Advertisement

Modeling of Membrane Proteins

  • Dorota Latek
  • Bartosz Trzaskowski
  • Szymon Niewieczerzał
  • Przemysław Miszta
  • Krzysztof Młynarczyk
  • Aleksander Dębiński
  • Wojciech Puławski
  • Shuguang Yuan
  • Agnieszka Sztyler
  • Urszula Orzeł
  • Jakub Jakowiecki
  • Sławomir FilipekEmail author
Chapter
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 8)

Abstract

The membrane proteins are still the “Wild West” of structural biology. Although more and more membrane proteins structures are determined, their functioning is still difficult to investigate because they are fully functional only in the membranous environments. Several specific methodologies were developed to investigate various aspects of their cellular life but still they are challenging for computational methods. In this chapter we summarize the efforts made on elucidation the structural and dynamical properties of different types of membrane proteins emphasizing on those computational methods which were designed and employed particularly to study membrane proteins including their interactions in complex membranous systems. This chapter was updated in all subsections compared to the 1st edition.

References

  1. 1.
    Chou, K.C., Elrod, D.W.: Prediction of membrane protein types and subcellular locations. Proteins 34(1), 137–153 (1999)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Lomize, M.A., Pogozheva, I.D., Joo, H., Mosberg, H.I., Lomize, A.L.: OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40(Database issue), D370–376 (2012).  https://doi.org/10.1093/nar/gkr703CrossRefGoogle Scholar
  4. 4.
    Jayasinghe, S., Hristova, K., White, S.H.: MPtopo: a database of membrane protein topology. Protein Sci. 10(2), 455–458 (2001).  https://doi.org/10.1110/ps.43501CrossRefGoogle Scholar
  5. 5.
    Tusnady, G.E., Dosztanyi, Z., Simon, I.: PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res. 33(Database issue), D275–278 (2005).  https://doi.org/10.1093/nar/gki002CrossRefGoogle Scholar
  6. 6.
    Kozma, D., Simon, I., Tusnady, G.E.: PDBTM: protein data bank of transmembrane proteins after 8 years. Nucleic Acids Res. 41(Database issue), D524–529 (2013).  https://doi.org/10.1093/nar/gks1169CrossRefGoogle Scholar
  7. 7.
    Raman, P., Cherezov, V., Caffrey, M.: The membrane protein data bank. Cell. Mol. Life Sci. 63(1), 36–51 (2006).  https://doi.org/10.1007/s00018-005-5350-6CrossRefGoogle Scholar
  8. 8.
    Kazius, J., Wurdinger, K., van Iterson, M., Kok, J., Back, T., Ijzerman, A.P.: GPCR NaVa database: natural variants in human G protein-coupled receptors. Hum. Mutat. 29(1), 39–44 (2008).  https://doi.org/10.1002/humu.20638CrossRefGoogle Scholar
  9. 9.
    Okuno, Y., Tamon, A., Yabuuchi, H., Niijima, S., Minowa, Y., Tonomura, K., Kunimoto, R., Feng, C.: GLIDA: GPCR—ligand database for chemical genomics drug discovery–database and tools update. Nucleic Acids Res. 36(Database issue), D907–912 (2008).  https://doi.org/10.1093/nar/gkm948CrossRefGoogle Scholar
  10. 10.
    Zhang, J., Zhang, Y.: GPCRRD: G protein-coupled receptor spatial restraint database for 3D structure modeling and function annotation. Bioinformatics 26(23), 3004–3005 (2010).  https://doi.org/10.1093/bioinformatics/btq563CrossRefGoogle Scholar
  11. 11.
    Tsirigos, K.D., Bagos, P.G., Hamodrakas, S.J.: OMPdb: a database of beta-barrel outer membrane proteins from Gram-negative bacteria. Nucleic Acids Res. 39(Database issue), D324–331 (2011).  https://doi.org/10.1093/nar/gkq863CrossRefGoogle Scholar
  12. 12.
    Vroling, B., Sanders, M., Baakman, C., Borrmann, A., Verhoeven, S., Klomp, J., Oliveira, L., de Vlieg, J., Vriend, G.: GPCRDB: information system for G protein-coupled receptors. Nucleic Acids Res. 39(Database issue), D309–319 (2011).  https://doi.org/10.1093/nar/gkq1009CrossRefGoogle Scholar
  13. 13.
    Isberg, V., Mordalski, S., Munk, C., Rataj, K., Harpsoe, K., Hauser, A.S., Vroling, B., Bojarski, A.J., Vriend, G., Gloriam, D.E.: GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res. 44(D1), D356–D364 (2016).  https://doi.org/10.1093/nar/gkv1178CrossRefGoogle Scholar
  14. 14.
    Pandy-Szekeres, G., Munk, C., Tsonkov, T.M., Mordalski, S., Harpsoe, K., Hauser, A.S., Bojarski, A.J., Gloriam, D.E.: GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res. 46(D1), D440–D446 (2018).  https://doi.org/10.1093/nar/gkx1109CrossRefGoogle Scholar
  15. 15.
    Worth, C.L., Kreuchwig, A., Kleinau, G., Krause, G.: GPCR-SSFE: a comprehensive database of G-protein-coupled receptor template predictions and homology models. BMC Bioinform. 12, 185 (2011).  https://doi.org/10.1186/1471-2105-12-185CrossRefGoogle Scholar
  16. 16.
    Worth, C.L., Kreuchwig, F., Tiemann, J.K.S., Kreuchwig, A., Ritschel, M., Kleinau, G., Hildebrand, P.W., Krause, G.: GPCR-SSFE 2.0-a fragment-based molecular modeling web tool for Class A G-protein coupled receptors. Nucleic Acids Res. (2017).  https://doi.org/10.1093/nar/gkx399CrossRefGoogle Scholar
  17. 17.
    Sharman, J.L., Mpamhanga, C.P., Spedding, M., Germain, P., Staels, B., Dacquet, C., Laudet, V., Harmar, A.J.: IUPHAR-DB: new receptors and tools for easy searching and visualization of pharmacological data. Nucleic Acids Res. 39(Database issue), D534–538 (2011).  https://doi.org/10.1093/nar/gkq1062CrossRefGoogle Scholar
  18. 18.
    Harding, S.D., Sharman, J.L., Faccenda, E., Southan, C., Pawson, A.J., Ireland, S., Gray, A.J.G., Bruce, L., Alexander, S.P.H., Anderton, S., Bryant, C., Davenport, A.P., Doerig, C., Fabbro, D., Levi-Schaffer, F., Spedding, M., Davies, J.A., Nc, I.: The IUPHAR/BPS guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Res. (2017).  https://doi.org/10.1093/nar/gkx1121CrossRefGoogle Scholar
  19. 19.
    Saier, M.H., Jr., Yen, M.R., Noto, K., Tamang, D.G., Elkan, C.: The transporter classification database: recent advances. Nucleic Acids Res. 37(Database issue), D274–278 (2009).  https://doi.org/10.1093/nar/gkn862CrossRefGoogle Scholar
  20. 20.
    Saier, M.H., Jr., Reddy, V.S., Tamang, D.G., Vastermark, A.: The transporter classification database. Nucleic Acids Res. 42(Database issue), D251–258 (2014).  https://doi.org/10.1093/nar/gkt1097CrossRefGoogle Scholar
  21. 21.
    Neumann, S., Fuchs, A., Mulkidjanian, A., Frishman, D.: Current status of membrane protein structure classification. Proteins 78(7), 1760–1773 (2010).  https://doi.org/10.1002/prot.22692CrossRefGoogle Scholar
  22. 22.
    Bernsel, A., Viklund, H., Elofsson, A.: Remote homology detection of integral membrane proteins using conserved sequence features. Proteins 71(3), 1387–1399 (2008).  https://doi.org/10.1002/prot.21825CrossRefGoogle Scholar
  23. 23.
    Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., De Castro, E., Langendijk-Genevaux, P.S., Pagni, M., Sigrist, C.J.: The PROSITE database. Nucleic Acids Res. 34(Database issue), D227–230 (2006).  https://doi.org/10.1093/nar/gkj063CrossRefGoogle Scholar
  24. 24.
    Tusnady, G.E., Kalmar, L., Hegyi, H., Tompa, P., Simon, I.: TOPDOM: database of domains and motifs with conservative location in transmembrane proteins. Bioinformatics 24(12), 1469–1470 (2008).  https://doi.org/10.1093/bioinformatics/btn202CrossRefGoogle Scholar
  25. 25.
    Senes, A., Engel, D.E., DeGrado, W.F.: Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr. Opin. Struct. Biol. 14(4), 465–479 (2004).  https://doi.org/10.1016/j.sbi.2004.07.007CrossRefGoogle Scholar
  26. 26.
    Shen, H.B., Yang, J., Chou, K.C.: Fuzzy KNN for predicting membrane protein types from pseudo-amino acid composition. J. Theor. Biol. 240(1), 9–13 (2006).  https://doi.org/10.1016/j.jtbi.2005.08.016MathSciNetCrossRefGoogle Scholar
  27. 27.
    Cai, Y.D., Ricardo, P.W., Jen, C.H., Chou, K.C.: Application of SVM to predict membrane protein types. J. Theor. Biol. 226(4), 373–376 (2004).  https://doi.org/10.1016/j.jtbi.2003.08.015MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang, S.-Q., Yang, J., Chou, K.-C.: Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition. J. Theor. Biol. 242(4), 941–946 (2006).  https://doi.org/10.1016/j.jtbi.2006.05.006MathSciNetCrossRefGoogle Scholar
  29. 29.
    Cedano, J., Aloy, P., Perez-Pons, J.A., Querol, E.: Relation between amino acid composition and cellular location of proteins. J. Mol. Biol. 266(3), 594–600 (1997).  https://doi.org/10.1006/jmbi.1996.0804CrossRefGoogle Scholar
  30. 30.
    Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105–132 (1982)CrossRefGoogle Scholar
  31. 31.
    Steitz, T.A., Goldman, A., Engelman, D.M.: Quantitative application of the helical hairpin hypothesis to membrane proteins. Biophys. J. 37(1), 124–125 (1982)CrossRefGoogle Scholar
  32. 32.
    Engelman, D.M., Steitz, T.A.: The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell 23(2), 411–422 (1981)CrossRefGoogle Scholar
  33. 33.
    Hedin, L.E., Illergard, K., Elofsson, A.: An introduction to membrane proteins. J. Proteome Res. 10(8), 3324–3331 (2011).  https://doi.org/10.1021/pr200145aCrossRefGoogle Scholar
  34. 34.
    Elofsson, A., von Heijne, G.: Membrane protein structure: prediction versus reality. Annu. Rev. Biochem. 76, 125–140 (2007).  https://doi.org/10.1146/annurev.biochem.76.052705.163539CrossRefGoogle Scholar
  35. 35.
    Bernsel, A., Viklund, H., Falk, J., Lindahl, E., von Heijne, G., Elofsson, A.: Prediction of membrane-protein topology from first principles. Proc. Natl. Acad. Sci. U.S.A. 105(20), 7177–7181 (2008)CrossRefGoogle Scholar
  36. 36.
    Attwood, T.K., Findlay, J.B.: Fingerprinting G-protein-coupled receptors. Protein Eng. 7(2), 195–203 (1994)CrossRefGoogle Scholar
  37. 37.
    Fredriksson, R., Lagerström, M.C., Lundin, L.-G., Schiöth, H.B.: The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63(6), 1256–1272 (2003).  https://doi.org/10.1124/mol.63.6.1256CrossRefGoogle Scholar
  38. 38.
    Otaki, J.M., Mori, A., Itoh, Y., Nakayama, T., Yamamoto, H.: Alignment-free classification of G-protein-coupled receptors using self-organizing maps. J. Chem. Inf. Model. 46(3), 1479–1490 (2006).  https://doi.org/10.1021/ci050382yCrossRefGoogle Scholar
  39. 39.
    Deville, J., Rey, J., Chabbert, M.: An indel in transmembrane helix 2 helps to trace the molecular evolution of class A G-protein-coupled receptors. J. Mol. Evol. 68(5), 475–489 (2009)CrossRefGoogle Scholar
  40. 40.
    Surgand, J.S., Rodrigo, J., Kellenberger, E., Rognan, D.: A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors. Proteins 62(2), 509–538 (2006)CrossRefGoogle Scholar
  41. 41.
    Pele, J., Abdi, H., Moreau, M., Thybert, D., Chabbert, M.: Multidimensional scaling reveals the main evolutionary pathways of class A G-protein-coupled receptors. PLoS ONE 6(4), e19094 (2011)CrossRefGoogle Scholar
  42. 42.
    Lu, G., Wang, Z., Jones, A.M., Moriyama, E.N.: 7TMRmine: a Web server for hierarchical mining of 7TMR proteins. BMC Genom. 10, 275 (2009).  https://doi.org/10.1186/1471-2164-10-275CrossRefGoogle Scholar
  43. 43.
    Park, K.-J., Gromiha, M.M., Horton, P., Suwa, M.: Discrimination of outer membrane proteins using support vector machines. Bioinformatics 21(23), 4223–4229 (2005).  https://doi.org/10.1093/bioinformatics/bti697CrossRefGoogle Scholar
  44. 44.
    Gromiha, M.M., Suwa, M.: Discrimination of outer membrane proteins using machine learning algorithms. Proteins 63(4), 1031–1037 (2006).  https://doi.org/10.1002/prot.20929CrossRefGoogle Scholar
  45. 45.
    Gromiha, M.M., Ahmad, S., Suwa, M.: Neural network-based prediction of transmembrane beta-strand segments in outer membrane proteins. J. Comput. Chem. 25(5), 762–767 (2004).  https://doi.org/10.1002/jcc.10386CrossRefGoogle Scholar
  46. 46.
    Martelli, P.L., Fariselli, P., Krogh, A., Casadio, R.: A sequence-profile-based HMM for predicting and discriminating beta barrel membrane proteins. Bioinformatics 18(Suppl 1), S46–S53 (2002)CrossRefGoogle Scholar
  47. 47.
    Remmert, M., Linke, D., Lupas, A.N., Soding, J.: HHomp–prediction and classification of outer membrane proteins. Nucleic Acids Res. 37(Web Server issue), W446–451 (2009).  https://doi.org/10.1093/nar/gkp325CrossRefGoogle Scholar
  48. 48.
    Garrow, A.G., Agnew, A., Westhead, D.R.: TMB-Hunt: an amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins. BMC Bioinform. 6, 56 (2005).  https://doi.org/10.1186/1471-2105-6-56CrossRefGoogle Scholar
  49. 49.
    Gromiha, M.M., Ahmad, S., Suwa, M.: Application of residue distribution along the sequence for discriminating outer membrane proteins. Comput. Biol. Chem. 29(2), 135–142 (2005).  https://doi.org/10.1016/j.compbiolchem.2005.02.006CrossRefzbMATHGoogle Scholar
  50. 50.
    Yan, R.-X., Chen, Z., Zhang, Z.: Outer membrane proteins can be simply identified using secondary structure element alignment. BMC Bioinform. 12(1), 76 (2011)CrossRefGoogle Scholar
  51. 51.
    Berven, F.S., Flikka, K., Jensen, H.B., Eidhammer, I.: BOMP: a program to predict integral β-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria. Nucleic Acids Res. 32(suppl 2), W394–W399 (2004).  https://doi.org/10.1093/nar/gkh351CrossRefGoogle Scholar
  52. 52.
    Freeman, T.C., Wimley, W.C.: A highly accurate statistical approach for the prediction of transmembrane β-barrels. Bioinformatics 26(16), 1965–1974 (2010).  https://doi.org/10.1093/bioinformatics/btq308CrossRefGoogle Scholar
  53. 53.
    van Geest, M., Lolkema, J.S.: Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol. Mol. Biol. Rev. 64(1), 13–33 (2000).  https://doi.org/10.1128/mmbr.64.1.13-33.2000CrossRefGoogle Scholar
  54. 54.
