tsai, C.J., Nussinov, R.: A proposed structural model for amyloid fibril elongation: domain swapping forms an interdigitating beta-structure polymer. Protein Eng. 14, 93–103 (2001)CrossRefGoogle Scholar
  115. 115.
    Staniforth, R.A., Giannini, S., Higgins, L.D., Conroy, M.J., Hounslow, A.M., Jerala, R., Craven, C.J., Waltho, J.P.: Three-dimensional domain swapping in the folded and molten-globule states of cystatins, an amyloid-forming structural superfamily. EMBO J. 20, 4774–4781 (2001)CrossRefGoogle Scholar
  116. 116.
    Stubbs, M.T., Laber, B., Bode, W., Huber, R., Jerala, R., Lenarcic, B., Turk, V.: The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J. 9, 1939–1947 (1990)CrossRefGoogle Scholar
  117. 117.
    Engh, R.A., Dieckmann, T., Bode, W., Auerswald, E.A., Turk, V., Huber, R., Oschkinat, H.: Conformational variability of chicken cystatin. Comparison of structures determined by X-ray diffraction and NMR spectroscopy. J. Mol. Biol. 234, 1060–1069 (1993)CrossRefGoogle Scholar
  118. 118.
    Rodziewicz-Motowidło, S., Iwaszkiewicz, J., Sosnowska, R., Czaplewska, P., Sobolewski, E., Szymańska, A., Stachowiak, K., Liwo, A.: The role of the Val57 amino-acid residue in the hinge loop of the human cystatin C. Conformational studies of the beta2-L1-beta3 segments of wild-type human cystatin C and its mutants. Biopolymers 91, 373–383 (2009)CrossRefGoogle Scholar
  119. 119.
    Sunde, M., Serpell, L.C., Bartlam, M., Fraser, P.E., Pepys, M.B., Blake, C.C.: Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 11–11 (1997)CrossRefGoogle Scholar
  120. 120.
    Blake, C., Serpell, L.: Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous β-sheet helix. Structure 4, 10–10 (1996)CrossRefGoogle Scholar
  121. 121.
    Cohen, A.S., Shirahama, T., Skinner, M.: Electron microscopy of amyloid. Electron microscopy of proteins 3, 165–205 (1982)Google Scholar
  122. 122.
    Puchtler, H., Sweat, F.: Congo red as a stain for fluorescence microscopy of amyloid. J. Histochem. Cytochem. 13, 693–694 (1965)CrossRefGoogle Scholar
  123. 123.
    Chiti, F., Dobson, C.M.: Protein misfolding, functional amyloid, and human disease. Ann. Rev. Biochem. 75, 333–366 (2006)CrossRefGoogle Scholar
  124. 124.
    Serpell, L.C., Sunde, M., Benson, M.D., Tennent, G.A., Pepys, M.B., Fraser, P.E.: The protofilament substructure of amyloid fibrils. J. Mol. Biol. 300, 1033–1039 (2000)CrossRefGoogle Scholar
  125. 125.
    Nelson, R., Eisenberg, D.: Recent atomic models of amyloid fibril structure. Curr. Opin. Struct. Biol. 16, 260–265 (2006)CrossRefGoogle Scholar
  126. 126.
    Jiménez, J.L., Guijarro, J.I., Orlova, E., Zurdo, J., Dobson, C.M., Sunde, M., Saibil, H.R.: Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 18, 815–821 (1999)CrossRefGoogle Scholar
  127. 127.
    Govaerts, C., Wille, H., Prusiner, S.B., Cohen, F.E.: Evidence for assembly of prions with left-handed beta-helices into trimers. Proc. Natl. Acad. Sci. U S A 101, 8342–8347 (2004)CrossRefGoogle Scholar
  128. 128.
    Sikorski, P., Atkins, E.: New model for crystalline polyglutamine assemblies and their connection with amyloid fibrils. Biomacromol 6, 425–432 (2005)CrossRefGoogle Scholar
  129. 129.
    Lührs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Döbeli, H., Schubert, D., Riek, R.: 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc. Natl. Acad. Sci. U S A 102, 17342–17347 (2005)CrossRefGoogle Scholar
  130. 130.
    Serag, A.A., Altenbach, C., Gingery, M., Hubbell, W.L., Yeates, T.O.: Arrangement of subunits and ordering of beta-strands in an amyloid sheet. Nat. Struct. Biol. 9, 734–739 (2002)CrossRefGoogle Scholar
  131. 131.
    Ivanova, M.I., Sawaya, M.R., Gingery, M., Attinger, A., Eisenberg, D.: An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril. Proc. Natl. Acad. Sci. U S A 101, 10584–10589 (2004)CrossRefGoogle Scholar
  132. 132.
    Gronenborn, A.M.: Protein acrobatics in pairs—dimerization via domain swapping. Curr. Opin. Struct. Biol. 19, 39–49 (2009)CrossRefGoogle Scholar
  133. 133.
    la Paz de, M.L., de Mori, G.M.S., Serrano, L., Colombo, G.: Sequence dependence of amyloid fibril formation: insights from molecular dynamics simulations. J. Mol. Biol. 349, 14–14 (2005)Google Scholar
  134. 134.
    Li, L., Darden, T.A., Bartolotti, L., Kominos, D., Pedersen, L.G.: An atomic model for the pleated beta-sheet structure of Abeta amyloid protofilaments. Biophys. J. 76, 2871–2878 (1999)CrossRefGoogle Scholar
  135. 135.