    Fu, D., Libson, A., Miercke, L.J., Weitzman, C., Nollert, P., Krucinski, J., Stroud, R.M.: Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290(5491), 481–486 (2000)CrossRefGoogle Scholar
  55. 55.
    Bendtsen, J.D., Nielsen, H., von Heijne, G., Brunak, S.: Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340(4), 783–795 (2004).  https://doi.org/10.1016/j.jmb.2004.05.028CrossRefGoogle Scholar
  56. 56.
    Emanuelsson, O., Brunak, S., von Heijne, G., Nielsen, H.: Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2(4), 953–971 (2007).  https://doi.org/10.1038/nprot.2007.131CrossRefGoogle Scholar
  57. 57.
    Kall, L., Krogh, A., Sonnhammer, E.L.: An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21(Suppl 1), i251–i257 (2005).  https://doi.org/10.1093/bioinformatics/bti1014CrossRefGoogle Scholar
  58. 58.
    Kall, L., Krogh, A., Sonnhammer, E.L.: Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res. 35(Web Server issue), W429–432 (2007).  https://doi.org/10.1093/nar/gkm256CrossRefGoogle Scholar
  59. 59.
    Viklund, H., Granseth, E., Elofsson, A.: Structural classification and prediction of reentrant regions in alpha-helical transmembrane proteins: application to complete genomes. J. Mol. Biol. 361(3), 591–603 (2006).  https://doi.org/10.1016/j.jmb.2006.06.037CrossRefGoogle Scholar
  60. 60.
    Viklund, H., Elofsson, A.: OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24(15), 1662–1668 (2008).  https://doi.org/10.1093/bioinformatics/btn221CrossRefGoogle Scholar
  61. 61.
    von Heijne, G.: Membrane protein structure prediction: hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225(2), 487–494 (1992).  https://doi.org/10.1016/0022-2836(92)90934-cCrossRefGoogle Scholar
  62. 62.
    Engelman, D.M., Zaccai, G.: Bacteriorhodopsin is an inside-out protein. Proc. Natl. Acad. Sci. U.S.A. 77(10), 5894–5898 (1980)CrossRefGoogle Scholar
  63. 63.
    Stevens, T.J., Arkin, I.T.: Turning an opinion inside-out: Rees and Eisenberg’s commentary (Proteins 2000;38:121–122) on “Are membrane proteins ‘inside-out’ proteins?” (Proteins 1999;36:135–143). Proteins: Struct. Funct. Bioinf. 40(3), 463–464 (2000)CrossRefGoogle Scholar
  64. 64.
    Adamian, L., Liang, J.: Interhelical hydrogen bonds and spatial motifs in membrane proteins: polar clamps and serine zippers. Proteins 47(2), 209–218 (2002)CrossRefGoogle Scholar
  65. 65.
    Hofmann, K.: TMbase—a database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 374(166) (1993). doi:citeulike-article-id:9087200Google Scholar
  66. 66.
    Rost, B., Sander, C., Casadio, R., Fariselli, P.: Transmembrane helices predicted at 95% accuracy. Protein Sci. 4(3), 521–533 (1995)CrossRefGoogle Scholar
  67. 67.
    Yachdav, G., Kloppmann, E., Kajan, L., Hecht, M., Goldberg, T., Hamp, T., Honigschmid, P., Schafferhans, A., Roos, M., Bernhofer, M., Richter, L., Ashkenazy, H., Punta, M., Schlessinger, A., Bromberg, Y., Schneider, R., Vriend, G., Sander, C., Ben-Tal, N., Rost, B.: PredictProtein–an open resource for online prediction of protein structural and functional features. Nucleic Acids Res. 42(Web Server issue), W337–343 (2014).  https://doi.org/10.1093/nar/gku366CrossRefGoogle Scholar
  68. 68.
    Cserzo, M., Wallin, E., Simon, I., von Heijne, G., Elofsson, A.: Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10(6), 673–676 (1997)CrossRefGoogle Scholar
  69. 69.
    Hirokawa, T., Boon-Chieng, S., Mitaku, S.: SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14(4), 378–379 (1998)CrossRefGoogle Scholar
  70. 70.
    Pasquier, C., Promponas, V.J., Palaios, G.A., Hamodrakas, J.S., Hamodrakas, S.J.: A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm. Protein Eng. 12(5), 381–385 (1999)CrossRefGoogle Scholar
  71. 71.
    Tusnady, G.E., Simon, I.: The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9), 849–850 (2001)CrossRefGoogle Scholar
  72. 72.
    Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L.: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305(3), 567–580 (2001).  https://doi.org/10.1006/jmbi.2000.4315CrossRefGoogle Scholar
  73. 73.
    Juretic, D., Zoranic, L., Zucic, D.: Basic charge clusters and predictions of membrane protein topology. J. Chem. Inf. Comput. Sci. 42(3), 620–632 (2002)CrossRefGoogle Scholar
  74. 74.
    Liu, Q., Zhu, Y.S., Wang, B.H., Li, Y.X.: A HMM-based method to predict the transmembrane regions of beta-barrel membrane proteins. Comput. Biol. Chem. 27(1), 69–76 (2003)CrossRefGoogle Scholar
  75. 75.
    Jones, D.T.: Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23(5), 538–544 (2007).  https://doi.org/10.1093/bioinformatics/btl677CrossRefGoogle Scholar
  76. 76.
    Peters, C., Tsirigos, K.D., Shu, N., Elofsson, A.: Improved topology prediction using the terminal hydrophobic helices rule. Bioinformatics 32(8), 1158–1162 (2016).  https://doi.org/10.1093/bioinformatics/btv709CrossRefGoogle Scholar
  77. 77.
    Viklund, H., Bernsel, A., Skwark, M., Elofsson, A.: SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics 24(24), 2928–2929 (2008)CrossRefGoogle Scholar
  78. 78.
    Snider, C., Jayasinghe, S., Hristova, K., White, S.H.: MPEx: a tool for exploring membrane proteins. Protein Sci. 18(12), 2624–2628 (2009).  https://doi.org/10.1002/pro.256CrossRefGoogle Scholar
  79. 79.
    Bernsel, A., Viklund, H., Hennerdal, A., Elofsson, A.: TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res. 37(Web Server issue), W465–468 (2009).  https://doi.org/10.1093/nar/gkp363CrossRefGoogle Scholar
  80. 80.
    Tsirigos, K.D., Peters, C., Shu, N., Kall, L., Elofsson, A.: The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 43(W1), W401–W407 (2015).  https://doi.org/10.1093/nar/gkv485CrossRefGoogle Scholar
  81. 81.
    Klammer, M., Messina, D.N., Schmitt, T., Sonnhammer, E.L.: MetaTM—a consensus method for transmembrane protein topology prediction. BMC Bioinform. 10, 314 (2009).  https://doi.org/10.1186/1471-2105-10-314CrossRefGoogle Scholar
  82. 82.
    Ahmad, S., Singh, Y.H., Paudel, Y., Mori, T., Sugita, Y., Mizuguchi, K.: Integrated prediction of one-dimensional structural features and their relationships with conformational flexibility in helical membrane proteins. BMC Bioinform. 11, 533 (2010).  https://doi.org/10.1186/1471-2105-11-533CrossRefGoogle Scholar
  83. 83.
    Jacoboni, I., Martelli, P.L., Fariselli, P., De Pinto, V., Casadio, R.: Prediction of the transmembrane regions of beta-barrel membrane proteins with a neural network-based predictor. Protein Sci. 10(4), 779–787 (2001).  https://doi.org/10.1110/ps.37201CrossRefGoogle Scholar
  84. 84.
    Bagos, P.G., Liakopoulos, T.D., Spyropoulos, I.C., Hamodrakas, S.J.: PRED-TMBB: a web server for predicting the topology of beta-barrel outer membrane proteins. Nucleic Acids Res. 32(Web Server issue), W400–404 (2004).  https://doi.org/10.1093/nar/gkh417CrossRefGoogle Scholar
  85. 85.
    Natt, N.K., Kaur, H., Raghava, G.P.: Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods. Proteins: Struct. Funct. Bioinf. 56(1), 11–18 (2004).  https://doi.org/10.1002/prot.20092CrossRefGoogle Scholar
  86. 86.
    Bagos, P.G., Liakopoulos, T.D., Hamodrakas, S.J.: Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method. BMC Bioinform. 6, 7 (2005).  https://doi.org/10.1186/1471-2105-6-7CrossRefGoogle Scholar
  87. 87.
    Bigelow, H., Rost, B.: PROFtmb: a web server for predicting bacterial transmembrane beta barrel proteins. Nucleic Acids Res. 34(Web Server issue), W186–188 (2006).  https://doi.org/10.1093/nar/gkl262CrossRefGoogle Scholar
  88. 88.
    Waldispuhl, J., Berger, B., Clote, P., Steyaert, J.M.: Predicting transmembrane beta-barrels and interstrand residue interactions from sequence. Proteins 65(1), 61–74 (2006).  https://doi.org/10.1002/prot.21046CrossRefGoogle Scholar
  89. 89.
    Randall, A., Cheng, J., Sweredoski, M., Baldi, P.: TMBpro: secondary structure, beta-contact and tertiary structure prediction of transmembrane beta-barrel proteins. Bioinformatics 24(4), 513–520 (2008).  https://doi.org/10.1093/bioinformatics/btm548CrossRefGoogle Scholar
  90. 90.
    Hayat, S., Elofsson, A.: BOCTOPUS: improved topology prediction of transmembrane beta barrel proteins. Bioinformatics 28(4), 516–522 (2012).  https://doi.org/10.1093/bioinformatics/btr710CrossRefGoogle Scholar
  91. 91.
    Hayat, S., Peters, C., Shu, N., Tsirigos, K.D., Elofsson, A.: Inclusion of dyad-repeat pattern improves topology prediction of transmembrane beta-barrel proteins. Bioinformatics 32(10), 1571–1573 (2016).  https://doi.org/10.1093/bioinformatics/btw025CrossRefGoogle Scholar
  92. 92.
    Eisenberg, D., Weiss, R.M., Terwilliger, T.C.: The hydrophobic moment detects periodicity in protein hydrophobicity. Proc. Natl. Acad. Sci. U.S.A. 81(1), 140–144 (1984)CrossRefGoogle Scholar
  93. 93.
    Claros, M.G., von Heijne, G.: TopPred II: an improved software for membrane protein structure predictions. Comput. Appl. Biosci. 10(6), 685–686 (1994)Google Scholar
  94. 94.
    Jayasinghe, S., Hristova, K., White, S.H.: Energetics, stability, and prediction of transmembrane helices. J. Mol. Biol. 312(5), 927–934 (2001).  https://doi.org/10.1006/jmbi.2001.5008CrossRefGoogle Scholar
  95. 95.
    Koehler, J., Woetzel, N., Staritzbichler, R., Sanders, C.R., Meiler, J.: A unified hydrophobicity scale for multispan membrane proteins. Proteins 76(1), 13–29 (2009).  https://doi.org/10.1002/prot.22315CrossRefGoogle Scholar
  96. 96.
    Deber, C.M., Wang, C., Liu, L.P., Prior, A.S., Agrawal, S., Muskat, B.L., Cuticchia, A.J.: TM Finder: a prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales. Protein Sci. 10(1), 212–219 (2001).  https://doi.org/10.1110/ps.30301CrossRefGoogle Scholar
  97. 97.
    Zhou, H., Zhou, Y.: Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method. Protein Sci. 12(7), 1547–1555 (2003).  https://doi.org/10.1110/ps.0305103CrossRefGoogle Scholar
  98. 98.
    Ganapathiraju, M., Balakrishnan, N., Reddy, R., Klein-Seetharaman, J.: Transmembrane helix prediction using amino acid property features and latent semantic analysis. BMC Bioinform. 9(Suppl 1), S4 (2008)CrossRefGoogle Scholar
  99. 99.
    Persson, B., Argos, P.: Prediction of membrane protein topology utilizing multiple sequence alignments. J. Protein Chem. 16(5), 453–457 (1997)CrossRefGoogle Scholar
  100. 100.
    Shen, H., Chou, J.J.: MemBrain: improving the accuracy of predicting transmembrane helices. PLoS ONE 3(6), e2399 (2008).  https://doi.org/10.1371/journal.pone.0002399CrossRefGoogle Scholar
  101. 101.
    Cserzo, M., Bernassau, J.M., Simon, I., Maigret, B.: New alignment strategy for transmembrane proteins. J. Mol. Biol. 243(3), 388–396 (1994).  https://doi.org/10.1006/jmbi.1994.1666CrossRefGoogle Scholar
  102. 102.
    Kitsas, I.K., Panas, S.M., Hadjileontiadis, L.J.: Linear discrimination of transmembrane from non-transmembrane segments in proteins using higher-order crossings. Conf Proc IEEE Eng Med Biol Soc 1, 5818–5821 (2006)CrossRefGoogle Scholar
  103. 103.
    Lio, P., Vannucci, M.: Wavelet change-point prediction of transmembrane proteins. Bioinformatics 16(4), 376–382 (2000)CrossRefGoogle Scholar
  104. 104.
    Nugent, T., Jones, D.T.: Transmembrane protein topology prediction using support vector machines. BMC Bioinform. 10, 159 (2009).  https://doi.org/10.1186/1471-2105-10-159CrossRefGoogle Scholar
  105. 105.
    Osmanbeyoglu, H.U., Wehner, J.A., Carbonell, J.G., Ganapathiraju, M.K.: Active machine learning for transmembrane helix prediction. BMC Bioinform. 11 Suppl 1, S58 (2010).  https://doi.org/10.1186/1471-2105-11-s1-s58CrossRefGoogle Scholar
  106. 106.
    Schulz, G.E.: Beta-Barrel membrane proteins. Curr. Opin. Struct. Biol. 10(4), 443–447 (2000).  https://doi.org/10.1016/s0959-440x(00)00120-2CrossRefGoogle Scholar
  107. 107.
    Bagos, P.G., Liakopoulos, T.D., Spyropoulos, I.C., Hamodrakas, S.J.: A Hidden Markov Model method, capable of predicting and discriminating beta-barrel outer membrane proteins. BMC Bioinform. 5, 29 (2004).  https://doi.org/10.1186/1471-2105-5-29CrossRefGoogle Scholar
  108. 108.
    Ou, Y., Chen, S., Gromiha, M.M.: Prediction of membrane spanning segments and topology in β-barrel membrane proteins at better accuracy. J. Comput. Chem. 31(1), 217–223 (2010)CrossRefGoogle Scholar
  109. 109.
    Gromiha, M.M., Suwa, M.: A simple statistical method for discriminating outer membrane proteins with better accuracy. Bioinformatics 21(7), 961–968 (2005).  https://doi.org/10.1093/bioinformatics/bti126CrossRefGoogle Scholar
  110. 110.
    Park, Y., Hayat, S., Helms, V.: Prediction of the burial status of transmembrane residues of helical membrane proteins. BMC Bioinform. 8, 302 (2007).  https://doi.org/10.1186/1471-2105-8-302CrossRefGoogle Scholar
  111. 111.
    Yuan, Z., Zhang, F., Davis, M.J., Boden, M., Teasdale, R.D.: Predicting the solvent accessibility of transmembrane residues from protein sequence. J. Proteome Res. 5(5), 1063–1070 (2006).  https://doi.org/10.1021/pr050397bCrossRefGoogle Scholar
  112. 112.
    Illergard, K., Callegari, S., Elofsson, A.: MPRAP: an accessibility predictor for a-helical transmembrane proteins that performs well inside and outside the membrane. BMC Bioinform. 11, 333 (2010).  https://doi.org/10.1186/1471-2105-11-333CrossRefGoogle Scholar
  113. 113.
    Beuming, T., Weinstein, H.: A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins. Bioinformatics 20(12), 1822–1835 (2004).  https://doi.org/10.1093/bioinformatics/bth143CrossRefGoogle Scholar
  114. 114.
    von Heijne, G.: Proline kinks in transmembrane alpha-helices. J. Mol. Biol. 218(3), 499–503 (1991)CrossRefGoogle Scholar
  115. 115.
    Yohannan, S., Faham, S., Yang, D., Whitelegge, J.P., Bowie, J.U.: The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 101(4), 959–963 (2004)CrossRefGoogle Scholar
  116. 116.
    Meruelo, A.D., Samish, I., Bowie, J.U.: TMKink: a method to predict transmembrane helix kinks. Protein Sci. 20(7), 1256–1264 (2011).  https://doi.org/10.1002/pro.653CrossRefGoogle Scholar
  117. 117.
    Kneissl, B., Mueller, S.C., Tautermann, C.S., Hildebrandt, A.: String kernels and high-quality data set for improved prediction of kinked helices in alpha-helical membrane proteins. J. Chem. Inf. Model. 51(11), 3017–3025 (2011).  https://doi.org/10.1021/ci200278wCrossRefGoogle Scholar
  118. 118.
    Göbel, U., Sander, C., Schneider, R., Valencia, A.: Correlated mutations and residue contacts in proteins. Proteins: Struct. Funct. Bioinf. 18(4), 309–317 (1994)CrossRefGoogle Scholar
  119. 119.
    Latek, D., Kolinski, A.: Contact prediction in protein modeling: scoring, folding and refinement of coarse-grained models. BMC Struct. Biol. 8, 36 (2008).  https://doi.org/10.1186/1472-6807-8-36CrossRefGoogle Scholar
  120. 120.
    Michino, M., Brooks 3rd, C.L.: Predicting structurally conserved contacts for homologous proteins using sequence conservation filters. Proteins 77(2), 448–453 (2009).  https://doi.org/10.1002/prot.22456CrossRefGoogle Scholar
  121. 121.
    Fuchs, A., Martin-Galiano, A.J., Kalman, M., Fleishman, S., Ben-Tal, N., Frishman, D.: Co-evolving residues in membrane proteins. Bioinformatics 23(24), 3312–3319 (2007).  https://doi.org/10.1093/bioinformatics/btm515CrossRefGoogle Scholar
  122. 122.
    Taylor, W.R., Jones, D.T., Green, N.M.: A method for alpha-helical integral membrane protein fold prediction. Proteins 18(3), 281–294 (1994).  https://doi.org/10.1002/prot.340180309CrossRefGoogle Scholar
  123. 123.
    Walters, R.F., DeGrado, W.F.: Helix-packing motifs in membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 103(37), 13658–13663 (2006).  https://doi.org/10.1073/pnas.0605878103CrossRefGoogle Scholar
  124. 124.
    Langosch, D., Heringa, J.: Interaction of transmembrane helices by a knobs-into-holes packing characteristic of soluble coiled coils. Proteins 31(2), 150–159 (1998)CrossRefGoogle Scholar
  125. 125.
    Russ, W.P., Engelman, D.M.: The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol. 296(3), 911–919 (2000).  https://doi.org/10.1006/jmbi.1999.3489CrossRefGoogle Scholar
  126. 126.
    Pilpel, Y., Ben-Tal, N., Lancet, D.: kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction. J. Mol. Biol. 294(4), 921–935 (1999).  https://doi.org/10.1006/jmbi.1999.3257CrossRefGoogle Scholar
  127. 127.
    Lo, A., Chiu, Y.Y., Rodland, E.A., Lyu, P.C., Sung, T.Y., Hsu, W.L.: Predicting helix-helix interactions from residue contacts in membrane proteins. Bioinformatics 25(8), 996–1003 (2009).  https://doi.org/10.1093/bioinformatics/btp114CrossRefGoogle Scholar
  128. 128.
    MacKenzie, K.R., Engelman, D.M.: Structure-based prediction of the stability of transmembrane helix-helix interactions: the sequence dependence of glycophorin A dimerization. Proc. Natl. Acad. Sci. U.S.A. 95(7), 3583–3590 (1998)CrossRefGoogle Scholar
  129. 129.
    Hildebrand, P.W., Lorenzen, S., Goede, A., Preissner, R.: Analysis and prediction of helix-helix interactions in membrane channels and transporters. Proteins 64(1), 253–262 (2006).  https://doi.org/10.1002/prot.20959CrossRefGoogle Scholar
  130. 130.
    Rose, A., Lorenzen, S., Goede, A., Gruening, B., Hildebrand, P.W.: RHYTHM–a server to predict the orientation of transmembrane helices in channels and membrane-coils. Nucleic Acids Res. 37(Web Server issue), W575–580 (2009).  https://doi.org/10.1093/nar/gkp418CrossRefGoogle Scholar
  131. 131.
    Isberg, V., de Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F.H., Mordalski, S., Pin, J.P., Stevens, R.C., Vriend, G., Gloriam, D.E.: Generic GPCR residue numbers—aligning topology maps while minding the gaps. Trends Pharmacol. Sci. 36(1), 22–31 (2015).  https://doi.org/10.1016/j.tips.2014.11.001CrossRefGoogle Scholar
  132. 132.
    Kolinski, A., Skolnick, J.: Reduced models of proteins and their applications. Polymer 45(2), 511–524 (2004).  https://doi.org/10.1016/j.polymer.2003.10.064CrossRefGoogle Scholar
  133. 133.
    Yarov-Yarovoy, V., Schonbrun, J., Baker, D.: Multipass membrane protein structure prediction using Rosetta. Proteins 62(4), 1010–1025 (2006).  https://doi.org/10.1002/prot.20817CrossRefGoogle Scholar
  134. 134.
    Wu, H.H., Chen, C.C., Chen, C.M.: Replica exchange Monte-Carlo simulations of helix bundle membrane proteins: rotational parameters of helices. J. Comput. Aided Mol. Des. 26(3), 363–374 (2012).  https://doi.org/10.1007/s10822-012-9562-1CrossRefGoogle Scholar
  135. 135.
    Ueno, Y., Kawasaki, K., Saito, O., Arai, M., Suwa, M.: Folding elastic transmembrane helices to fit in a low-resolution image by electron microscopy. J. Bioinform. Comput. Biol. 9(Suppl 1), 37–50 (2011)CrossRefGoogle Scholar
  136. 136.
    Hurwitz, N., Pellegrini-Calace, M., Jones, D.T.: Towards genome-scale structure prediction for transmembrane proteins. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361(1467), 465–475 (2006).  https://doi.org/10.1098/rstb.2005.1804CrossRefGoogle Scholar
  137. 137.
    Porter, J.R., Weitzner, B.D., Lange, O.F.: A framework to simplify combined sampling strategies in Rosetta. PLoS ONE 10(9), e0138220 (2015).  https://doi.org/10.1371/journal.pone.0138220CrossRefGoogle Scholar
  138. 138.
    Weiner, B.E., Woetzel, N., Karakas, M., Alexander, N., Meiler, J.: BCL:MP-fold: folding membrane proteins through assembly of transmembrane helices. Structure 21(7), 1107–1117 (2013).  https://doi.org/10.1016/j.str.2013.04.022CrossRefGoogle Scholar
  139. 139.
    Pellegrini-Calace, M., Carotti, A., Jones, D.T.: Folding in lipid membranes (FILM): a novel method for the prediction of small membrane protein 3D structures. Proteins 50(4), 537–545 (2003).  https://doi.org/10.1002/prot.10304CrossRefGoogle Scholar
  140. 140.
    Pieper, U., Webb, B.M., Barkan, D.T., Schneidman-Duhovny, D., Schlessinger, A., Braberg, H., Yang, Z., Meng, E.C., Pettersen, E.F., Huang, C.C., Datta, R.S., Sampathkumar, P., Madhusudhan, M.S., Sjolander, K., Ferrin, T.E., Burley, S.K., Sali, A.: ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res. 39(Database issue), D465–474 (2011).  https://doi.org/10.1093/nar/gkq1091CrossRefGoogle Scholar
  141. 141.
    Kelm, S., Shi, J., Deane, C.M.: MEDELLER: homology-based coordinate generation for membrane proteins. Bioinformatics 26(22), 2833–2840 (2010).  https://doi.org/10.1093/bioinformatics/btq554CrossRefGoogle Scholar
  142. 142.
    Miszta, P., Pasznik, P., Jakowiecki, J., Sztyler, A., Latek, D., Filipek, S.: GPCRM: a homology modelling web service with triple membrane-fitted quality assessment of GPCR models. Nucleic Acids Res. 46(W1), W387–W395 (2018). https://doi.org/10.1093/nar/gky429CrossRefGoogle Scholar
  143. 143.
    Rodríguez, D., Bello, X., Gutiérrez-de-Terán, H.: Molecular modelling of G protein-coupled receptors through the web. Mol. Inform. 31(5), 334–341 (2012)CrossRefGoogle Scholar
  144. 144.
    Sandal, M., Duy, T.P., Cona, M., Zung, H., Carloni, P., Musiani, F., Giorgetti, A.: GOMoDo: a GPCRs online modeling and docking webserver. PLoS ONE 8(9), e74092 (2013).  https://doi.org/10.1371/journal.pone.0074092CrossRefGoogle Scholar
  145. 145.
    Latek, D., Pasznik, P., Carlomagno, T., Filipek, S.: Towards improved quality of GPCR models by usage of multiple templates and profile-profile comparison. PLoS ONE 8(2), e56742 (2013).  https://doi.org/10.1371/journal.pone.0056742CrossRefGoogle Scholar
  146. 146.
    Ng, P.C., Henikoff, J.G., Henikoff, S.: PHAT: a transmembrane-specific substitution matrix. Predicted hydrophobic and transmembrane. Bioinformatics 16(9), 760–766 (2000)CrossRefGoogle Scholar
  147. 147.
    Muller, T., Rahmann, S., Rehmsmeier, M.: Non-symmetric score matrices and the detection of homologous transmembrane proteins. Bioinformatics 17(Suppl 1), S182–S189 (2001)CrossRefGoogle Scholar
  148. 148.
    Jimenez-Morales, D., Adamian, L., Liang, J.: Detecting remote homologues using scoring matrices calculated from the estimation of amino acid substitution rates of beta-barrel membrane proteins. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1347–1350 (2008)Google Scholar
  149. 149.
    Pirovano, W., Feenstra, K.A., Heringa, J.: PRALINETM: a strategy for improved multiple alignment of transmembrane proteins. Bioinformatics 24(4), 492–497 (2008).  https://doi.org/10.1093/bioinformatics/btm636CrossRefGoogle Scholar
  150. 150.
    Hill, J.R., Kelm, S., Shi, J., Deane, C.M.: Environment specific substitution tables improve membrane protein alignment. Bioinformatics 27(13), i15–i23 (2011).  https://doi.org/10.1093/bioinformatics/btr230CrossRefGoogle Scholar
  151. 151.
    Forrest, L.R., Tang, C.L., Honig, B.: On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys. J. 91(2), 508–517 (2006).  https://doi.org/10.1529/biophysj.106.082313CrossRefGoogle Scholar
  152. 152.
    Shafrir, Y., Guy, H.R.: STAM: simple transmembrane alignment method. Bioinformatics 20(5), 758–769 (2004).  https://doi.org/10.1093/bioinformatics/btg482CrossRefGoogle Scholar
  153. 153.
    Kufareva, I., Rueda, M., Katritch, V., Stevens, R.C., Abagyan, R.: Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. Structure 19(8), 1108–1126 (2011)CrossRefGoogle Scholar
  154. 154.
    Khafizov, K., Staritzbichler, R., Stamm, M., Forrest, L.R.: A study of the evolution of inverted-topology repeats from LeuT-fold transporters using AlignMe. Biochemistry 49(50), 10702–10713 (2010).  https://doi.org/10.1021/bi101256xCrossRefGoogle Scholar
  155. 155.
    Rychlewski, L., Jaroszewski, L., Li, W., Godzik, A.: Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci. 9(2), 232–241 (2000).  https://doi.org/10.1110/ps.9.2.232CrossRefGoogle Scholar
  156. 156.
    Fiser, A., Sali, A.: Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 374, 461–491 (2003).  https://doi.org/10.1016/S0076-6879(03)74020-8CrossRefGoogle Scholar
  157. 157.
    Krieger, E., Darden, T., Nabuurs, S.B., Finkelstein, A., Vriend, G.: Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Proteins: Struct. Funct. Bioinf. 57(4), 678–683 (2004)CrossRefGoogle Scholar
  158. 158.
    Schwede, T., Kopp, J., Guex, N., Peitsch, M.C.: SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31(13), 3381–3385 (2003)CrossRefGoogle Scholar
  159. 159.
    Raman, S., Vernon, R., Thompson, J., Tyka, M., Sadreyev, R., Pei, J., Kim, D., Kellogg, E., DiMaio, F., Lange, O., Kinch, L., Sheffler, W., Kim, B.-H., Das, R., Grishin, N.V., Baker, D.: Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins: Struct. Funct. Bioinf. 77(S9), 89–99 (2009)CrossRefGoogle Scholar
  160. 160.
    Zhang, Y.: I-TASSER server for protein 3D structure prediction. BMC Bioinform. 9, 40 (2008).  https://doi.org/10.1186/1471-2105-9-40CrossRefGoogle Scholar
  161. 161.
    Latek, D.: Rosetta Broker for membrane protein structure prediction: concentrative nucleoside transporter 3 and corticotropin-releasing factor receptor 1 test cases. BMC Struct. Biol. 17(1), 8 (2017).  https://doi.org/10.1186/s12900-017-0078-8CrossRefGoogle Scholar
  162. 162.
    Recanatini, M., Cavalli, A., Masetti, M.: Modeling HERG and its interactions with drugs: recent advances in light of current potassium channel simulations. ChemMedChem 3(4), 523–535 (2008).  https://doi.org/10.1002/cmdc.200700264CrossRefGoogle Scholar
  163. 163.
    Latek, D., Kolinski, M., Ghoshdastider, U., Debinski, A., Bombolewski, R., Plazinska, A., Jozwiak, K., Filipek, S.: Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic beta 2 AR. J. Mol. Model. 17(9), 2353–2366 (2011).  https://doi.org/10.1007/s00894-011-0986-7CrossRefGoogle Scholar
  164. 164.
    Arora, B., Coudrat, T., Wootten, D., Christopoulos, A., Noronha, S.B., Sexton, P.M.: Prediction of loops in G protein-coupled receptor homology models: effect of imprecise surroundings and constraints. J. Chem. Inf. Model. 56(4), 671–686 (2016).  https://doi.org/10.1021/acs.jcim.5b00554CrossRefGoogle Scholar
  165. 165.
    Shen, M.Y., Sali, A.: Statistical potential for assessment and prediction of protein structures. Protein Sci. 15(11), 2507–2524 (2006).  https://doi.org/10.1110/ps.062416606CrossRefGoogle Scholar
  166. 166.
    Hildebrand, P.W., Goede, A., Bauer, R.A., Gruening, B., Ismer, J., Michalsky, E., Preissner, R.: SuperLooper–a prediction server for the modeling of loops in globular and membrane proteins. Nucleic Acids Res. 37(Web Server issue), W571–574 (2009).  https://doi.org/10.1093/nar/gkp338CrossRefGoogle Scholar
  167. 167.
    Jamroz, M., Kolinski, A.: Modeling of loops in proteins: a multi-method approach. BMC Struct. Biol. 10, 5 (2010).  https://doi.org/10.1186/1472-6807-10-5CrossRefGoogle Scholar
  168. 168.
    Canutescu, A.A., Dunbrack Jr., R.L.: Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci. 12(5), 963–972 (2003).  https://doi.org/10.1110/ps.0242703CrossRefGoogle Scholar
  169. 169.
    Kolinski, M., Filipek, S.: Study of a structurally similar kappa opioid receptor agonist and antagonist pair by molecular dynamics simulations. J. Mol. Model. 16(10), 1567–1576 (2010).  https://doi.org/10.1007/s00894-010-0678-8CrossRefGoogle Scholar
  170. 170.