    Zanuy, D., Nussinov, R.: The sequence dependence of fiber organization. A comparative molecular dynamics study of the islet amyloid polypeptide segments 22-27 and 22-29. J. Mol. Biol. 329, 20–20 (2003)CrossRefGoogle Scholar
  136. 136.
    Haspel, N., Gunasekaran, K., Ma, B., Tsai, C.-J.C., Nussinov, R.: The stability and dynamics of the human calcitonin amyloid peptide DFNKF. Biophys. J. 87, 13–13 (2004)Google Scholar
  137. 137.
    Ye, W., Chen, Y., Wang, W., Yu, Q., Li, Y., Zhang, J., Chen, H.-F.: Insight into the stability of cross-β amyloid fibril from VEALYL short peptide with molecular dynamics simulation. PLoS ONE 7, e36382 (2012)CrossRefGoogle Scholar
  138. 138.
    Periole, X., Rampioni, A., Vendruscolo, M., Mark, A.E.: Factors that affect the degree of twist in beta-sheet structures: A molecular dynamics simulation study of a cross-beta filament of the GNNQQNY peptide. J. Phys. Chem. B 113, 10548–10548 (2009)CrossRefGoogle Scholar
  139. 139.
    Song, W., Wei, G., Mousseau, N., Derreumaux, P.: Self-assembly of the beta2-microglobulin NHVTLSQ peptide using a coarse-grained protein model reveals a beta-barrel species. J. Phys. Chem. B 112, 4410–4418 (2008)CrossRefGoogle Scholar
  140. 140.
    Berryman, J.T., Radford, S.E., Harris, S.A.: Systematic examination of polymorphism in amyloid fibrils by molecular-dynamics simulation. Biophys. J. 100, 9–9 (2011)CrossRefGoogle Scholar
  141. 141.
    Connelly, L., Jang, H., Arce, F.T., Capone, R., Kotler, S.A., Ramachandran, S., Kagan, B.L., Nussinov, R., Lal, R.: Atomic force microscopy and MD simulations reveal pore-like structures of all-d-enantiomer of Alzheimer’s β-amyloid peptide: relevance to the ion channel mechanism of AD pathology. J. Phys. Chem. B 116, 1728–1735 (2012)CrossRefGoogle Scholar
  142. 142.
    Kent, A., Jha, A.K., Fitzgerald, J.E., Freed, K.F.: Benchmarking implicit solvent folding simulations of the amyloid beta(10-35) fragment. J. Phys. Chem. B 112, 6175–6186 (2008)CrossRefGoogle Scholar
  143. 143.
    Zheng, J., Jang, H., Nussinov, R.: Beta2-microglobulin amyloid fragment organization and morphology and its comparison to Abeta suggests that amyloid aggregation pathways are sequence specific. Biochemistry 47, 2497–2509 (2008)CrossRefGoogle Scholar
  144. 144.
    Wang, J., Tan, C., Chen, H.-F., Luo, R.: All-atom computer simulations of amyloid fibrils disaggregation. Biophys. J. 95, 5037–5047 (2008)CrossRefGoogle Scholar
  145. 145.
    Gnanakaran, S., Nussinov, R., García, A.E.: Atomic-level description of amyloid beta-dimer formation. J. Am. Chem. Soc. 128, 2158–2159 (2006)CrossRefGoogle Scholar
  146. 146.
    Boucher, G., Mousseau, N., Derreumaux, P.: Aggregating the amyloid Abeta(11-25) peptide into a four-stranded beta-sheet structure. Proteins 65, 877–888 (2006)CrossRefGoogle Scholar
  147. 147.
    Lipfert, J., Franklin, J., Wu, F., Doniach, S.: Protein misfolding and amyloid formation for the peptide GNNQQNY from yeast prion protein Sup35: simulation by reaction path annealing. J. Mol. Biol. 349, 11–11 (2005)CrossRefGoogle Scholar
  148. 148.
    Soto, P., Cladera, J., Mark, A.E., Daura, X.: Stability of SIV gp32 fusion-peptide single-layer protofibrils as monitored by molecular-dynamics simulations. Angew. Chem. 117, 1089–1091 (2005)CrossRefGoogle Scholar
  149. 149.
    Correia, B.E., Loureiro-Ferreira, N., Rodrigues, J.R., Brito, R.M.M.: A structural model of an amyloid protofilament of transthyretin. Protein Sci. 15, 28–32 (2005)CrossRefGoogle Scholar
  150. 150.
    Colombo, G., Meli, M., De Simone, A.: Computational studies of the structure, dynamics and native content of amyloid-like fibrils of ribonuclease A. Proteins 70, 863–872 (2007)CrossRefGoogle Scholar
  151. 151.
    Cendron, L., Trovato, A., Seno, F., Folli, C., Alfieri, B., Zanotti, G., Berni, R.: Amyloidogenic potential of transthyretin variants: insights from structural and computational analyses. J. Biol. Chem. 284, 25832–25841 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sylwia Rodziewicz-Motowidło
    • 1
    Email author
  • Emilia Sikorska
    • 1
  • Justyna Iwaszkiewicz
    • 2
  1. 1.Faculty of ChemistryUniversity of GdańskGdańskPoland
  2. 2.Swiss Institute of BioinformaticsMolecular Modeling GroupLausanneSwitzerland

Personalised recommendations