    Mandell, D.J., Coutsias, E.A., Kortemme, T.: Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat. Methods 6(8), 551–552 (2009).  https://doi.org/10.1038/nmeth0809-551CrossRefGoogle Scholar
  171. 171.
    Jacobson, M.P., Pincus, D.L., Rapp, C.S., Day, T.J., Honig, B., Shaw, D.E., Friesner, R.A.: A hierarchical approach to all-atom protein loop prediction. Proteins 55(2), 351–367 (2004).  https://doi.org/10.1002/prot.10613CrossRefGoogle Scholar
  172. 172.
    Heim, A.J., Li, Z.: Developing a high-quality scoring function for membrane protein structures based on specific inter-residue interactions. J. Comput. Aided Mol. Des. 26(3), 301–309 (2012).  https://doi.org/10.1007/s10822-012-9556-zCrossRefGoogle Scholar
  173. 173.
    Ray, A., Lindahl, E., Wallner, B.: Model quality assessment for membrane proteins. Bioinformatics 26(24), 3067–3074 (2010).  https://doi.org/10.1093/bioinformatics/btq581CrossRefGoogle Scholar
  174. 174.
    Gao, C., Stern, H.A.: Scoring function accuracy for membrane protein structure prediction. Proteins 68(1), 67–75 (2007).  https://doi.org/10.1002/prot.21421CrossRefGoogle Scholar
  175. 175.
    Law, R.J., Capener, C., Baaden, M., Bond, P.J., Campbell, J., Patargias, G., Arinaminpathy, Y., Sansom, M.S.: Membrane protein structure quality in molecular dynamics simulation. J. Mol. Graph. Model. 24(2), 157–165 (2005).  https://doi.org/10.1016/j.jmgm.2005.05.006CrossRefGoogle Scholar
  176. 176.
    Woetzel, N., Karakas, M., Staritzbichler, R., Muller, R., Weiner, B.E., Meiler, J.: BCL:score–knowledge based energy potentials for ranking protein models represented by idealized secondary structure elements. PLoS ONE 7(11), e49242 (2012).  https://doi.org/10.1371/journal.pone.0049242CrossRefGoogle Scholar
  177. 177.
    Latek, D., Bajda, M., Filipek, S.: A hybrid approach to structure and function modeling of G protein-coupled receptors. J. Chem. Inf. Model. 56(4), 630–641 (2016).  https://doi.org/10.1021/acs.jcim.5b00451CrossRefGoogle Scholar
  178. 178.
    Mordalski, S., Witek, J., Smusz, S., Rataj, K., Bojarski, A.J.: Multiple conformational states in retrospective virtual screening—homology models vs. crystal structures: beta-2 adrenergic receptor case study. J. Cheminform. 7, 13 (2015).  https://doi.org/10.1186/s13321-015-0062-xCrossRefGoogle Scholar
  179. 179.
    Coudrat, T., Simms, J., Christopoulos, A., Wootten, D., Sexton, P.M.: Improving virtual screening of G protein-coupled receptors via ligand-directed modeling. PLoS Comput. Biol. 13(11), e1005819 (2017).  https://doi.org/10.1371/journal.pcbi.1005819CrossRefGoogle Scholar
  180. 180.
    Kufareva, I., Katritch, V., Participants of GPCR DOCK 2013, Stevens, R.C., Abagyan, R.: Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: meeting new challenges. Structure 22(8), 1120–1139 (2014).  https://doi.org/10.1016/j.str.2014.06.012CrossRefGoogle Scholar
  181. 181.
    Bissantz, C., Bernard, P., Hibert, M., Rognan, D.: Protein-based virtual screening of chemical databases. II. Are homology models of G-protein coupled receptors suitable targets? Proteins 50(1), 5–25 (2003).  https://doi.org/10.1002/prot.10237CrossRefGoogle Scholar
  182. 182.
    Barth, P., Schonbrun, J., Baker, D.: Toward high-resolution prediction and design of transmembrane helical protein structures. Proc. Natl. Acad. Sci. U.S.A. 104(40), 15682–15687 (2007).  https://doi.org/10.1073/pnas.0702515104CrossRefGoogle Scholar
  183. 183.
    Barth, P., Wallner, B., Baker, D.: Prediction of membrane protein structures with complex topologies using limited constraints. Proc. Natl. Acad. Sci. U.S.A. 106(5), 1409–1414 (2009).  https://doi.org/10.1073/pnas.0808323106CrossRefGoogle Scholar
  184. 184.
    Michino, M., Chen, J., Stevens, R.C., Brooks 3rd, C.L.: FoldGPCR: structure prediction protocol for the transmembrane domain of G protein-coupled receptors from class A. Proteins 78(10), 2189–2201 (2010).  https://doi.org/10.1002/prot.22731CrossRefGoogle Scholar
  185. 185.
    Abrol, R., Griffith, A.R., Bray, J.K., Goddard, W.A.r.: Structure prediction of G protein-coupled receptors and their ensemble of functionally important conformations. Complementary experimental and computational techniques to study membrane protein structure, dynamics and interactions (Methods in Molecular Biology) (2011)Google Scholar
  186. 186.
    Shacham, S., Marantz, Y., Bar-Haim, S., Kalid, O., Warshaviak, D., Avisar, N., Inbal, B., Heifetz, A., Fichman, M., Topf, M., Naor, Z., Noiman, S., Becker, O.M.: PREDICT modeling and in-silico screening for G-protein coupled receptors. Proteins 57(1), 51–86 (2004).  https://doi.org/10.1002/prot.20195CrossRefGoogle Scholar
  187. 187.
    Abrol, R., Bray, J.K., Goddard 3rd, W.A.: Bihelix: towards de novo structure prediction of an ensemble of G-protein coupled receptor conformations. Proteins 80(2), 505–518 (2011).  https://doi.org/10.1002/prot.23216CrossRefGoogle Scholar
  188. 188.
    Trabanino, R.J., Hall, S.E., Vaidehi, N., Floriano, W.B., Kam, V.W., Goddard 3rd, W.A.: First principles predictions of the structure and function of g-protein-coupled receptors: validation for bovine rhodopsin. Biophys. J. 86(4), 1904–1921 (2004).  https://doi.org/10.1016/S0006-3495(04)74256-3CrossRefGoogle Scholar
  189. 189.
    Chun, L., Zhang, W.H., Liu, J.F.: Structure and ligand recognition of class C GPCRs. Acta Pharmacol. Sin. 33(3), 312–323 (2012).  https://doi.org/10.1038/aps.2011.186CrossRefGoogle Scholar
  190. 190.
    Nussinov, R., Tsai, C.J., Csermely, P.: Allo-network drugs: harnessing allostery in cellular networks. Trends Pharmacol. Sci. 32(12), 686–693 (2011).  https://doi.org/10.1016/j.tips.2011.08.004CrossRefGoogle Scholar
  191. 191.
    Canals, M., Sexton, P.M., Christopoulos, A.: Allostery in GPCRs: ‘MWC’ revisited. Trends Biochem. Sci. 36(12), 663–672 (2011).  https://doi.org/10.1016/j.tibs.2011.08.005CrossRefGoogle Scholar
  192. 192.
    Levinthal, C., Wodak, S.J., Kahn, P., Dadivanian, A.K.: Hemoglobin interaction in sickle cell fibers. I: theoretical approaches to the molecular contacts. Proc Natl Acad Sci U S A 72(4), 1330–1334 (1975)CrossRefGoogle Scholar
  193. 193.
    Brylinski, M., Konieczny, L., Roterman, I.: Ligation site in proteins recognized in silico. Bioinformation 1(4), 127–129 (2006)CrossRefGoogle Scholar
  194. 194.
    Soga, S., Shirai, H., Kobori, M., Hirayama, N.: Use of amino acid composition to predict ligand-binding sites. J. Chem. Inf. Model. 47(2), 400–406 (2007).  https://doi.org/10.1021/Ci6002202CrossRefGoogle Scholar
  195. 195.
    Koczyk, G., Wyrwicz, L.S., Rychlewski, L.: LigProf: a simple tool for in silico prediction of ligand-binding sites. J. Mol. Model. 13(3), 445–455 (2007).  https://doi.org/10.1007/s00894-006-0165-4CrossRefGoogle Scholar
  196. 196.
    Lo, Y.T., Wang, H.W., Pai, T.W., Tzou, W.S., Hsu, H.H., Chang, H.T.: Protein-ligand binding region prediction (PLB-SAVE) based on geometric features and CUDA acceleration. BMC Bioinform. 14 Suppl 4, S4 (2013).  https://doi.org/10.1186/1471-2105-14-s4-s4CrossRefGoogle Scholar
  197. 197.
    Chang, D.T., Weng, Y.Z., Lin, J.H., Hwang, M.J., Oyang, Y.J.: Protemot: prediction of protein binding sites with automatically extracted geometrical templates. Nucleic Acids Res 34(Web Server issue), W303–309 (2006).  https://doi.org/10.1093/nar/gkl344CrossRefGoogle Scholar
  198. 198.
    Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J.: CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34, W116–W118 (2006).  https://doi.org/10.1093/Nar/Gkl282CrossRefGoogle Scholar
  199. 199.
    Chang, D.T., Oyang, Y.J., Lin, J.H.: MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm. Nucleic Acids Res. 33(Web Server issue), W233–238 (2005)CrossRefGoogle Scholar
  200. 200.
    Brady Jr., G.P., Stouten, P.F.: Fast prediction and visualization of protein binding pockets with PASS. J. Comput. Aided Mol. Des. 14(4), 383–401 (2000)CrossRefGoogle Scholar
  201. 201.
    Molecular Operating Environment (MOE), 2013.08. Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7 (2017)Google Scholar
  202. 202.
    Dimitropoulos, D., Ionides, J., Henrick, K.: Using PDBeChem to search the PDB ligand dictionary. Curr. Protoc. Bioinform. 14.13.11–14.13.13 (2006)Google Scholar
  203. 203.
    Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., Coleman, R.G.: ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. (2012).  https://doi.org/10.1021/ci3001277CrossRefGoogle Scholar
  204. 204.
    Sterling, T., Irwin, J.J.: ZINC 15–Ligand discovery for everyone. J. Chem. Inf. Model. 55(11), 2324–2337 (2015).  https://doi.org/10.1021/acs.jcim.5b00559CrossRefGoogle Scholar
  205. 205.
    Li, Q., Cheng, T., Wang, Y., Bryant, S.H.: PubChem as a public resource for drug discovery. Drug Discov. Today 15(23–24), 1052–1057 (2010).  https://doi.org/10.1016/j.drudis.2010.10.003CrossRefGoogle Scholar
  206. 206.
    Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B.A., Wang, J., Yu, B., Zhang, J., Bryant, S.H.: PubChem substance and compound databases. Nucleic Acids Res. 44(D1), D1202–D1213 (2016).  https://doi.org/10.1093/nar/gkv951CrossRefGoogle Scholar
  207. 207.
    Liu, T., Lin, Y., Wen, X., Jorissen, R.N., Gilson, M.K.: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 35(Database issue), D198–201 (2007).  https://doi.org/10.1093/nar/gkl999CrossRefGoogle Scholar
  208. 208.
    Gaulton, A., Bellis, L.J., Bento, A.P., Chambers, J., Davies, M., Hersey, A., Light, Y., McGlinchey, S., Michalovich, D., Al-Lazikani, B., Overington, J.P.: ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40(Database issue), D1100–1107 (2012).  https://doi.org/10.1093/nar/gkr777CrossRefGoogle Scholar
  209. 209.
    Zsoldos, Z., Reid, D., Simon, A., Sadjad, B.S., Johnson, A.P.: eHITS: an innovative approach to the docking and scoring function problems. Curr. Protein Pept. Sci. 7(5), 421–435 (2006)CrossRefGoogle Scholar
  210. 210.
    Vaque, M., Ardrevol, A., Blade, C., Salvado, M.J., Blay, M., Fernandez-Larrea, J., Arola, L., Pujadas, G.: Protein-ligand docking: a review of recent advances and future perspectives. Curr. Pharm. Anal. 4(1), 1–19 (2008)CrossRefGoogle Scholar
  211. 211.
    Curco, D., Rodriguez-Ropero, F., Aleman, C.: Force-field parametrization of retro-inverso modified residues: development of torsional and electrostatic parameters. J. Comput. Aided Mol. Des. 20(1), 13–25 (2006).  https://doi.org/10.1007/s10822-005-9032-0CrossRefGoogle Scholar
  212. 212.
    Bohm, H.J.: The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J. Comput. Aided Mol. Des. 6(1), 61–78 (1992)CrossRefGoogle Scholar
  213. 213.
    Ewing, T.J.A., Kuntz, I.D.: Critical evaluation of search algorithms for automated molecular docking and database screening. J. Comput. Chem. 18(9), 1175–1189 (1997)CrossRefGoogle Scholar
  214. 214.
    Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261(3), 470–489 (1996)CrossRefGoogle Scholar
  215. 215.
    Mizutani, M.Y., Tomioka, N., Itai, A.: Rational automatic search method for stable docking models of protein and ligand. J. Mol. Biol. 243(2), 310–326 (1994)CrossRefGoogle Scholar
  216. 216.
    Halgren, T.A., Murphy, R.B., Friesner, R.A., Beard, H.S., Frye, L.L., Pollard, W.T., Banks, J.L.: Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47(7), 1750–1759 (2004).  https://doi.org/10.1021/jm030644sCrossRefGoogle Scholar
  217. 217.
    Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P., Shenkin, P.S.: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47(7), 1739–1749 (2004).  https://doi.org/10.1021/jm0306430CrossRefGoogle Scholar
  218. 218.
    McGann, M.R., Almond, H.R., Nicholls, A., Grant, J.A., Brown, F.K.: Gaussian docking functions. Biopolymers 68(1), 76–90 (2003).  https://doi.org/10.1002/bip.10207CrossRefGoogle Scholar
  219. 219.
    Abagyan, R., Totrov, M., Kuznetsov, D.: Icm - a new method for protein modeling and design—applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15(5), 488–506 (1994)CrossRefGoogle Scholar
  220. 220.
    McMartin, C., Bohacek, R.S.: QXP: powerful, rapid computer algorithms for structure-based drug design. J. Comput. Aided Mol. Des. 11(4), 333–344 (1997)CrossRefGoogle Scholar
  221. 221.
    Trosset, J.Y., Scheraga, H.A.: PRODOCK: software package for protein modeling and docking. J. Comput. Chem. 20(4), 412–427 (1999)CrossRefGoogle Scholar
  222. 222.
    Liu, M., Wang, S.M.: MCDOCK: A Monte Carlo simulation approach to the molecular docking problem. J. Comput. Aided Mol. Des. 13(5), 435–451 (1999)CrossRefGoogle Scholar
  223. 223.
    Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R.: Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267(3), 727–748 (1997)CrossRefGoogle Scholar
  224. 224.
    Namasivayam, V., Gunther, R.: A fast flexible molecular docking program based on swarm intelligence. Chem. Biol. Drug Des. 70(6), 475–484 (2007).  https://doi.org/10.1111/j.1747-0285.2007.00588.xCrossRefGoogle Scholar
  225. 225.
    Grosdidier, A., Zoete, V., Michielin, O.: SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 39, W270–W277 (2011).  https://doi.org/10.1093/Nar/Gkr366CrossRefGoogle Scholar
  226. 226.
    Pasznik, P., Rutkowska, E., Niewieczerzal, S., Cielecka-Piontek, J., Filipek, S., Latek, D.: GUT-DOCK—a web-service to predict off-target interactions of drugs with gut hormone GPCRs. SubmittedGoogle Scholar
  227. 227.
    Labbe, C.M., Rey, J., Lagorce, D., Vavrusa, M., Becot, J., Sperandio, O., Villoutreix, B.O., Tuffery, P., Miteva, M.A.: MTiOpenScreen: a web server for structure-based virtual screening. Nucleic Acids Res. 43(W1), W448–W454 (2015).  https://doi.org/10.1093/nar/gkv306CrossRefGoogle Scholar
  228. 228.
    Wang, R.X., Liu, L., Lai, L.H., Tang, Y.Q.: SCORE: a new empirical method for estimating the binding affinity of a protein-ligand complex. J. Mol. Model. 4(12), 379–394 (1998)CrossRefGoogle Scholar
  229. 229.
    Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V., Mee, R.P.: Empirical scoring functions.1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des. 11(5), 425–445 (1997)CrossRefGoogle Scholar
  230. 230.
    Gohlke, H., Hendlich, M., Klebe, G.: Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 295(2), 337–356 (2000)CrossRefGoogle Scholar
  231. 231.
    DeWitte, R.S., Shakhnovich, E.: SMoG: De novo design method based on simple, fast and accurate free energy estimates. Abstr. Pap. Am. Chem. Soc. 214, 6-Comp (1997)Google Scholar
  232. 232.
    DeWitte, R.S., Ishchenko, A.V., Shakhnovich, E.I.: SMoG: De novo design method based on simple, fast, and accurate free energy estimates.2. Case studies in molecular design. J. Am. Chem. Soc. 119(20), 4608–4617 (1997)CrossRefGoogle Scholar
  233. 233.
    Mitchell, J.B.O., Laskowski, R.A., Alex, A., Thornton, J.M.: BLEEP—potential of mean force describing protein-ligand interactions: I. Generating potential. J. Comput. Chem. 20(11), 1165–1176 (1999)CrossRefGoogle Scholar
  234. 234.
    Mitchell, J.B.O., Laskowski, R.A., Alex, A., Forster, M.J., Thornton, J.M.: BLEEP - Potential of mean force describing protein-ligand interactions: II. Calculation of binding energies and comparison with experimental data. J. Comput. Chem. 20(11), 1177–1185 (1999)CrossRefGoogle Scholar
  235. 235.
    Mooij, W.T.M., Verdonk, M.L.: General and targeted statistical potentials for protein-ligand interactions. Proteins 61(2), 272–287 (2005).  https://doi.org/10.1002/Prot.20588CrossRefGoogle Scholar
  236. 236.
    Sherman, W., Day, T., Jacobson, M.P., Friesner, R.A., Farid, R.: Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem. 49(2), 534–553 (2006).  https://doi.org/10.1021/Jm050540cCrossRefGoogle Scholar
  237. 237.
    Hanson, M.A., Roth, C.B., Jo, E., Griffith, M.T., Scott, F.L., Reinhart, G., Desale, H., Clemons, B., Cahalan, S.M., Schuerer, S.C., Sanna, M.G., Han, G.W., Kuhn, P., Rosen, H., Stevens, R.C.: Crystal structure of a lipid G protein-coupled receptor. Science 335(6070), 851–855 (2012).  https://doi.org/10.1126/science.1215904CrossRefGoogle Scholar
  238. 238.
    Shoichet, B.K., Kobilka, B.K.: Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol. Sci. 33(5), 268–272 (2012).  https://doi.org/10.1016/j.tips.2012.03.007CrossRefGoogle Scholar
  239. 239.
    Kandt, C., Schlitter, J., Gerwert, K.: Dynamics of water molecules in the bacteriorhodopsin trimer in explicit lipid/water environment. Biophys. J. 86(2), 705–717 (2004).  https://doi.org/10.1016/S0006-3495(04)74149-1CrossRefGoogle Scholar
  240. 240.
    Lemkul, J.A., Allen, W.J., Bevan, D.R.: Practical considerations for building GROMOS-compatible small-molecule topologies. J. Chem. Inf. Model. 50(12), 2221–2235 (2010).  https://doi.org/10.1021/Ci100335wCrossRefGoogle Scholar
  241. 241.
    Malde, A.K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P.C., Oostenbrink, C., Mark, A.E.: An automated force field topology builder (ATB) and repository: Version 1.0. J. Chem. Theory Comput. 7(12), 4026–4037 (2011).  https://doi.org/10.1021/ct200196mCrossRefGoogle Scholar
  242. 242.
    Schuttelkopf, A.W., van Aalten, D.M.F.: PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. Sect. D-Biol. Crystallogr. 60, 1355–1363 (2004).  https://doi.org/10.1107/S0907444904011679CrossRefGoogle Scholar
  243. 243.
    Zoete, V., Cuendet, M.A., Grosdidier, A., Michielin, O.: SwissParam: a fast force field generation tool for small organic molecules. J. Comput. Chem. 32(11), 2359–2368 (2011).  https://doi.org/10.1002/jcc.21816CrossRefGoogle Scholar
  244. 244.
    Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., Mackerell Jr., A.D.: CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31(4), 671–690 (2010).  https://doi.org/10.1002/jcc.21367CrossRefGoogle Scholar
  245. 245.
    Ribeiro, A.A.S.T., Horta, B.A.C., de Alencastro, R.B.: MKTOP: a program for automatic construction of molecular topologies. J. Brazil Chem. Soc. 19(7), 1433–1435 (2008)CrossRefGoogle Scholar
  246. 246.
    Sousa da Silva, A.W.V., W.F.; Laue, E: ACPYPE—AnteChamber PYthon Parser interfacE. InGoogle Scholar
  247. 247.
    Sousa da Silva, A.W., Vranken, W.F.: ACPYPE—anteChamber PYthon parser interfacE. BMC Res. Notes 5, 367 (2012).  https://doi.org/10.1186/1756-0500-5-367CrossRefGoogle Scholar
  248. 248.
    Jakalian, A., Jack, D.B., Bayly, C.I.: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 23(16), 1623–1641 (2002).  https://doi.org/10.1002/Jcc.10128CrossRefGoogle Scholar
  249. 249.
    Caleman, C., van Maaren, P.J., Hong, M.Y., Hub, J.S., Costa, L.T., van der Spoel, D.: Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant. J. Chem. Theory Comput. 8(1), 61–74 (2012).  https://doi.org/10.1021/Ct200731vCrossRefGoogle Scholar
  250. 250.
    van der Spoel, D., van Maaren, P.J., Caleman, C.: GROMACS molecule & liquid database. Bioinformatics 28(5), 752–753 (2012).  https://doi.org/10.1093/bioinformatics/bts020CrossRefGoogle Scholar
  251. 251.
    Domanski, J., Stansfeld, P.J., Sansom, M.S., Beckstein, O.: Lipidbook: a public repository for force-field parameters used in membrane simulations. J. Membr. Biol. 236(3), 255–258 (2010).  https://doi.org/10.1007/s00232-010-9296-8CrossRefGoogle Scholar
  252. 252.
    Adamian, L., Naveed, H., Liang, J.: Lipid-binding surfaces of membrane proteins: evidence from evolutionary and structural analysis. Biochim. Biophys. Acta 1808(4), 1092–1102 (2011).  https://doi.org/10.1016/j.bbamem.2010.12.008CrossRefGoogle Scholar
  253. 253.
    Opekarova, M., Tanner, W.: Specific lipid requirements of membrane proteins—a putative bottleneck in heterologous expression. Biochim. Biophys. Acta-Biomembr. 1610(1), 11–22 (2003).  https://doi.org/10.1016/S0005-2736(02)00708-3CrossRefGoogle Scholar
  254. 254.
    Sanders, C.R., Mittendorf, K.F.: Tolerance to changes in membrane lipid composition as a selected trait of membrane proteins. Biochemistry 50(37), 7858–7867 (2011).  https://doi.org/10.1021/bi2011527CrossRefGoogle Scholar
  255. 255.
    Berger, C., Ho, J.T.C., Kimura, T., Hess, S., Gawrisch, K., Yeliseev, A.: Preparation of stable isotope-labeled peripheral cannabinoid receptor CB2 by bacterial fermentation. Protein Expr. Purif. 70(2), 236–247 (2010).  https://doi.org/10.1016/j.pep.2009.12.011CrossRefGoogle Scholar
  256. 256.
    Soubias, O., Gawrisch, K.: The role of the lipid matrix for structure and function of the GPCR rhodopsin. Biochim. Biophys. Acta 1818(2), 234–240 (2012).  https://doi.org/10.1016/j.bbamem.2011.08.034CrossRefGoogle Scholar
  257. 257.
    Lee, S.Y., Lee, A., Chen, J.Y., MacKinnon, R.: Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane. Proc. Natl. Acad. Sci. U.S.A. 102(43), 15441–15446 (2005).  https://doi.org/10.1073/pnas.0507651102CrossRefGoogle Scholar
  258. 258.
    Oostenbrink, C., Villa, A., Mark, A.E., Van Gunsteren, W.F.: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25(13), 1656–1676 (2004).  https://doi.org/10.1002/jcc.20090CrossRefGoogle Scholar
  259. 259.
    Scott, W.R.P., Hunenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., Kruger, P., van Gunsteren, W.F.: The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103(19), 3596–3607 (1999)CrossRefGoogle Scholar
  260. 260.
    Foloppe, N., MacKerell, A.D.: All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21(2), 86–104 (2000)CrossRefGoogle Scholar
  261. 261.
    Klauda, J.B., Venable, R.M., Freites, J.A., O’Connor, J.W., Tobias, D.J., Mondragon-Ramirez, C., Vorobyov, I., MacKerell Jr., A.D., Pastor, R.W.: Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114(23), 7830–7843 (2010).  https://doi.org/10.1021/jp101759qCrossRefGoogle Scholar
  262. 262.
    MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102(18), 3586–3616 (1998)CrossRefGoogle Scholar
  263. 263.
    Wang, J.M., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174 (2004)CrossRefGoogle Scholar
  264. 264.
    Jorgensen, W.L., Maxwell, D.S., TiradoRives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)CrossRefGoogle Scholar
  265. 265.
    Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., Jorgensen, W.L.: Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105(28), 6474–6487 (2001).  https://doi.org/10.1021/Jp003919dCrossRefGoogle Scholar
  266. 266.
    Jambeck, J.P., Lyubartsev, A.P.: Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B 116(10), 3164–3179 (2012).  https://doi.org/10.1021/jp212503eCrossRefGoogle Scholar
  267. 267.
    Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., de Vries, A.H.: The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111(27), 7812–7824 (2007).  https://doi.org/10.1021/jp071097fCrossRefGoogle Scholar
  268. 268.
    Sansom, M.S.P., Scott, K.A., Bond, P.J.: Coarse-grained simulation: a high-throughput computational approach to membrane proteins. Biochem. Soc. Trans. 36, 27–32 (2008).  https://doi.org/10.1042/Bst0360027CrossRefGoogle Scholar
  269. 269.
    Scott, K.A., Bond, P.J., Ivetac, A., Chetwynd, A.P., Khalid, S., Sansom, M.S.P.: Coarse-grained MD simulations of membrane protein-bilayer self-assembly. Structure 16(4), 621–630 (2008).  https://doi.org/10.1016/j.str.2008.01.014CrossRefGoogle Scholar
  270. 270.
    Berendsen, H.J.C., van der Spoel, D., van Drunen, R.: GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1–3), 43–56 (1995)CrossRefGoogle Scholar
  271. 271.
    Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008)CrossRefGoogle Scholar
  272. 272.
    Lindahl, E., Hess, B., van der Spoel, D.: GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7(8), 306–317 (2001)CrossRefGoogle Scholar
  273. 273.
    Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.: GROMACS: fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005).  https://doi.org/10.1002/jcc.20291CrossRefGoogle Scholar
  274. 274.
    Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).  https://doi.org/10.1016/j.softx.2015.06.001CrossRefGoogle Scholar
  275. 275.
    Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)CrossRefGoogle Scholar
  276. 276.
    Brooks, B.R., III, C.L.B., Jr, A.D.M., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)CrossRefGoogle Scholar
  277. 277.
    Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J.: The amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005).  https://doi.org/10.1002/Jcc.20290CrossRefGoogle Scholar
  278. 278.
    Jo, S., Kim, T., Iyer, V.G., Im, W.: CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29(11), 1859–1865 (2008).  https://doi.org/10.1002/jcc.20945CrossRefGoogle Scholar
  279. 279.
    Jo, S., Lim, J.B., Klauda, J.B., Im, W.: CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97(1), 50–58 (2009).  https://doi.org/10.1016/j.bpj.2009.04.013CrossRefGoogle Scholar
  280. 280.
    Jo, S., Kim, T., Im, W.: Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2(9), e880 (2007).  https://doi.org/10.1371/journal.pone.0000880CrossRefGoogle Scholar
  281. 281.
    Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. Model. 14(1), 33–38 (1996)CrossRefGoogle Scholar
  282. 282.
    Kandt, C., Ash, W.L., Tieleman, D.P.: Setting up and running molecular dynamics simulations of membrane proteins. Methods 41(4), 475–488 (2007).  https://doi.org/10.1016/j.ymeth.2006.08.006CrossRefGoogle Scholar
  283. 283.
    Wolf, M.G., Hoefling, M., Aponte-Santamaria, C., Grubmuller, H., Groenhof, G.: g_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J. Comput. Chem. 31(11), 2169–2174 (2010).  https://doi.org/10.1002/jcc.21507CrossRefGoogle Scholar
  284. 284.
    Krieger, E., Darden, T., Nabuurs, S.B., Finkelstein, A., Vriend, G.: Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57(4), 678–683 (2004)CrossRefGoogle Scholar
  285. 285.
    Wassenaar, T.A., Ingolfsson, H.I., Bockmann, R.A., Tieleman, D.P., Marrink, S.J.: Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J. Chem. Theory Comput. 11(5), 2144–2155 (2015).  https://doi.org/10.1021/acs.jctc.5b00209CrossRefGoogle Scholar
  286. 286.
    Wassenaar, T.A., Pluhackova, K., Bockmann, R.A., Marrink, S.J., Tieleman, D.P.: Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J. Chem. Theory Comput. 10(2), 676–690 (2014).  https://doi.org/10.1021/ct400617gCrossRefGoogle Scholar
  287. 287.
    Stansfeld, P.J., Goose, J.E., Caffrey, M., Carpenter, E.P., Parker, J.L., Newstead, S., Sansom, M.S.: MemProtMD: automated insertion of membrane protein structures into explicit lipid membranes. Structure 23(7), 1350–1361 (2015).  https://doi.org/10.1016/j.str.2015.05.006CrossRefGoogle Scholar
  288. 288.
    Qi, Y., Ingolfsson, H.I., Cheng, X., Lee, J., Marrink, S.J., Im, W.: CHARMM-GUI Martini maker for coarse-grained simulations with the Martini force field. J. Chem. Theory Comput. 11(9), 4486–4494 (2015).  https://doi.org/10.1021/acs.jctc.5b00513CrossRefGoogle Scholar
  289. 289.
    Wu, E.L., Cheng, X., Jo, S., Rui, H., Song, K.C., Davila-Contreras, E.M., Qi, Y., Lee, J., Monje-Galvan, V., Venable, R.M., Klauda, J.B., Im, W.: CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 35(27), 1997–2004 (2014).  https://doi.org/10.1002/jcc.23702CrossRefGoogle Scholar
  290. 290.
    Ribeiro, J.V., Bernardi, R.C., Rudack, T., Stone, J.E., Phillips, J.C., Freddolino, P.L., Schulten, K.: QwikMD—integrative molecular dynamics toolkit for novices and experts. Sci. Rep. 6, 26536 (2016).  https://doi.org/10.1038/srep26536CrossRefGoogle Scholar
  291. 291.
    Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J Mol Graph 14(1), 33–38, 27–38 (1996)CrossRefGoogle Scholar
  292. 292.
    Doerr, S., Harvey, M.J., Noe, F., De Fabritiis, G.: HTMD: high-throughput molecular dynamics for molecular discovery. J. Chem. Theory Comput. 12(4), 1845–1852 (2016).  https://doi.org/10.1021/acs.jctc.6b00049CrossRefGoogle Scholar
  293. 293.
    Lu, H., Isralewitz, B., Krammer, A., Vogel, V., Schulten, K.: Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75(2), 662–671 (1998).  https://doi.org/10.1016/S0006-3495(98)77556-3CrossRefGoogle Scholar
  294. 294.
    Kappel, C., Grubmuller, H.: Velocity-dependent mechanical unfolding of bacteriorhodopsin is governed by a dynamic interaction network. Biophys. J. 100(4), 1109–1119 (2011).  https://doi.org/10.1016/j.bpj.2011.01.004CrossRefGoogle Scholar
  295. 295.
    Grubmuller, H., Heymann, B., Tavan, P.: Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271(5251), 997–999 (1996)CrossRefGoogle Scholar
  296. 296.
    Wriggers, W., Schulten, K.: Stability and dynamics of G-actin: back-door water diffusion and behavior of a subdomain 3/4 loop. Biophys. J. 73(2), 624–639 (1997).  https://doi.org/10.1016/S0006-3495(97)78098-6CrossRefGoogle Scholar
  297. 297.
    Izrailev, S., Stepaniants, S., Isralewitz, B., Kosztin, D., Lu, H., Molnar, F., Wriggers, W., Schulten, K.: Steered molecular dynamics. In: Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D. (eds.) Computational Molecular Dynamics: Challenges, Methods, Ideas, vol. 4. pp. 39–65. Springer, Berlin (1998)zbMATHCrossRefGoogle Scholar
  298. 298.
    Izrailev, S., Stepaniants, S., Balsera, M., Oono, Y., Schulten, K.: Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J. 72(4), 1568–1581 (1997).  https://doi.org/10.1016/S0006-3495(97)78804-0CrossRefGoogle Scholar
  299. 299.
    Fanelli, F., Seeber, M.: Structural insights into retinitis pigmentosa from unfolding simulations of rhodopsin mutants. FASEB J. 24(9), 3196–3209 (2010).  https://doi.org/10.1096/fj.09-151084CrossRefGoogle Scholar
  300. 300.
    Isralewitz, B., Izrailev, S., Schulten, K.: Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys. J. 73(6), 2972–2979 (1997).  https://doi.org/10.1016/S0006-3495(97)78326-7CrossRefGoogle Scholar
  301. 301.
    Wroblowski, B., Diaz, J.F., Schlitter, J., Engelborghs, Y.: Modelling pathways of alpha-chymotrypsin activation and deactivation. Protein Eng. 10(10), 1163–1174 (1997)CrossRefGoogle Scholar
  302. 302.
    Cheng, X., Wang, H., Grant, B., Sine, S.M., McCammon, J.A.: Targeted molecular dynamics study of C-loop closure and channel gating in nicotinic receptors. PLoS Comput. Biol. 2(9), e134 (2006).  https://doi.org/10.1371/journal.pcbi.0020134CrossRefGoogle Scholar
  303. 303.
    Grayson, P., Tajkhorshid, E., Schulten, K.: Mechanisms of selectivity in channels and enzymes studied with interactive molecular dynamics. Biophys. J. 85(1), 36–48 (2003).  https://doi.org/10.1016/S0006-3495(03)74452-XCrossRefGoogle Scholar
  304. 304.
    Sabbadin, D., Moro, S.: Supervised molecular dynamics (SuMD) as a helpful tool to depict GPCR-ligand recognition pathway in a nanosecond time scale. J. Chem. Inf. Model. 54(2), 372–376 (2014).  https://doi.org/10.1021/ci400766bCrossRefGoogle Scholar
  305. 305.
    Jakowiecki, J., Filipek, S.: Hydrophobic ligand entry and exit pathways of the CB1 cannabinoid receptor. J. Chem. Inf. Model. 56(12), 2457–2466 (2016).  https://doi.org/10.1021/acs.jcim.6b00499CrossRefGoogle Scholar
  306. 306.
    Deganutti, G., Cuzzolin, A., Ciancetta, A., Moro, S.: Understanding allosteric interactions in G protein-coupled receptors using supervised molecular dynamics: a prototype study analysing the human A3 adenosine receptor positive allosteric modulator LUF6000. Bioorg. Med. Chem. 23(14), 4065–4071 (2015).  https://doi.org/10.1016/j.bmc.2015.03.039CrossRefGoogle Scholar
  307. 307.
    Deganutti, G., Moro, S.: Supporting the identification of novel fragment-based positive allosteric modulators using a supervised molecular dynamics approach: a retrospective analysis considering the human A2A adenosine receptor as a key example. Molecules 22(5) (2017).  https://doi.org/10.3390/molecules22050818
  308. 308.
    Paoletta, S., Sabbadin, D., von Kugelgen, I., Hinz, S., Katritch, V., Hoffmann, K., Abdelrahman, A., Strassburger, J., Baqi, Y., Zhao, Q., Stevens, R.C., Moro, S., Muller, C.E., Jacobson, K.A.: Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information. J. Comput. Aided Mol. Des. 29(8), 737–756 (2015).  https://doi.org/10.1007/s10822-015-9858-zCrossRefGoogle Scholar
  309. 309.
    Cuzzolin, A., Sturlese, M., Deganutti, G., Salmaso, V., Sabbadin, D., Ciancetta, A., Moro, S.: Deciphering the complexity of ligand-protein recognition pathways using supervised molecular dynamics (SuMD) simulations. J. Chem. Inf. Model. 56(4), 687–705 (2016).  https://doi.org/10.1021/acs.jcim.5b00702CrossRefGoogle Scholar
  310. 310.
    Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D.A., Engel, A., Palczewski, K.: Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421(6919), 127–128 (2003).  https://doi.org/10.1038/421127aCrossRefGoogle Scholar
  311. 311.
    Gorman, P.M., Kim, S., Guo, M., Melnyk, R.A., McLaurin, J., Fraser, P.E., Bowie, J.U., Chakrabartty, A.: Dimerization of the transmembrane domain of amyloid precursor proteins and familial Alzheimer’s disease mutants. BMC Neurosci. 9, 17 (2008).  https://doi.org/10.1186/1471-2202-9-17CrossRefGoogle Scholar
  312. 312.
    George, S.R., O’Dowd, B.F., Lee, S.P.: G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat. Rev. Drug Discov. 1(10), 808–820 (2002).  https://doi.org/10.1038/nrd913CrossRefGoogle Scholar
  313. 313.
    De Strooper, B.: Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron 38(1), 9–12 (2003)CrossRefGoogle Scholar
  314. 314.
    Janin, J.: Protein-protein docking tested in blind predictions: the CAPRI experiment. Mol. BioSyst. 6(12), 2351–2362 (2010).  https://doi.org/10.1039/c005060cCrossRefGoogle Scholar
  315. 315.
    Moreira, I.S., Fernandes, P.A., Ramos, M.J.: Protein-protein docking dealing with the unknown. J. Comput. Chem. 31(2), 317–342 (2010).  https://doi.org/10.1002/jcc.21276CrossRefGoogle Scholar
  316. 316.
    Zacharias, M.: Accounting for conformational changes during protein-protein docking. Curr. Opin. Struct. Biol. 20(2), 180–186 (2010).  https://doi.org/10.1016/j.sbi.2010.02.001CrossRefGoogle Scholar
  317. 317.
    Comeau, S.R., Gatchell, D.W., Vajda, S., Camacho, C.J.: ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res. 32(Web Server issue), W96–99 (2004).  https://doi.org/10.1093/nar/gkh354CrossRefGoogle Scholar
  318. 318.
    Comeau, S.R., Gatchell, D.W., Vajda, S., Camacho, C.J.: ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20(1), 45–50 (2004)CrossRefGoogle Scholar
  319. 319.
    Kozakov, D., Brenke, R., Comeau, S.R., Vajda, S.: PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65(2), 392–406 (2006).  https://doi.org/10.1002/prot.21117CrossRefGoogle Scholar
  320. 320.
    Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S.E., Xia, B., Hall, D.R., Vajda, S.: How good is automated protein docking? Proteins 81(12), 2159–2166 (2013).  https://doi.org/10.1002/prot.24403CrossRefGoogle Scholar
  321. 321.
    Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D., Vajda, S.: The ClusPro web server for protein-protein docking. Nat. Protoc. 12(2), 255–278 (2017).  https://doi.org/10.1038/nprot.2016.169CrossRefGoogle Scholar
  322. 322.
    Tovchigrechko, A., Vakser, I.A.: GRAMM-X public web server for protein-protein docking. Nucleic Acids Res. 34(Web Server issue), W310–314 (2006).  https://doi.org/10.1093/nar/gkl206CrossRefGoogle Scholar
  323. 323.
    Pierce, B.G., Hourai, Y., Weng, Z.: Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS ONE 6(9), e24657 (2011).  https://doi.org/10.1371/journal.pone.0024657CrossRefGoogle Scholar
  324. 324.
    Chen, R., Li, L., Weng, Z.: ZDOCK: an initial-stage protein-docking algorithm. Proteins 52(1), 80–87 (2003).  https://doi.org/10.1002/prot.10389CrossRefGoogle Scholar
  325. 325.
    Li, L., Chen, R., Weng, Z.: RDOCK: refinement of rigid-body protein docking predictions. Proteins 53(3), 693–707 (2003).  https://doi.org/10.1002/prot.10460CrossRefGoogle Scholar
  326. 326.
    Chaudhury, S., Gray, J.J.: Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles. J. Mol. Biol. 381(4), 1068–1087 (2008).  https://doi.org/10.1016/j.jmb.2008.05.042CrossRefGoogle Scholar
  327. 327.
    Lyskov, S., Gray, J.J.: The RosettaDock server for local protein-protein docking. Nucleic Acids Res. 36(Web Server issue), W233–238 (2008).  https://doi.org/10.1093/nar/gkn216CrossRefGoogle Scholar
  328. 328.
    Gray, J.J., Moughon, S., Wang, C., Schueler-Furman, O., Kuhlman, B., Rohl, C.A., Baker, D.: Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J. Mol. Biol. 331(1), 281–299 (2003)CrossRefGoogle Scholar
  329. 329.
    Lyskov, S., Chou, F.C., Conchuir, S.O., Der, B.S., Drew, K., Kuroda, D., Xu, J., Weitzner, B.D., Renfrew, P.D., Sripakdeevong, P., Borgo, B., Havranek, J.J., Kuhlman, B., Kortemme, T., Bonneau, R., Gray, J.J., Das, R.: Serverification of molecular modeling applications: the Rosetta Online Server that Includes Everyone (ROSIE). PLoS ONE 8(5), e63906 (2013).  https://doi.org/10.1371/journal.pone.0063906CrossRefGoogle Scholar
  330. 330.
    Chaudhury, S., Berrondo, M., Weitzner, B.D., Muthu, P., Bergman, H., Gray, J.J.: Benchmarking and analysis of protein docking performance in Rosetta v3.2. PLoS ONE 6(8), e22477 (2011).  https://doi.org/10.1371/journal.pone.0022477CrossRefGoogle Scholar
  331. 331.
    de Vries, S.J., van Dijk, M., Bonvin, A.M.: The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 5(5), 883–897 (2010).  https://doi.org/10.1038/nprot.2010.32CrossRefGoogle Scholar
  332. 332.
    Karaca, E., Melquiond, A.S., de Vries, S.J., Kastritis, P.L., Bonvin, A.M.: Building macromolecular assemblies by information-driven docking: introducing the HADDOCK multibody docking server. Mol. Cell. Proteomics: MCP 9(8), 1784–1794 (2010).  https://doi.org/10.1074/mcp.M000051-MCP201CrossRefGoogle Scholar
  333. 333.
    de Vries, S.J., van Dijk, A.D., Krzeminski, M., van Dijk, M., Thureau, A., Hsu, V., Wassenaar, T., Bonvin, A.M.: HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69(4), 726–733 (2007).  https://doi.org/10.1002/prot.21723CrossRefGoogle Scholar
  334. 334.
    Dominguez, C., Boelens, R., Bonvin, A.M.: HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125(7), 1731–1737 (2003).  https://doi.org/10.1021/ja026939xCrossRefGoogle Scholar
  335. 335.
    van Zundert, G.C.P., Rodrigues, J., Trellet, M., Schmitz, C., Kastritis, P.L., Karaca, E., Melquiond, A.S.J., van Dijk, M., de Vries, S.J., Bonvin, A.: The HADDOCK2.2 Web Server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428(4), 720–725 (2016).  https://doi.org/10.1016/j.jmb.2015.09.014CrossRefGoogle Scholar
  336. 336.
    Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.J.: PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33(Web Server issue), W363–367 (2005).  https://doi.org/10.1093/nar/gki481CrossRefGoogle Scholar
  337. 337.
    Casciari, D., Seeber, M., Fanelli, F.: Quaternary structure predictions of transmembrane proteins starting from the monomer: a docking-based approach. BMC Bioinform. 7, 340 (2006).  https://doi.org/10.1186/1471-2105-7-340CrossRefGoogle Scholar
  338. 338.
    Canals, M., Marcellino, D., Fanelli, F., Ciruela, F., de Benedetti, P., Goldberg, S.R., Neve, K., Fuxe, K., Agnati, L.F., Woods, A.S., Ferre, S., Lluis, C., Bouvier, M., Franco, R.: Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J. Biol. Chem. 278(47), 46741–46749 (2003).  https://doi.org/10.1074/jbc.M306451200CrossRefGoogle Scholar
  339. 339.
    Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M., Miyano, M.: Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289(5480), 739–745 (2000)CrossRefGoogle Scholar
  340. 340.
    Lichtarge, O., Bourne, H.R., Cohen, F.E.: An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257(2), 342–358 (1996)CrossRefGoogle Scholar
  341. 341.
    Madabushi, S., Gross, A.K., Philippi, A., Meng, E.C., Wensel, T.G., Lichtarge, O.: Evolutionary trace of G protein-coupled receptors reveals clusters of residues that determine global and class-specific functions. J. Biol. Chem. 279(9), 8126–8132 (2004).  https://doi.org/10.1074/jbc.M312671200CrossRefGoogle Scholar
  342. 342.
    Gouldson, P.R., Higgs, C., Smith, R.E., Dean, M.K., Gkoutos, G.V., Reynolds, C.A.: Dimerization and domain swapping in g-protein-coupled receptors: a computational study. Neuropsychopharmacology 23(4), S60–S77 (2000)CrossRefGoogle Scholar
  343. 343.
    Dean, M.K., Higgs, C., Smith, R.E., Bywater, R.P., Snell, C.R., Scott, P.D., Upton, G.J.G., Howe, T.J., Reynolds, C.A.: Dimerization of G-protein-coupled receptors. J. Med. Chem. 44(26), 4595–4614 (2001)CrossRefGoogle Scholar
  344. 344.
    Gobel, U., Sander, C., Schneider, R., Valencia, A.: Correlated mutations and residue contacts in proteins. Proteins 18(4), 309–317 (1994)CrossRefGoogle Scholar
  345. 345.
    Gouldson, P.R., Dean, M.K., Snell, C.R., Bywater, R.P., Gkoutos, G., Reynolds, C.A.: Lipid-facing correlated mutations and dimerization in G-protein coupled receptors. Protein Eng. 14(10), 759–767 (2001)CrossRefGoogle Scholar
  346. 346.
    Filizola, M., Olmea, O., Weinstein, H.: Prediction of heterodimerization interfaces of G-protein coupled receptors with a new subtractive correlated mutation method. Protein Eng. 15(11), 881–885 (2002)CrossRefGoogle Scholar
  347. 347.
    Park, K., Kim, D.: Structure-based rebuilding of coevolutionary information reveals functional modules in rhodopsin structure. Biochim. Biophys. Acta (2012).  https://doi.org/10.1016/j.bbapap.2012.05.015CrossRefGoogle Scholar
  348. 348.
    Noivirt, O., Eisenstein, M., Horovitz, A.: Detection and reduction of evolutionary noise in correlated mutation analysis. Protein Eng. Des. Sel. 18(5), 247–253 (2005).  https://doi.org/10.1093/protein/gzi029CrossRefGoogle Scholar
  349. 349.
    Roux, B.: Implicit solvent models. In: Becker, O.M., MacKerell Jr, A.D., Roux, B. (eds.) Computational Biochemistry and Biophysics. CRC Press (2001)Google Scholar
  350. 350.
    Jackson, J.D.: Classical Electrodynamics. New York (1975)Google Scholar
  351. 351.
    Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media. Butterworth-Heinenann, Boston (1982)Google Scholar
  352. 352.
    Still, W.C., Tempczyk, A., Hawley, R.C., Hendrickson, T.: Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127–6129 (1990)CrossRefGoogle Scholar
  353. 353.
    Lee, B., Richards, F.M.: The interpretation of protein structures: estimation of static accesibility. J. Mol. Biol. 55, 379–400 (1971)CrossRefGoogle Scholar
  354. 354.
    Lee, M.S., Salsbury, F.R., Brooks, C.L.: Novel generalized Born methods. J. Chem. Phys. 116(24), 10606–10614 (2002).  https://doi.org/10.1063/1.1480013CrossRefGoogle Scholar
  355. 355.
    Gallicchio, E., Levy, R.M.: AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. J. Comput. Chem. 25(4), 479–499 (2004).  https://doi.org/10.1002/Jcc.10400CrossRefGoogle Scholar
  356. 356.
    Lee, M.S., Feig, M., Salsbury, F.R., Brooks, C.L.: New analytic approximation to the standard molecular volume definition and its application to generalized born calculations. J. Comput. Chem. 24(11), 1348–1356 (2003).  https://doi.org/10.1002/Jcc.10272CrossRefGoogle Scholar
  357. 357.
    Lazaridis, T., Karplus, M.: Effective energy function for proteins in solution. Proteins 35(2), 133–152 (1999)CrossRefGoogle Scholar
  358. 358.
    Spassov, V.Z., Yan, L., Szalma, S.: Introducing an implicit membrane in generalized Born/solvent accessibility continuum solvent models. J. Phys. Chem. B 106(34), 8726–8738 (2002).  https://doi.org/10.1021/Jp020674rCrossRefGoogle Scholar
  359. 359.
    Tanizaki, S., Feig, M.: A generalized Born formalism for heterogeneous dielectric environments: Application to the implicit modeling of biological membranes. J. Chem. Phys. 122(12) (2005). doi:Artn 124706.  https://doi.org/10.1063/1.1865992
  360. 360.
    Lazaridis, T.: Effective energy function for proteins in lipid membranes. Proteins 52(2), 176–192 (2003)CrossRefGoogle Scholar
  361. 361.
    Lazaridis, T., Karplus, M.: Discrimination of the native from misfolded protein models with an energy function including implicit solvation. J. Mol. Biol. 288(3), 477–487 (1999)CrossRefGoogle Scholar
  362. 362.
    Felts, A.K., Gallicchio, E., Wallqvist, A., Levy, R.M.: Distinguishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all-atom force field and the surface generalized born solvent model. Proteins 48(2), 404–422 (2002).  https://doi.org/10.1002/Prot.10171CrossRefGoogle Scholar
  363. 363.
    Rohl, C.A., Strauss, C.E., Misura, K.M., Baker, D.: Protein structure prediction using Rosetta. Methods Enzymol. 383, 66–93 (2004).  https://doi.org/10.1016/S0076-6879(04)83004-0CrossRefGoogle Scholar
  364. 364.
    Davis, I.W., Baker, D.: RosettaLigand docking with full ligand and receptor flexibility. J. Mol. Biol. 385(2), 381–392 (2009).  https://doi.org/10.1016/j.jmb.2008.11.010CrossRefGoogle Scholar
  365. 365.
    Im, W., Feig, M., Brooks, C.L.: An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. Biophys. J. 85(5), 2900–2918 (2003)CrossRefGoogle Scholar
  366. 366.
    Im, W., Brooks, C.L.: Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations. Proc. Natl. Acad. Sci. U.S.A. 102(19), 6771–6776 (2005).  https://doi.org/10.1073/pnas.0408135102CrossRefGoogle Scholar
  367. 367.
    Ulmschneider, J.P., Ulmschneider, M.B.: Folding Simulations of the transmembrane helix of virus protein U in an implicit membrane model. J. Chem. Theory Comput. 3(6), 2335–2346 (2007).  https://doi.org/10.1021/Ct700103kCrossRefGoogle Scholar
  368. 368.
    Mottamal, M., Lazaridis, T.: Voltage-dependent energetics of alamethicin monomers in the membrane. Biophys. Chem. 122(1), 50–57 (2006).  https://doi.org/10.1016/j.bpc.2006.02.005CrossRefGoogle Scholar
  369. 369.
    Seeber, M., Fanelli, F., Paci, E., Caflisch, A.: Sequential unfolding of individual helices of bacterioopsin observed in molecular dynamics simulations of extraction from the purple membrane. Biophys. J. 91(9), 3276–3284 (2006).  https://doi.org/10.1529/biophysj.106.088591CrossRefGoogle Scholar
  370. 370.
    Park, P.S.H., Sapra, K.T., Jastrzebska, B., Maeda, T., Maeda, A., Pulawski, W., Kono, M., Lem, J., Crouch, R.K., Filipek, S., Muller, D.J., Palczewski, K.: Modulation of molecular interactions and function by rhodopsin palmitylation. Biochemistry 48(20), 4294–4304 (2009)CrossRefGoogle Scholar
  371. 371.
    Ewald, P.P.: Die Berchnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 64, 253–287 (1921)zbMATHCrossRefGoogle Scholar
  372. 372.
    Zhan, H., Lazaridis, T.: Influence of the membrane dipole potential on peptide binding to lipid bilayers. Biophys. Chem. 161, 1–7 (2012).  https://doi.org/10.1016/j.bpc.2011.10.002CrossRefGoogle Scholar
  373. 373.
    Zagrovic, B., Pande, V.: Solvent viscosity dependence of the folding rate of a small protein: distributed computing study. J. Comput. Chem. 24(12), 1432–1436 (2003).  https://doi.org/10.1002/Jcc.10297CrossRefGoogle Scholar
  374. 374.
    Lee, M.S., Olson, M.A.: Evaluation of poisson solvation models using a hybrid explicit/implicit solvent method. J. Phys. Chem. B 109(11), 5223–5236 (2005).  https://doi.org/10.1021/Jp046377zCrossRefGoogle Scholar
  375. 375.
    Kelly, C.P., Cramer, C.J., Truhlar, D.G.: Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants. J. Phys. Chem. A 110(7), 2493–2499 (2006).  https://doi.org/10.1021/J055336fCrossRefGoogle Scholar
  376. 376.
    Stagg, S.M., Harvey, S.C.: Exploring the flexibility of ribosome recycling factor using molecular dynamics. Biophys. J. 89(4), 2659–2666 (2005).  https://doi.org/10.1529/biophysj.104.052373CrossRefGoogle Scholar
  377. 377.
    Bast, T., Hentschke, R.: Molecular dynamics simulation of a micellar system. J. Mol. Model. 2(9), 330–340 (1996)CrossRefGoogle Scholar
  378. 378.
    Freddolino, P.L., Arkhipov, A.S., Larson, S.B., McPherson, A., Schulten, K.: Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14(3), 437–449 (2006).  https://doi.org/10.1016/j.str.2005.11.014CrossRefGoogle Scholar
  379. 379.
    Levitt, M.: A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104(1), 59–107 (1976)MathSciNetCrossRefGoogle Scholar
  380. 380.
    Levitt, M., Warshel, A.: Computer simulation of protein folding. Nature 253(5494), 694–698 (1975)CrossRefGoogle Scholar
  381. 381.
    Levinthal, C.: Are there pathways for protein folding? J. Chim. Phys. 65, 44–45 (1968)CrossRefGoogle Scholar
  382. 382.
    Taketomi, H., Ueda, Y., Go, N.: Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions. Int. J. Pept. Protein Res. 7(6), 445–459 (1975)CrossRefGoogle Scholar
  383. 383.
    Ueda, Y., Taketomi, H., Gō, N.: Studies on protein folding, unfolding, and fluctuations by computer simulation. II. A. Three-dimensional lattice model of lysozyme. Biopolymers 17(6), 1531–1548 (1978)CrossRefGoogle Scholar
  384. 384.
    Go, N., Taketomi, H.: Studies on protein folding, unfolding and fluctuations by computer simulation. III. Effect of short-range interactions. Int. J. Pept. Protein Res. 13(3), 235–252 (1979)CrossRefGoogle Scholar
  385. 385.
    Go, N., Taketomi, H.: Studies on protein folding, unfolding and fluctuations by computer simulation. IV. Hydrophobic interactions. Int. J. Pept. Protein Res. 13(5), 447–461 (1979)CrossRefGoogle Scholar
  386. 386.
    Gay, J.G., Berne, B.J.: Modification of the overlap potential to mimic a linear site-site potential. J. Chem. Phys. 74(6), 3316–3319 (1981)CrossRefGoogle Scholar
  387. 387.
    Berne, B.J., Pechukas, P.: Gaussian model potentials for molecular interactions. J. Chem. Phys. 56(8), 4213–4216 (1972)CrossRefGoogle Scholar
  388. 388.
    Smith, G.D., Paul, W.: United atom force field for molecular dynamics simulations of 1,4-Polybutadiene based on quantum chemistry calculations on model molecules. J. Phys. Chem. A 102(7), 1200–1208 (1998)CrossRefGoogle Scholar
  389. 389.
    Kale, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., Shinozaki, A., Varadarajan, K., Schulten, K.: NAMD2: greater scalability for parallel molecular dynamics. J. Comput. Phys. 151(1), 283–312 (1999)zbMATHCrossRefGoogle Scholar
  390. 390.
    Takada, S.: Coarse-grained molecular simulations of large biomolecules. Curr. Opin. Struct. Biol. 22(2), 130–137 (2012)CrossRefGoogle Scholar
  391. 391.
    Tozzini, V.: Coarse-grained models for proteins. Curr. Opin. Struct. Biol. 15(2), 144–150 (2005)CrossRefGoogle Scholar
  392. 392.
    Rader, A.J.: Coarse-grained models: getting more with less. Curr. Opin. Pharmacol. 10(6), 753–759 (2010)CrossRefGoogle Scholar
  393. 393.
    Lindahl, E., Sansom, M.S.: Membrane proteins: molecular dynamics simulations. Curr. Opin. Struct. Biol. 18(4), 425–431 (2008)CrossRefGoogle Scholar
  394. 394.
    Shrivastava, I.H., Bahar, I.: Common mechanism of pore opening shared by five different potassium channels. Biophys. J. 90(11), 3929–3940 (2006)CrossRefGoogle Scholar
  395. 395.
    Cieplak, M., Filipek, S., Janovjak, H., Krzysko, K.A.: Pulling single bacteriorhodopsin out of a membrane: comparison of simulation and experiment. Biochem. Biophys. Acta. 1758(4), 537–544 (2006)CrossRefGoogle Scholar
  396. 396.
    Orlandini, E., Seno, F., Banavar, J.R., Laio, A., Maritan, A.: Deciphering the folding kinetics of transmembrane helical proteins. Proc. Natl. Acad. Sci. U.S.A. 97(26), 14229–14234 (2000)CrossRefGoogle Scholar
  397. 397.
    Marrink, S.J., de Vries, A.H., Mark, A.E.: Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 108(2), 750–760 (2004)CrossRefGoogle Scholar
  398. 398.
    Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P., Marrink, S.-J.: The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4(5), 819–834 (2008).  https://doi.org/10.1021/ct700324xCrossRefGoogle Scholar
  399. 399.
    Yesylevskyy, S.O., Schafer, L.V., Sengupta, D., Marrink, S.J.: Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput. Biol. 6(6), e1000810 (2010)CrossRefGoogle Scholar
  400. 400.
    Holdbrook, D.A., Leung, Y.M., Piggot, T.J., Marius, P., Williamson, P.T., Khalid, S.: Stability and membrane orientation of the fukutin transmembrane domain: a combined multiscale molecular dynamics and circular dichroism study. Biochemistry 49(51), 10796–10802 (2010)CrossRefGoogle Scholar
  401. 401.
    Schafer, L.V., de Jong, D.H., Holt, A., Rzepiela, A.J., de Vries, A.H., Poolman, B., Killian, J.A., Marrink, S.J.: Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc. Natl. Acad. Sci. U.S.A. 108(4), 1343–1348 (2010)CrossRefGoogle Scholar
  402. 402.
    Periole, X., Huber, T., Marrink, S.J., Sakmar, T.P.: G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J. Am. Chem. Soc. 129(33), 10126–10132 (2007)CrossRefGoogle Scholar
  403. 403.
    Bond, P.J., Sansom, M.S.P.: Bilayer deformation by the Kv channel voltage sensor domain revealed by self-assembly simulations. Proc Natl Acad Sci USA 104(8), 2631–2636 (2007).  https://doi.org/10.1073/pnas.0606822104CrossRefGoogle Scholar
  404. 404.
    Arnarez, C., Uusitalo, J.J., Masman, M.F., Ingolfsson, H.I., de Jong, D.H., Melo, M.N., Periole, X., de Vries, A.H., Marrink, S.J.: Dry Martini, a coarse-grained force field for lipid membrane simulations with implicit solvent. J. Chem. Theory Comput. 11(1), 260–275 (2015).  https://doi.org/10.1021/ct500477kCrossRefGoogle Scholar
  405. 405.
    Shih, A.Y., Arkhipov, A., Freddolino, P.L., Schulten, K.: Coarse grained protein-lipid model with application to lipoprotein particles. J. Phys. Chem. B 110(8), 3674–3684 (2006)CrossRefGoogle Scholar
  406. 406.
    Spijker, P., van Hoof, B., Debertrand, M., Markvoort, A.J., Vaidehi, N., Hilbers, P.A.: Coarse grained molecular dynamics simulations of transmembrane protein-lipid systems. Int. J. Mol. Sci. 11(6), 2393–2420 (2010)CrossRefGoogle Scholar
  407. 407.
    Markvoort, A.J., Pieterse, K., Steijaert, M.N., Spijker, P., Hilbers, P.A.: The bilayer-vesicle transition is entropy driven. J. Phys. Chem. B 109(47), 22649–22654 (2005)CrossRefGoogle Scholar
  408. 408.
    Kar, P., Gopal, S.M., Cheng, Y.M., Panahi, A., Feig, M.: Transferring the PRIMO coarse-grained force field to the membrane environment: simulations of membrane proteins and helix-helix association. J. Chem. Theory Comput. 10(8), 3459–3472 (2014).  https://doi.org/10.1021/ct500443vCrossRefGoogle Scholar
  409. 409.
    Kar, P., Gopal, S.M., Cheng, Y.M., Predeus, A., Feig, M.: PRIMO: a transferable coarse-grained force field for proteins. J. Chem. Theory Comput. 9(8), 3769–3788 (2013).  https://doi.org/10.1021/ct400230yCrossRefGoogle Scholar
  410. 410.
    Kar, P., Feig, M.: Hybrid all-atom/coarse-grained simulations of proteins by direct coupling of CHARMM and PRIMO force fields. J. Chem. Theory Comput. 13(11), 5753–5765 (2017).  https://doi.org/10.1021/acs.jctc.7b00840CrossRefGoogle Scholar
  411. 411.
    Májek, P., Elber, R.: A coarse-grained potential for fold recognition and molecular dynamics simulations of proteins. Proteins: Struct. Funct. Bioinf. 76(4), 822–836 (2009).  https://doi.org/10.1002/prot.22388CrossRefGoogle Scholar
  412. 412.
    Terstegen, F., Buss, V.: All-trans- and 11-cis-retinal, their N-methyl Schiff base and N-methyl protonated Schiff base derivatives: a comparative ab initio study. Theochem-J Mol Struc 369, 53–65 (1996)CrossRefGoogle Scholar
  413. 413.
    Terstegen, F., Buss, V.: Geometries and interconversion pathways of free and protonated beta-ionone Schiff bases. An ab initio study of photoreceptor chromophore model compounds. Chem. Phys. 225(1–3), 163–171 (1997).  https://doi.org/10.1016/s0301-0104(97)00194-8CrossRefGoogle Scholar
  414. 414.
    Terstegen, F., Carter, E.A., Buss, V.: Interconversion pathways of the protonated beta-ionone Schiff base: An ab initio molecular dynamics study. Int. J. Quantum Chem. 75(3), 141–145 (1999).  https://doi.org/10.1002/(sici)1097-461x(1999)75:3%3c141::aid-qua4%3e3.3.co;2-0CrossRefGoogle Scholar
  415. 415.
    Terstegen, F., Buss, V.: Influence of DFT-calculated electron correlation on energies and geometries of retinals and of retinal derivatives related to the bacteriorhodopsin and rhodopsin chromophores. Theochem-J. Mol. Struc. 430, 209–218 (1998)CrossRefGoogle Scholar
  416. 416.
    Bifone, A., deGroot, H.J.M., Buda, F.: Ab initio molecular dynamics of retinals. Chem. Phys. Lett. 248(3–4), 165–172 (1996).  https://doi.org/10.1016/0009-2614(95)01312-1CrossRefGoogle Scholar
  417. 417.
    Buda, F., deGroot, H.J.M., Bifone, A.: Charge localization and dynamics in rhodopsin. Phys. Rev. Lett. 77(21), 4474–4477 (1996).  https://doi.org/10.1103/PhysRevLett.77.4474CrossRefGoogle Scholar
  418. 418.
    Bifone, A., deGroot, H.J.M., Buda, F.: Energy storage in the primary photoproduct of vision. J. Phys. Chem. B 101(15), 2954–2958 (1997).  https://doi.org/10.1021/jp9623397CrossRefGoogle Scholar
  419. 419.
    La Penna, G., Buda, F., Bifone, A., de Groot, H.J.M.: The transition state in the isomerization of rhodopsin. Chem. Phys. Lett. 294(6), 447–453 (1998).  https://doi.org/10.1016/s0009-2614(98)00870-7CrossRefGoogle Scholar
  420. 420.
    Garavelli, M., Negri, F., Olivucci, M.: Initial excited-state relaxation of the isolated 11-cis protonated schiff base of retinal: evidence for in-plane motion from ab initio quantum chemical simulation of the resonance Raman spectrum. J. Am. Chem. Soc. 121(5), 1023–1029 (1999).  https://doi.org/10.1021/ja981719yCrossRefGoogle Scholar
  421. 421.
    Gozem, S., Melaccio, F., Lindh, R., Krylov, A.I., Granovsky, A.A., Angeli, C., Olivucci, M.: Mapping the excited state potential energy surface of a retinal chromophore model with multireference and equation-of-motion coupled-cluster methods. J. Chem. Theory Comput. 9(10), 4495–4506 (2013).  https://doi.org/10.1021/ct400460hCrossRefGoogle Scholar
  422. 422.
    Sugihara, M., Buss, V., Entel, P., Elstner, M., Frauenheim, T.: 11-cis-retinal protonated Schiff base: influence of the protein environment on the geometry of the rhodopsin chromophore. Biochemistry 41(51), 15259–15266 (2002).  https://doi.org/10.1021/bi020533fCrossRefGoogle Scholar
  423. 423.
    Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., Seifert, G.: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58(11), 7260–7268 (1998).  https://doi.org/10.1103/PhysRevB.58.7260CrossRefGoogle Scholar
  424. 424.
    Hufen, J., Sugihara, M., Buss, V.: How the counterion affects ground- and excited-state properties of the rhodopsin chromophore. J. Phys. Chem. B 108(52), 20419–20426 (2004).  https://doi.org/10.1021/jp046147kCrossRefGoogle Scholar
  425. 425.
    Tachikawa, H., Kawabata, H.: Effects of the residues on the excitation energies of protonated Schiff base of retinal (PSBR) in bR: A TD-DFT study. J. Photochem. Photobiol. B-Biol. 79(3), 191–195 (2005).  https://doi.org/10.1016/j.jphotobiol.2005.01.004CrossRefGoogle Scholar
  426. 426.
    Sugihara, M., Buss, V., Entel, P., Hafner, J.: The nature of the complex counterion of the chromophore in rhodopsin. J. Phys. Chem. B 108(11), 3673–3680 (2004).  https://doi.org/10.1021/jp0362786CrossRefGoogle Scholar
  427. 427.
    Blomgren, F., Larsson, S.: Exploring the potential energy surface of retinal, a comparison of the performance of different methods. J. Comput. Chem. 26(7), 738–742 (2005).  https://doi.org/10.1002/jcc.20210CrossRefGoogle Scholar
  428. 428.
    Maseras, F., Morokuma, K.: IMOMM—a new integrated ab-initio plus molecular mechanics geometry optimization scheme of equilibrium structures and transition-states. J. Comput. Chem. 16(9), 1170–1179 (1995).  https://doi.org/10.1002/jcc.540160911CrossRefGoogle Scholar
  429. 429.
    Warshel, A., Levitt, M.: Theoretical studies of enzymic reactions—dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme. J. Mol. Biol. 103(2), 227–249 (1976).  https://doi.org/10.1016/0022-2836(76)90311-9CrossRefGoogle Scholar
  430. 430.
    Gascon, J.A., Batista, V.S.: QM/MM study of energy storage and molecular rearrangements due to the primary event in vision. Biophys. J. 87(5), 2931–2941 (2004)CrossRefGoogle Scholar
  431. 431.
    Gascon, J.A., Sproviero, E.M., Batista, V.S.: QM/MM study of the NMR spectroscopy of the retinyl chromophore in visual rhodopsin. J. Chem. Theory Comput. 1(4), 674–685 (2005).  https://doi.org/10.1021/ct0500850CrossRefGoogle Scholar
  432. 432.
    Gascon, J.A., Sproviero, E.M., Batista, V.S.: Computational studies of the primary phototransduction event in visual rhodopsin. Acc. Chem. Res. 39(3), 184–193 (2006).  https://doi.org/10.1021/ar050027tCrossRefGoogle Scholar
  433. 433.
    Illingworth, C.J.R., Gooding, S.R., Winn, P.J., Jones, G.A., Ferenczy, G.G., Reynolds, C.A.: Classical polarization in hybrid QM/MM methods. J. Phys. Chem. A 110(20), 6487–6497 (2006).  https://doi.org/10.1021/jp046944iCrossRefGoogle Scholar
  434. 434.
    Altun, A., Yokoyama, S., Morokuma, K.: Spectral tuning in visual pigments: an ONIOM(QM: MM) study on bovine rhodopsin and its mutants. J. Phys. Chem. B 112(22), 6814–6827 (2008).  https://doi.org/10.1021/jp709730bCrossRefGoogle Scholar
  435. 435.
    Wiliam Hernandez-Rodriguez, E., Sanchez-Garcia, E., Crespo-Otero, R., Lilian Montero-Alejo, A., Alberto Montero, L., Thiel, W.: Understanding rhodopsin mutations linked to the retinitis pigmentosa disease: a QM/MM and DFT/MRCI Study. J. Phys. Chem. B 116(3), 1060–1076 (2012).  https://doi.org/10.1021/jp2037334CrossRefGoogle Scholar
  436. 436.
    Manathunga, M., Yang, X., Luk, H.L., Gozem, S., Frutos, L.M., Valentini, A., Ferre, N., Olivucci, M.: Probing the photodynamics of rhodopsins with reduced retinal chromophores. J. Chem. Theory Comput. 12(2), 839–850 (2016).  https://doi.org/10.1021/acs.jctc.5b00945CrossRefGoogle Scholar
  437. 437.
    Gozem, S., Luk, H.L., Schapiro, I., Olivucci, M.: Theory and simulation of the ultrafast double-bond isomerization of biological chromophores. Chem. Rev. 117(22), 13502–13565 (2017).  https://doi.org/10.1021/acs.chemrev.7b00177CrossRefGoogle Scholar
  438. 438.
    Stewart, J.J.P.: Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations. Int. J. Quantum Chem. 58(2), 133–146 (1996).  https://doi.org/10.1002/(sici)1097-461x(1996)58:2%3c133::aid-qua2%3e3.0.co;2-zMathSciNetCrossRefGoogle Scholar
  439. 439.
    Daniels, A.D., Millam, J.M., Scuseria, G.E.: Semiempirical methods with conjugate gradient density matrix search to replace diagonalization for molecular systems containing thousands of atoms. J. Chem. Phys. 107(2), 425–431 (1997).  https://doi.org/10.1063/1.474404CrossRefGoogle Scholar
  440. 440.
    Dixon, S.L., Merz, K.M.: Fast, accurate semiempirical molecular orbital calculations for macromolecules. J. Chem. Phys. 107(3), 879–893 (1997).  https://doi.org/10.1063/1.474386CrossRefGoogle Scholar
  441. 441.
    Stewart, J.J.P.: Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model. 13(12), 1173–1213 (2007).  https://doi.org/10.1007/s00894-007-0233-4CrossRefGoogle Scholar
  442. 442.
    Rezac, J., Fanfrlik, J., Salahub, D., Hobza, P.: Semiempirical quantum chemical PM6 method augmented by dispersion and H-bonding correction terms reliably describes various types of noncovalent complexes. J. Chem. Theory Comput. 5(7), 1749–1760 (2009).  https://doi.org/10.1021/ct9000922CrossRefGoogle Scholar
  443. 443.
    Rezac, J., Hobza, P.: Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J. Chem. Theory Comput. 8(1), 141–151 (2012).  https://doi.org/10.1021/ct200751eCrossRefGoogle Scholar
  444. 444.
    Ren, L., Martin, C.H., Wise, K.J., Gillespie, N.B., Luecke, H., Lanyi, J.K., Spudich, J.L., Birge, R.R.: Molecular mechanism of spectral tuning in sensory rhodopsin II. Biochemistry 40(46), 13906–13914 (2001).  https://doi.org/10.1021/bi0116487CrossRefGoogle Scholar
  445. 445.
    Lee, I., Greenbaum, E., Budy, S., Hillebrecht, J.R., Birge, R.R., Stuart, J.A.: Photoinduced surface potential change of bacteriorhodopsin mutant D96N measured by scanning surface potential microscopy. J. Phys. Chem. B 110(22), 10982–10990 (2006).  https://doi.org/10.1021/jp052948rCrossRefGoogle Scholar
  446. 446.
    Stewart, J.J.P.: Application of the PM6 method to modeling proteins. J. Mol. Model. 15(7), 765–805 (2009).  https://doi.org/10.1007/s00894-008-0420-yCrossRefGoogle Scholar
  447. 447.
    Ohno, K., Kamiya, N., Asakawa, N., Inoue, Y., Sakurai, M.: Application of an integrated MOZYME plus DFT method to pKa calculations for proteins. Chem. Phys. Lett. 341(3–4), 387–392 (2001).  https://doi.org/10.1016/s0009-2614(01)00499-7CrossRefGoogle Scholar
  448. 448.
    Yoda, M., Inoue, Y., Sakurai, M.: Effect of protein environment on pK(a) shifts in the active site of photoactive yellow protein. J. Phys. Chem. B 107(51), 14569–14575 (2003).  https://doi.org/10.1021/jp0364102CrossRefGoogle Scholar
  449. 449.
    Gross, K.C., Seybold, P.G., Hadad, C.M.: Comparison of different atomic charge schemes for predicting pK(a) variations in substituted anilines and phenols. Int. J. Quantum Chem. 90(1), 445–458 (2002).  https://doi.org/10.1002/qua.10108CrossRefGoogle Scholar
  450. 450.
    Mulliken, R.S.: Electronic population analysis on LCAO-MO molecular wave functions.1. J. Chem. Phys. 23(10), 1833–1840 (1955).  https://doi.org/10.1063/1.1740588CrossRefGoogle Scholar
  451. 451.
    Reed, A.E., Weinstock, R.B., Weinhold, F.: Natural-population analysis. J. Chem. Phys. 83(2), 735–746 (1985).  https://doi.org/10.1063/1.449486CrossRefGoogle Scholar
  452. 452.
    Wang, B., Ford, G.P.: Atomic charges derived from a fast and accurate method for electrostatic potentials based on modified AM1 calculations. J. Comput. Chem. 15(2), 200–207 (1994).  https://doi.org/10.1002/jcc.540150210CrossRefGoogle Scholar
  453. 453.
    Khan, H.M., Grauffel, C., Broer, R., MacKerell Jr., A.D., Havenith, R.W., Reuter, N.: Improving the force field description of tyrosine-choline cation-pi interactions: QM investigation of Phenol-N(Me)4(+) interactions. J. Chem. Theory Comput. 12(11), 5585–5595 (2016).  https://doi.org/10.1021/acs.jctc.6b00654CrossRefGoogle Scholar
  454. 454.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19(14), 1639–1662 (1998)CrossRefGoogle Scholar
  455. 455.
    Bikadi, Z., Hazai, E.: Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J. Cheminform. 1 (2009).  https://doi.org/10.1186/1758-2946-1-15CrossRefGoogle Scholar
  456. 456.
    Fanfrlik, J., Bronowska, A.K., Rezac, J., Prenosil, O., Konvalinka, J., Hobza, P.: A reliable Docking/scoring scheme based on the semiempirical quantum mechanical PM6-DH2 method accurately covering dispersion and H-bonding: HIV-1 protease with 22 ligands. J. Phys. Chem. B 114(39), 12666–12678 (2010).  https://doi.org/10.1021/jp1032965CrossRefGoogle Scholar
  457. 457.
    Sharma, V., Belevich, G., Gamiz-Hernandez, A.P., Rog, T., Vattulainen, I., Verkhovskaya, M.L., Wikstrom, M., Hummer, G., Kaila, V.R.: Redox-induced activation of the proton pump in the respiratory complex I. Proc Natl Acad Sci USA 112(37), 11571–11576 (2015).  https://doi.org/10.1073/pnas.1503761112CrossRefGoogle Scholar
  458. 458.
    Maffeo, C., Bhattacharya, S., Yoo, J., Wells, D., Aksimentiev, A.: Modeling and simulation of ion channels. Chem. Rev. 112(12), 6250–6284 (2012).  https://doi.org/10.1021/cr3002609CrossRefGoogle Scholar
  459. 459.
    Kutzner, C., Kopfer, D.A., Machtens, J.P., de Groot, B.L., Song, C., Zachariae, U.: Insights into the function of ion channels by computational electrophysiology simulations. Biochim. Biophys. Acta 1858(7 Pt B), 1741–1752 (2016).  https://doi.org/10.1016/j.bbamem.2016.02.006CrossRefGoogle Scholar
  460. 460.
    Sadhu, B., Sundararajan, M., Bandyopadhyay, T.: Selectivity of a singly permeating ion in nonselective NaK channel: combined QM and MD based investigations. J. Phys. Chem. B 119(40), 12783–12797 (2015).  https://doi.org/10.1021/acs.jpcb.5b05996CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dorota Latek
    • 1
  • Bartosz Trzaskowski
    • 2
  • Szymon Niewieczerzał
    • 1
  • Przemysław Miszta
    • 1
  • Krzysztof Młynarczyk
    • 1
  • Aleksander Dębiński
    • 1
  • Wojciech Puławski
    • 1
  • Shuguang Yuan
    • 3
    • 4
  • Agnieszka Sztyler
    • 1
  • Urszula Orzeł
    • 5
  • Jakub Jakowiecki
    • 1
  • Sławomir Filipek
    • 1
    Email author
  1. 1.Faculty of ChemistryUniversity of WarsawWarsawPoland
  2. 2.Centre of New TechnologiesUniversity of WarsawWarsawPoland
  3. 3.Laboratory of Physical Chemistry of Polymers and MembranesEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
  4. 4.Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
  5. 5.Applications of Physics in Biology and Medicine, Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations