Computer Modelling of the Lipid Matrix of Biomembranes

  • Marta Pasenkiewicz-GierulaEmail author
  • Michał Markiewicz
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 8)


The best recognised functions of biomembranes are to separate and protect the cell or the organelle from the environment and to enable communication and transport between their interior and exterior. The main structural element of any biomembrane is its lipid matrix, which, in most cases, is a lipid bilayer. Lipid matrix is a supramolecular dynamic structure where molecules undergo a broad range of motions. Such structures are difficult to study experimentally; in contrast, classical molecular modelling methods are well suited for this purpose. In this chapter we present computational approaches based on classical molecular modelling with atomic resolution to study lipid bilayers and their limitations, the studied bilayer models and the results obtained using these methods. The necessity of model validation is stressed.



MPG is grateful to Akihiro Kusumi and W. K. Subczynski for numerous discussions. The Polish National Science Centre is acknowledged for the financial support (grants no. N301 472638; N301 02131/0553; 2011/01/B/NZ1/00081; 2016/22/M/NZ1/0187). Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University is a partner of the Leading National Research Centre (KNOW) supported by the Ministry of Science and Higher Education.


  1. 1.
    Aittoniemi, J., Rog, T., Niemela, P., Pasenkiewicz-Gierula, M., Karttunen, M., Vattulainen, I.: Tilt: major factor in sterols’ ordering capability in membranes. J. Phys. Chem. B 110(51), 25562–25564 (2006)CrossRefGoogle Scholar
  2. 2.
    Alper, H.E., Bassolinoklimas, D., Stouch, T.R.: The limiting behavior of water hydrating a phospholipid monolayer—a computer-simulation study. J. Chem. Phys. 99(7), 5547–5559 (1993)CrossRefGoogle Scholar
  3. 3.
    Alwarawrah, M., Dai, J.A., Huang, J.Y.: A molecular view of the cholesterol condensing effect in DOPC lipid bilayers. J. Phys. Chem. B 114(22), 7516–7523 (2010)CrossRefGoogle Scholar
  4. 4.
    Bachar, M., Brunelle, P., Tieleman, D.P., Rauk, A.: Molecular dynamics simulation of a polyunsaturated lipid bilayer susceptible to lipid peroxidation. J. Phys. Chem. B 108(22), 7170–7179 (2004)CrossRefGoogle Scholar
  5. 5.
    Baczynski, K., Markiewicz, M., Pasenkiewicz-Gierula, M.: A computer model of a polyunsaturated monogalactolipid bilayer. Biochimie 118, 129–140 (2015)CrossRefGoogle Scholar
  6. 6.
    Bassolinoklimas, D., Alper, H.E., Stouch, T.R.: Solute diffusion in lipid bilayer-membranes—an atomic-level study by molecular-dynamics simulation. Biochemistry 32(47), 12624–12637 (1993)CrossRefGoogle Scholar
  7. 7.
    Benz, R.W., Castro-Roman, F., Tobias, D.J., White, S.H.: Experimental validation of molecular dynamics simulations of lipid bilayers: a new approach. Biophys. J. 88(2), 805–817 (2005)CrossRefGoogle Scholar
  8. 8.
    Berendsen, H., Postma, J., Van Gunsteren, W., Hermans, J.: Interaction Models for Water in Relation to Protein Hydration. Intermolecular Forces, vol. 331. Reidel, Dordrecht (1981)Google Scholar
  9. 9.
    Berendsen, H.J.C.: Simulating the Physical World, Hierarchical Modeling from Quantum Mechanics to Fluid Dynamics. Cambridge University Press, Cambridge (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Berendsen, H.J.C., Tieleman, D.P.: Molecular dynamics: studies of lipid bilayers. In: Schleyer, R. (ed.) Encyclopedia of Computational Chemistry, pp. 1639–1650. Wiley and Sons (1998)Google Scholar
  11. 11.
    Berger, O., Edholm, O., Jahnig, F.: Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 72(5), 2002–2013 (1997)CrossRefGoogle Scholar
  12. 12.
    Berkowitz, M.L.: Detailed molecular dynamics simulations of model biological membranes containing cholesterol. Biochim. Biophys. Acta-Biomem. 1788(1), 86–96 (2009)CrossRefGoogle Scholar
  13. 13.
    Berkowitz, M.L., Bostick, D.L., Pandit, S.: Aqueous solutions next to phospholipid membrane surfaces: insights from simulations. Chem. Rev. 106(4), 1527–1539 (2006)CrossRefGoogle Scholar
  14. 14.
    Bhide, S.Y., Zhang, Z.C., Berkowitz, M.L.: Molecular dynamics simulations of SOPS and sphingomyelin bilayers containing cholesterol. Biophys. J. 92(4), 1284–1295 (2007)CrossRefGoogle Scholar
  15. 15.
    Bloom, M., Evans, E., Mouritsen, O.G.: Physical-properties of the fluid lipid-bilayer component of cell-membranes—a perspective. Q. Rev. Biophys. 24(3), 293–397 (1991)CrossRefGoogle Scholar
  16. 16.
    Buldt, G.: The headgroup conformation of phospholipids in membranes. J. Membr. Biol. 58(2), 81–100 (1981)CrossRefGoogle Scholar
  17. 17.
    Cantor, R.S.: The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry 36(9), 2339–2344 (1997)CrossRefGoogle Scholar
  18. 18.
    Cantor, R.S.: Lateral pressures in cell membranes: a mechanism for modulation of protein function. J. Phys. Chem. B 101(10), 1723–1725 (1997)CrossRefGoogle Scholar
  19. 19.
    Cantor, R.S.: The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Toxicol. Lett. 101, 451–458 (1998)CrossRefGoogle Scholar
  20. 20.
    Cantor, R.S.: The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem. Phys. Lipids 101(1), 45–56 (1999)CrossRefGoogle Scholar
  21. 21.
    Cantor, R.S.: Lipid composition and the lateral pressure profile in bilayers. Biophys. J. 76(5), 2625–2639 (1999)CrossRefGoogle Scholar
  22. 22.
    Carrillo-Tripp, M., Feller, S.E.: Evidence for a mechanism by which ω-3 polyunsaturated lipids may affect membrane protein function. Biochemistry 44(30), 10164–10169 (2005)CrossRefGoogle Scholar
  23. 23.
    Cascales, J.J.L., Otero, T.F., Smith, B.D., Gonzalez, C., Marquez, M.: Model of an asymmetric DPPC/DPPS membrane: effect of asymmetry on the lipid properties. A molecular dynamics simulation study. J. Phys. Chem. B 110(5), 2358–2363 (2006)CrossRefGoogle Scholar
  24. 24.
    Cevc, G., Watts, A., Marsh, D.: Titration of the phase-transition of phosphatidylserine bilayer-membranes—effects of Ph, surface electrostatics, ion binding, and headgroup hydration. Biochemistry 20(17), 4955–4965 (1981)CrossRefGoogle Scholar
  25. 25.
    Chiu, S.W., Jakobsson, E., Mashl, R.J., Scott, H.L.: Cholesterol-induced modifications in lipid bilayers: a simulation study. Biophys. J. 83(4), 1842–1853 (2002)CrossRefGoogle Scholar
  26. 26.
    Chiu, S.W., Jakobsson, E., Scott, H.L.: Combined Monte Carlo and molecular dynamics simulation of hydrated lipid-cholesterol lipid bilayers at low cholesterol concentration. Biophys. J. 80(3), 1104–1114 (2001)CrossRefGoogle Scholar
  27. 27.
    Chowdhary, J., Harder, E., Lopes, P.E.M., Huang, L., MacKerell, A.D., Roux, B.: A polarizable force field of dipalmitoylphosphatidylcholine based on the classical drude model for molecular dynamics simulations of lipids. J. Phys. Chem.B 117(31), 9142–9160 (2013)CrossRefGoogle Scholar
  28. 28.
    Cordomi, A., Edholm, O., Perez, J.J.: Effect of ions on a dipalmitoyl phosphatidylcholine bilayer. A molecular dynamics simulation study. J. Phys. Chem. B 112(5), 1397–1408 (2008)CrossRefGoogle Scholar
  29. 29.
    Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)CrossRefGoogle Scholar
  30. 30.
    Damodaran, K.V., Merz, K.M.: Head group water interactions in lipid bilayers—a comparison between Dmpc-based and Dlpe-based lipid bilayers. Langmuir 9(5), 1179–1183 (1993)CrossRefGoogle Scholar
  31. 31.
    Damodaran, K.V., Merz, K.M.: A comparison of Dmpc-based and Dlpe-based lipid bilayers. Biophys. J. 66(4), 1076–1087 (1994)CrossRefGoogle Scholar
  32. 32.
    Damodaran, K.V., Merz, K.M., Gaber, B.P.: Structure and dynamics of the dilauroylphosphatidylethanolamine lipid bilayer. Biochemistry 31(33), 7656–7664 (1992)CrossRefGoogle Scholar
  33. 33.
    Davis, J.E., Patel, S.: Charge equilibration force fields for lipid environments: applications to fully hydrated DPPC bilayers and DMPC-embedded gramicidin a. J. Phys. Chem. B 113(27), 9183–9196 (2009)CrossRefGoogle Scholar
  34. 34.
    de Vries, A.H., Mark, A.E., Marrink, S.J.: The binary mixing behavior of phospholipids in a bilayer: a molecular dynamics study. J. Phys. Chem. B 108(7), 2454–2463 (2004)CrossRefGoogle Scholar
  35. 35.
    Demel, R.A., Bruckdorfer, K.R., Vandeene, L.l.: Effect of sterol structure on permeability of liposomes to glucose, glycerol and Rb+ . Biochim. Biophys. Acta 255(1), 321–330 (1972)Google Scholar
  36. 36.
    Dufourc, E.J., Parish, E.J., Chitrakorn, S., Smith, I.C.P.: Structural and dynamical details of cholesterol-lipid interaction as revealed by deuterium NMR. Biochemistry 23(25), 6062–6071 (1984)CrossRefGoogle Scholar
  37. 37.
    Dzieciuch-Rojek, M., Poojari, C., Bednar, J., Bunker, A., Kozik, B., Nowakowska, M., Vattulainen, I., Wydro, P., Kepczynski, M., Rog, T.: Effects of membrane PEGylation on entry and location of antifungal drug itraconazole and their pharmacological implications. Mol. Pharmaceut. 14(4), 1057–1070 (2017)CrossRefGoogle Scholar
  38. 38.
    Egberts, E., Marrink, S.J., Berendsen, H.J.C.: Molecular-dynamics simulation of a phospholipid membrane. Eur. Biophys. J. Biophy. Let. 22(6), 423–436 (1994)Google Scholar
  39. 39.
    Eicher, B., Heberle, F.A., Marquardt, D., Rechberger, G.N., Katsaras, J., Pabst, G.: Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles. J. Appl. Crystallogr. 50(Pt 2), 419–429 (2017)CrossRefGoogle Scholar
  40. 40.
    El-Sayed, M., Guion, T., Fayer, M.: Effect of cholesterol on viscoelastic properties of dipalmitoylphosphatidylcholine multibilayers as measured by a laser-induced ultrasonic probe. Biochemistry 25(17), 4825–4832 (1986)CrossRefGoogle Scholar
  41. 41.
    Elmore, D.E.: Molecular dynamics simulation of a phosphatidylglycerol membrane. FEBS Lett. 580(1), 144–148 (2006)CrossRefGoogle Scholar
  42. 42.
    Epand, R.M.: Role of membrane lipids in modulating the activity of membrane-bound enzymes. In: Yeagle, P.L. (ed.) The Structure of Biological Membranes, pp. 499–509. CRC Press, Boca Raton (2005)Google Scholar
  43. 43.
    Essmann, U., Berkowitz, M.L.: Dynamical properties of phospholipid bilayers from computer simulation. Biophys. J. 76(4), 2081–2089 (1999)CrossRefGoogle Scholar
  44. 44.
    Falck, E., Patra, M., Karttunen, M., Hyvonen, M.T., Vattulainen, I.: Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys. J. 87(2), 1076–1091 (2004)CrossRefGoogle Scholar
  45. 45.
    Falck, E., Rog, T., Karttunen, M., Vattulainen, I.: Lateral diffusion in lipid membranes through collective flows. J. Am. Chem. Soc. 130(1), 44–45 (2008)CrossRefGoogle Scholar
  46. 46.
    Feigenson, G.W., Chan, S.I.: Nuclear magnetic relaxation behavior of lecithin multilayers. J. Am. Chem. Soc. 96(5), 1312–1319 (1974)CrossRefGoogle Scholar
  47. 47.
    Feller, S.E.: Molecular dynamics simulations of lipid bilayers. Curr. Opin. Colloid Interface Sci. 5(3–4), 217–223 (2000)CrossRefGoogle Scholar
  48. 48.
    Frischleder, H., Gleichmann, S., Krahl, R.: Quantum-chemical and empirical calculations on phospholipids. 3. Hydration of dimethylphosphate anion. Chem. Phys. Lipids 19(2), 144–149 (1977)CrossRefGoogle Scholar
  49. 49.
    Galla, H.J., Hartmann, W., Theilen, U., Sackmann, E.: On 2-dimensional passive random-walk in lipid bilayers and fluid pathways in biomembranes. J. Membr. Biol. 48(3), 215–236 (1979)CrossRefGoogle Scholar
  50. 50.
    Gawrisch, K., Arnold, K., Gottwald, T., Klose, G., Volke, F.: D-2 Nmr-studies of phosphate—water interaction in dipalmitoyl phosphatidylcholine—water-systems. Stud. Biophys. 74, 13–14 (1978)Google Scholar
  51. 51.
    Goss, R., Lohr, M., Latowski, D., Grzyb, J., Vieler, A., Wilhelm, C., Strzalka, K.: Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation. Biochemistry 44(10), 4028–4036 (2005)CrossRefGoogle Scholar
  52. 52.
    Griepernau, B., Bockmann, R.A.: The influence of 1-alkanols and external pressure on the lateral pressure profiles of lipid bilayers. Biophys. J. 95(12), 5766–5778 (2008)CrossRefGoogle Scholar
  53. 53.
    Gullingsrud, J., Schulten, K.: Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys. J. 86(6), 3496–3509 (2004)CrossRefGoogle Scholar
  54. 54.
    Gumbart, J., Trabuco, L.G., Schreiner, E., Villa, E., Schulten, K.: Regulation of the protein-conducting channel by a bound ribosome. Structure 17(11), 1453–1464 (2009)CrossRefGoogle Scholar
  55. 55.
    Gurtovenko, A.A., Patra, M., Karttunen, M., Vattulainen, I.: Cationic DMPC/DMTAP lipid bilayers: molecular dynamics study. Biophys. J. 86(6), 3461–3472 (2004)CrossRefGoogle Scholar
  56. 56.
    Hall, A., Rog, T., Karttunen, M., Vattulainen, I.: Role of glycolipids in lipid rafts: a view through atomistic molecular dynamics simulations with galactosylceramide. J. Phys. Chem. B 114(23), 7797–7807 (2010)CrossRefGoogle Scholar
  57. 57.
    Hamill, O.P., Martinac, B.: Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81(2), 685–740 (2001)CrossRefGoogle Scholar
  58. 58.
    Hancock, J.F.: Lipid rafts: contentious only from simplistic standpoints. Nat. Rev. Mol. Cell Biol. 7(6), 456–462 (2006)CrossRefGoogle Scholar
  59. 59.
    Hauser, H., Pascher, I., Sundell, S.: Preferred conformation and dynamics of the glycerol backbone in phospholipids—an Nmr and X-ray single-crystal analysis. Biochemistry 27(26), 9166–9174 (1988)CrossRefGoogle Scholar
  60. 60.
    Helfrich, W.: Elastic properties of lipid bilayers—theory and possible experiments. Z Naturforsch C C 28(11–1), 693–703 (1973)CrossRefGoogle Scholar
  61. 61.
    Heller, H., Schaefer, M., Schulten, K.: Molecular dynamics simulation of a bilayer of 200 lipids in the gel and liquid-crystal phases. J. Phys. Chem. 97, 8343–8360 (1993)CrossRefGoogle Scholar
  62. 62.
    Huang, J., Swanson, J.E., Dibble, A.R., Hinderliter, A.K., Feigenson, G.W.: Nonideal mixing of phosphatidylserine and phosphatidylcholine in the fluid lamellar phase. Biophys. J. 64(2), 413–425 (1993)CrossRefGoogle Scholar
  63. 63.
    Hub, J.S., Salditt, T., Rheinstadter, M.C., de Groot, B.L.: Short-range order and collective dynamics of DMPC bilayers: a comparison between molecular dynamics simulations, X-ray, and neutron scattering experiments. Biophys. J. 93(9), 3156–3168 (2007)CrossRefGoogle Scholar
  64. 64.
    Hyslop, P.A., Morel, B., Sauerheber, R.D.: Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes. Biochemistry 29, 1025–1038 (1990)CrossRefGoogle Scholar
  65. 65.
    Ingolfsson, H.I., Melo, M.N., van Eerden, F.J., Arnarez, C., Lopez, C.A., Wassenaar, T.A., Periole, X., de Vries, A.H., Tieleman, D.P., Marrink, S.J.: Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136(41), 14554–14559 (2014)CrossRefGoogle Scholar
  66. 66.
    Jacob, R.F., Cenedella, R.J., Mason, R.P.: Direct evidence for immiscible cholesterol domains in human ocular lens fiber cell plasma membranes. J. Biol. Chem. 274(44), 31613–31618 (1999)CrossRefGoogle Scholar
  67. 67.
    Jacobson, K., Mouritsen, O.G., Anderson, R.G.W.: Lipid rafts: at a crossroad between cell biology and physics. Nat. Cell Biol. 9(1), 7–14 (2007)CrossRefGoogle Scholar
  68. 68.
    Jambeck, J.P.M., Lyubartsev, A.P.: Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B 116(10), 3164–3179 (2012)CrossRefGoogle Scholar
  69. 69.
    Jambeck, J.P.M., Lyubartsev, A.P.: An extension and further validation of an all-atomistic force field for biological membranes. J. Chem. Theory Comput. 8(8), 2938–2948 (2012)CrossRefGoogle Scholar
  70. 70.
    Javanainen, M., Hammaren, H., Monticelli, L., Jeon, J.H., Miettinen, M.S., Martinez-Seara, H., Metzler, R., Vattulainen, I.: Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes. Faraday Discuss. 161, 397–417 (2013)CrossRefGoogle Scholar
  71. 71.
    Javanainen, M., Martinez-Seara, H., Vattulainen, I.: Nanoscale membrane domain formation driven by cholesterol. Sci. Rep. 7 (2017)Google Scholar
  72. 72.
    Jedlovszky, P., Mezei, M.: Effect of cholesterol on the properties of phospholipid membranes. 2. Free energy profile of small molecules. J. Phys. Chem. B 107(22), 5322–5332 (2003)CrossRefGoogle Scholar
  73. 73.
    Jeon, J.H., Javanainen, M., Martinez-Seara, H., Metzler, R., Vattulainen, I.: Protein crowding in lipid bilayers gives rise to non-gaussian anomalous lateral diffusion of phospholipids and proteins. Phys. Rev. X6(2) (2016)Google Scholar
  74. 74.
    Jiang, W., Hardy, D.J., Phillips, J.C., Mackerell Jr., A.D., Schulten, K., Roux, B.: High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. J. Phys. Chem. Lett. 2(2), 87–92 (2011)CrossRefGoogle Scholar
  75. 75.
    Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983)CrossRefGoogle Scholar
  76. 76.
    Jorgensen, W.L., Maxwell, D.S., TiradoRives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)CrossRefGoogle Scholar
  77. 77.
    Jorgensen, W.L., Tirado-Rives, J.: The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110(6), 1657–1666 (1988)CrossRefGoogle Scholar
  78. 78.
    Kaszuba, K., Rog, T., Bryl, K., Vattulainen, I., Karttunen, M.: Molecular dynamics simulations reveal fundamental role of water as factor determining affinity of binding of beta-blocker Nebivolol to beta(2)-adrenergic receptor. J. Phys. Chem. B 114(25), 8374–8386 (2010)CrossRefGoogle Scholar
  79. 79.
    Kaznessis, Y.N., Kim, S.T., Larson, R.G.: Simulations of zwitterionic and anionic phospholipid monolayers. Biophys. J. 82(4), 1731–1742 (2002)CrossRefGoogle Scholar
  80. 80.
    Kim, T., Im, W.: Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane Helix Tilt and rotation. Biophys. J. 99(1), 175–183 (2010)CrossRefGoogle Scholar
  81. 81.
    Klauda, J.B., Venable, R.M., Freites, J.A., O’Connor, J.W., Tobias, D.J., Mondragon-Ramirez, C., Vorobyov, I., MacKerell, A.D., Pastor, R.W.: Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114(23), 7830–7843 (2010)CrossRefGoogle Scholar
  82. 82.
    Kneller, G.R., Baczynski, K., Pasenkiewicz-Gierula, M.: Communication: consistent picture of lateral subdiffusion in lipid bilayers: molecular dynamics simulation and exact results. J. Chem. Phys. 135(14) (2011)CrossRefGoogle Scholar
  83. 83.
    Koynova, R., Caffrey, M.: Phases and phase transitions of the phosphatidylcholines. Biochim. Biophys. Acta-Rev. Biomem. 1376(1), 91–145 (1998)CrossRefGoogle Scholar
  84. 84.
    Kulig, W., Pasenkiewicz-Gierula, M., Rog, T.: Topologies, structures and parameter files for lipid simulations in GROMACS with the OPLS-aa force field: DPPC, POPC, DOPC, PEPC, and cholesterol. Data Brief 5, 333–336 (2015)CrossRefGoogle Scholar
  85. 85.
    Kulig, W., Pasenkiewicz-Gierula, M., Rog, T.: Cis and trans unsaturated phosphatidylcholine bilayers: a molecular dynamics simulation study. Chem. Phys. Lipids 195, 12–20 (2016)CrossRefGoogle Scholar
  86. 86.
    Kusumi, A., Pasenkiewicz-Gierula, M.: Rotational diffusion of a steroid molecule in phosphatidylcholine membranes—effects of alkyl chain-length, unsaturation, and cholesterol as studied by a spin-label method. Biochemistry 27(12), 4407–4415 (1988)CrossRefGoogle Scholar
  87. 87.
    Lamoureux, G., MacKerell, A.D., Roux, B.: A simple polarizable model of water based on classical Drude oscillators. J. Chem. Phys. 119(10), 5185–5197 (2003)CrossRefGoogle Scholar
  88. 88.
    Lamoureux, G., Roux, B.: Modeling induced polarization with classical Drude oscillators: theory and molecular dynamics simulation algorithm. J. Chem. Phys. 119(6), 3025–3039 (2003)CrossRefGoogle Scholar
  89. 89.
    Leach, A.R.: Molecular Modelling, Principles and Applications, 2nd edn. Pearson Education, Harlow, UK (2001)Google Scholar
  90. 90.
    Lee, A.G.: How to understand lipid–protein interactions in biological membranes. In: Yeagle, P.L. (ed.) Structure of Biological Membranes. CRC Press, Boca Raton (2012)Google Scholar
  91. 91.
    Leekumjorn, S., Sum, A.K.: Molecular simulation study of structural and dynamic properties of mixed DPPC/DPPE bilayers. Biophys. J. 90(11), 3951–3965 (2006)CrossRefGoogle Scholar
  92. 92.
    Lehnert, R., Eibl, H.-J., Müller, K.: Order and dynamics in lipid bilayers from 1,2-dipalmitoyl-sn-glycero-phospho-diglycerol as studied by NMR spectroscopy. J. Phys. Chem. B 108, 12141–12150 (2004)CrossRefGoogle Scholar
  93. 93.
    Levine, Y.K., Wilkins, M.H.F.: Structure of oriented lipid bilayers. Nat. New Biol. 230(11), 69 (1971)CrossRefGoogle Scholar
  94. 94.
    Levitt, M., Hirshberg, M., Sharon, R., Daggett, V.: Potential-energy function and parameters for simulations of the molecular-dynamics of proteins and nucleic-acids in solution. Comput. Phys. Commun. 91(1–3), 215–231 (1995)CrossRefGoogle Scholar
  95. 95.
    Lewis, B.A., Engelman, D.M.: Lipid bilayer thickness varies linearly with acyl chain-length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166(2), 211–217 (1983)CrossRefGoogle Scholar
  96. 96.
    Lewis, R.N.A.H., McElhaney, R.N.: Calorimetric and spectroscopic studies of the thermotropic phase behavior of lipid bilayer model membranes composed of a homologous series of linear saturated phosphatidylserines. Biophys. J. 79(4), 2043–2055 (2000)CrossRefGoogle Scholar
  97. 97.
    Lewis, R.N.A.H., Mcelhaney, R.N., Monck, M.A., Cullis, P.R.: Studies of highly asymmetric mixed-chain diacyl phosphatidylcholines that form mixed-interdigitated gel phases—fourier-transform infrared and h-2 Nmr spectroscopic studies of hydrocarbon chain conformation and orientational order in the liquid-crystalline state. Biophys. J. 67(1), 197–207 (1994)CrossRefGoogle Scholar
  98. 98.
    Li, H., Chowdhary, J., Huang, L., He, X.B., MacKerell, A.D., Roux, B.: Drude polarizable force field for molecular dynamics simulations of saturated and unsaturated zwitterionic lipids. J. Chem. Theory Comput. 13(9), 4535–4552 (2017)CrossRefGoogle Scholar
  99. 99.
    Lindahl, E., Edholm, O.: Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys. J. 79(1), 426–433 (2000)CrossRefGoogle Scholar
  100. 100.
    Lindahl, E., Edholm, O.: Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J. Chem. Phys. 113(9), 3882–3893 (2000)CrossRefGoogle Scholar
  101. 101.
    Lindahl, E., Edholm, O.: Molecular dynamics simulation of NMR relaxation rates and slow dynamics in lipid bilayers. J. Chem. Phys. 115(10), 4938–4950 (2001)CrossRefGoogle Scholar
  102. 102.
    Lingwood, D., Simons, K.: Lipid rafts as a membrane-organizing principle. Science 327(5961), 46–50 (2010)CrossRefGoogle Scholar
  103. 103.
    Luzzati, V., Husson, F.: Structure of liquid-crystalline phases of lipid-water systems. J. Cell Biol. 12(2), 207 (1962)Google Scholar
  104. 104.
    Lyubartsev, A.P., Rabinovich, A.L.: Recent development in computer simulations of lipid bilayers. Soft Matter 7(1), 25–39 (2011)CrossRefGoogle Scholar
  105. 105.
    Maciejewski, A., Pasenkiewicz-Gierula, M., Cramariuc, O., Vattulainen, I., Rog, T.: Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration. J. Phys. Chem. B 118(17), 4571–4581 (2014)CrossRefGoogle Scholar
  106. 106.
    MacKerell, A.D. Jr., Brooks, B., Brooks, III C.L., Nilsson, L., Roux, B., Won, Y., Karplus, M.: Charmm: the energy function and its parameterization with an overview of the program. In: von Rague Schleyer, P. (ed.) Encyclopedia of Computational Chemistry, vol. 2, pp 271–277. Wiley (1998)Google Scholar
  107. 107.
    MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102(18), 3586–3616 (1998)CrossRefGoogle Scholar
  108. 108.
    Mainali, L., Raguz, M., Subczynski, W.K.: Formation of cholesterol bilayer domains precedes formation of cholesterol crystals in cholesterol/dimyristoylphosphatidylcholine membranes: EPR and DSC studies. J. Phys. Chem. B 117(30), 8994–9003 (2013)CrossRefGoogle Scholar
  109. 109.
    Mark, P., Nilsson, L.: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105(43), 9954–9960 (2001)CrossRefGoogle Scholar
  110. 110.
    Markiewicz, M., Baczynski, K., Pasenkiewicz-Gierula, M.: Properties of water hydrating the galactolipid and phospholipid bilayers: a molecular dynamics simulation study. Acta Biochim. Pol. 62(3), 475–481 (2015)CrossRefGoogle Scholar
  111. 111.
    Markiewicz, M., Pasenkiewicz-Gierula, M.: Comparative model studies of gastric toxicity of nonsteroidal anti-inflammatory drugs. Langmuir 27(11), 6950–6961 (2011)CrossRefGoogle Scholar
  112. 112.
    Marrink, S.J., Berkowitz, M., Berendsen, H.J.C.: Molecular dynamics simulation of a membrane/water interface: the ordering of water and its relation to the hydration force. Langmuir 9(11), 3122–3131 (1993)CrossRefGoogle Scholar
  113. 113.
    Marrink, S.J., de Vries, A.H., Tieleman, D.P.: Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim. Biophys. Acta-Biomem. 1788(1), 149–168 (2009)CrossRefGoogle Scholar
  114. 114.
    Marrink, S.J., Lindahl, E., Edholm, O., Mark, A.E.: Simulation of the spontaneous aggregation of phospholipids into bilayers. J. Am. Chem. Soc. 123(35), 8638–8639 (2001)CrossRefGoogle Scholar
  115. 115.
    Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., de Vries, A.H.: The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111(27), 7812–7824 (2007)CrossRefGoogle Scholar
  116. 116.
    Marsh, D., Smith, I.C.P.: Interacting spin label study of fluidizing and condensing effects of cholesterol on lecithin bilayers. Biochim. Biophys. Acta 298(2), 133–144 (1973)CrossRefGoogle Scholar
  117. 117.
    Martinez-Seara, H., Rog, T., Karttunen, M., Vattulainen, I., Reigada, R.: Cholesterol induces specific spatial and orientational order in cholesterol/phospholipid membranes. Plos One 5(6) (2010)CrossRefGoogle Scholar
  118. 118.
    McConnell, H.: Molecular motion in biological membranes. In: Berliner, L. (ed.) Spin Labeling: Theory and Applications, pp. 525–561. Academic Press, New York (1976)CrossRefGoogle Scholar
  119. 119.
    Mcintosh, T.J., Simon, S.A.: Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry 25(17), 4948–4952 (1986)CrossRefGoogle Scholar
  120. 120.
    Meirovitch, E., Igner, D., Igner, E., Moro, G., Freed, J.H.: Electron-spin relaxation and ordering in smectic and supercooled nematic liquid-crystals. J. Chem. Phys. 77(8), 3915–3938 (1982)CrossRefGoogle Scholar
  121. 121.
    Meyer, G.R., Gullingsrud, J., Schulten, K., Martinac, B.: Molecular dynamics study of MscL interactions with a curved lipid bilayer. Biophys. J. 91(5), 1630–1637 (2006)CrossRefGoogle Scholar
  122. 122.
    Miao, L., Nielsen, M., Thewalt, J., Ipsen, J.H., Bloom, M., Zuckermann, M.J., Mouritsen, O.G.: From lanosterol to cholesterol: structural evolution and differential effects on lipid bilayers. Biophys. J. 82(3), 1429–1444 (2002)CrossRefGoogle Scholar
  123. 123.
    Moore, P.B., Lopez, C.F., Klein, M.L.: Dynamical properties of a hydrated lipid bilayer from a multinanosecond molecular dynamics simulation. Biophys. J. 81(5), 2484–2494 (2001)CrossRefGoogle Scholar
  124. 124.
    Mouritsen, O.G.: Life—As a Matter of Fat, The Emerging Science of Lipidomics. Springer-Verlag, Berlin Heidelberg (2005)Google Scholar
  125. 125.
    Mouritsen, O.G., Jorgensen, K.: Dynamical order and disorder in lipid bilayers. Chem. Phys. Lipids 73(1–2), 3–25 (1994)CrossRefGoogle Scholar
  126. 126.
    Mukhopadhyay, P., Monticelli, L., Tieleman, D.P.: Molecular dynamics simulation of a palmitoyl-oleoyl phosphatidylserine bilayer with Na+ counterions and NaCl. Biophys. J. 86(3), 1601–1609 (2004)CrossRefGoogle Scholar
  127. 127.
    Murzyn, K., Rog, T., Jezierski, G., Takaoka, Y., Pasenkiewicz-Gierula, M.: Effects of phospholipid unsaturation on the membrane/water interface: a molecular simulation study. Biophys. J. 81(1), 170–183 (2001)CrossRefGoogle Scholar
  128. 128.
    Murzyn, K., Rog, T., Pasenkiewicz-Gierula, M.: Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. Biophys. J. 88(2), 1091–1103 (2005)zbMATHCrossRefGoogle Scholar
  129. 129.
    Murzyn, K., Róg, T., Pasenkiewicz-Gierula, M.: Comparison of the conformation and the dynamics of saturated and monounsaturated hydrocarbon chains of phosphatidylcholines. Curr. Top. Biophys. 23(1), 87–94 (1999)zbMATHGoogle Scholar
  130. 130.
    Murzyn, K., Zhao, W., Karttunen, M., Kurdziel, M., Rog, T.: Dynamics of water at membrane surfaces: effect of headgroup structure. Biointerphases 1(3), 98–105 (2006)CrossRefGoogle Scholar
  131. 131.
    Nagle, J.F.: Theory of lipid monolayer and bilayer phase-transitions—effect of headgroup interactions. J. Membr. Biol. 27(3), 233–250 (1976)CrossRefGoogle Scholar
  132. 132.
    Nagle, J.F.: Area lipid of bilayers from Nmr. Biophys. J. 64(5), 1476–1481 (1993)CrossRefGoogle Scholar
  133. 133.
    Nagle, J.F., Tristram-Nagle, S.: Structure of lipid bilayers. Biochim. Biophys. Acta-Rev. Biomem. 1469(3), 159–195 (2000)CrossRefGoogle Scholar
  134. 134.
    Neria, E., Fischer, S., Karplus, M.: Simulation of activation free energies in molecular systems. J. Chem. Phys. 105(5), 1902–1921 (1996)CrossRefGoogle Scholar
  135. 135.
    Neumann, S., van Meer, G.: Sphingolipid management by an orchestra of lipid transfer proteins. Biol. Chem. 389(11), 1349–1360 (2008)CrossRefGoogle Scholar
  136. 136.
    Niemela, P.S., Miettinen, M.S., Monticelli, L., Hammaren, H., Bjelkmar, P., Murtola, T., Lindahl, E., Vattulainen, I.: Membrane proteins diffuse as dynamic complexes with lipids. J. Am. Chem. Soc. 132(22), 7574–7575 (2010)CrossRefGoogle Scholar
  137. 137.
    Niemela, P.S., Ollila, S., Hyvonen, M.T., Karttunen, M., Vattulainen, I.: Assessing the nature of lipid raft membranes. PLoS Comput. Biol. 3(2), 304–312 (2007)MathSciNetCrossRefGoogle Scholar
  138. 138.
    Oldfield, E., Meadows, M., Rice, D., Jacobs, R.: Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems. Biochemistry 17(14), 2727–2740 (1978)CrossRefGoogle Scholar
  139. 139.
    Ollila, S., Hyvonen, M.T., Vattulainen, I.: Polyunsaturation in lipid membranes: dynamic properties and lateral pressure profiles. J. Phys. Chem. B 111(12), 3139–3150 (2007)CrossRefGoogle Scholar
  140. 140.
    Orsi, M., Michel, J., Essex, J.W.: Coarse-grain modelling of DMPC and DOPC lipid bilayers. J. Phys. Condens. Mat. 22(15) (2010)Google Scholar
  141. 141.
    Pandit, S.A., Berkowitz, M.L.: Molecular dynamics simulation of dipalmitoylphosphatidylserine bilayer with Na+ counterions. Biophys. J. 82(4), 1818–1827 (2002)CrossRefGoogle Scholar
  142. 142.
    Pandit, S.A., Bostick, D., Berkowitz, M.L.: Mixed bilayer containing dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine: lipid complexation, ion binding, and electrostatics. Biophys. J. 85(5), 3120–3131 (2003)CrossRefGoogle Scholar
  143. 143.
    Pandit, S.A., Jakobsson, E., Scott, H.L.: Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine. Biophys. J. 87(5), 3312–3322 (2004)CrossRefGoogle Scholar
  144. 144.
    Pandit, S.A., Scott, H.L.: Multiscale simulations of heterogeneous model membranes. Biochim. Biophys. Acta-Biomem. 1788(1), 136–148 (2009)CrossRefGoogle Scholar
  145. 145.
    Pasenkiewicz-Gierula, M., Baczynski, K., Markiewicz, M., Murzyn, K.: Computer modelling studies of the bilayer/water interface. Biochim. Biophys. Acta-Biomem. 1858(10), 2305–2321 (2016)CrossRefGoogle Scholar
  146. 146.
    Pasenkiewicz-Gierula, M., Rog, T.: Conformations, orientations and time scales characterising dimyristoylphosphatidylcholine bilayer membrane. molecular dynamics simulation studies. Acta Biochim. Pol. 44(3), 607–624 (1997)Google Scholar
  147. 147.
    Pasenkiewicz-Gierula, M., Rog, T., Kitamura, K., Kusumi, A.: Cholesterol effects on the phosphatidylcholine bilayer polar region: a molecular simulation study. Biophys. J. 78(3), 1376–1389 (2000)CrossRefGoogle Scholar
  148. 148.
    Pasenkiewicz-Gierula, M., Subczynski, W.K., Kusumi, A.: Rotational diffusion of a steroid molecule in phosphatidylcholine-cholesterol membranes: fluid-phase microimmiscibility in unsaturated phosphatidylcholine-cholesterol membranes. Biochemistry 29(17), 4059–4069 (1990)CrossRefGoogle Scholar
  149. 149.
    Pasenkiewicz-Gierula, M., Takaoka, Y., Miyagawa, H., Kitamura, K., Kusumi, A.: Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics simulation: location, geometry, and lipid-lipid bridging via hydrogen-bonded water. J. Phys. Chem. A 101(20), 3677–3691 (1997)CrossRefGoogle Scholar
  150. 150.
    Pasenkiewicz-Gierula, M., Takaoka, Y., Miyagawa, H., Kitamura, K., Kusumi, A.: Charge pairing of headgroups in phosphatidylcholine membranes: a molecular dynamics simulation study. Biophys. J. 76(3), 1228–1240 (1999)CrossRefGoogle Scholar
  151. 151.
    Pastor, R.W., Feller, S.E.: Time scales of lipid dynamics and molecular dynamics. In: Merz, K.M., Roux, B. (eds.) Biological Membranes, a Molecular Perspective from Computation and Experiment, pp. 3–29. Birkhäυσερ, Boston (1996)Google Scholar
  152. 152.
    Pastor, R.W., MacKerell, A.D.: Development of the CHARMM force field for lipids. J. Phys. Chem. Lett. 2(13), 1526–1532 (2011)CrossRefGoogle Scholar
  153. 153.
    Patra, M.: Lateral pressure profiles in cholesterol-DPPC bilayers. Eur. Biophys. J. Biophy. Let. 35(1), 79–88 (2005)CrossRefGoogle Scholar
  154. 154.
    Patra, M., Salonen, E., Terama, E., Vattulainen, I., Faller, R., Lee, B.W., Holopainen, J., Karttunen, M.: Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. Biophys. J. 90(4), 1121–1135 (2006)CrossRefGoogle Scholar
  155. 155.
    Perozo, E., Rees, D.C.: Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struct. Biol. 13(4), 432–442 (2003)CrossRefGoogle Scholar
  156. 156.
    Petersen, N.O., Chan, S.I.: More on motional state of lipid bilayer membranes—interpretation of order parameters obtained from nuclear magnetic-resonance experiments. Biochemistry 16(12), 2657–2667 (1977)CrossRefGoogle Scholar
  157. 157.
    Pike, L.J.: Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J. Lipid. Res. 47(7), 1597–1598 (2006)CrossRefGoogle Scholar
  158. 158.
    Plesnar, E., Subczynski, W.K., Pasenkiewicz-Gierula, M.: Saturation with cholesterol increases vertical order and smoothes the surface of the phosphatidylcholine bilayer: a molecular simulation study. Biochim. Biophys. Acta-Biomem. 1818(3), 520–529 (2012)CrossRefGoogle Scholar
  159. 159.
    Plesnar, E., Subczynski, W.K., Pasenkiewicz-Gierula, M.: Is the cholesterol bilayer domain a barrier to oxygen transport into the eye lens? Biochim. Biophys. Acta-Biomem. 1860, 434–441 (2018)CrossRefGoogle Scholar
  160. 160.
    Poger, D., Caron, B., Mark, A.E.: Validating lipid force fields against experimental data: progress, challenges and perspectives. Biochim. Biophys. Acta-Biomem. 1858(7), 1556–1565 (2016)CrossRefGoogle Scholar
  161. 161.
    Poger, D., Mark, A.E.: On the validation of molecular dynamics simulations of saturated and cis-monounsaturated phosphatidylcholine lipid bilayers: a comparison with experiment. J. Chem. Theory. Comput. 6(1), 325–336 (2010)CrossRefGoogle Scholar
  162. 162.
    Ponder, J.W., Case, D.A.: Force fields for protein simulations. Adv. Protein Chem. 66, 27–85 (2003)CrossRefGoogle Scholar
  163. 163.
    Poyry, S., Rog, T., Karttunen, M., Vattulainen, I.: Significance of cholesterol methyl groups. J. Phys. Chem. B 112(10), 2922–2929 (2008)CrossRefGoogle Scholar
  164. 164.
    Price, D.J., Brooks, C.L.: A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 121(20), 10096–10103 (2004)CrossRefGoogle Scholar
  165. 165.
    Rand, R.P., Parsegian, V.A.: Hydration forces between phospholipid-bilayers. Biochim. Biophys. Acta 988(3), 351–376 (1989)CrossRefGoogle Scholar
  166. 166.
    Reviakine, I., Brisson, A.: Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir 16(4), 1806–1815 (2000)CrossRefGoogle Scholar
  167. 167.
    Risselada, H.J., Marrink, S.J.: The molecular face of lipid rafts in model membranes. Proc. Natl. Acad. Sci. USA 105(45), 17367–17372 (2008)CrossRefGoogle Scholar
  168. 168.
    Roark, M., Feller, S.E.: Molecular dynamics simulation study of correlated motions in phospholipid bilayer membranes. J. Phys. Chem. B 113(40), 13229–13234 (2009)CrossRefGoogle Scholar
  169. 169.
    Robinson, A.J., Richards, W.G., Thomas, P.J., Hann, M.M.: Head group and chain behavior in biological-membranes—a molecular-dynamics computer-simulation. Biophys. J. 67(6), 2345–2354 (1994)CrossRefGoogle Scholar
  170. 170.
    Robinson, A.J., Richards, W.G., Thomas, P.J., Hann, M.M.: Behavior of cholesterol and its effect on head group and chain conformations in lipid bilayers—a molecular-dynamics study. Biophys. J. 68(1), 164–170 (1995)CrossRefGoogle Scholar
  171. 171.
    Rog, T., Martinez-Seara, H., Munck, N., Oresic, M., Karttunen, M., Vattulainen, I.: Role of cardiolipins in the inner mitochondrial membrane: insight gained through atom-scale simulations. J. Phys. Chem. B 113(11), 3413–3422 (2009)CrossRefGoogle Scholar
  172. 172.
    Rog, T., Murzyn, K., Gurbiel, R., Takaoka, Y., Kusumi, A., Pasenkiewicz-Gierula, M.: Effects of phospholipid unsaturation on the bilayer nonpolar region: a molecular simulation study. J. Lipid. Res. 45(2), 326–336 (2004)CrossRefGoogle Scholar
  173. 173.
    Rog, T., Murzyn, K., Pasenkiewicz-Gierula, M.: The dynamics of water at the phospholipid bilayer surface: a molecular dynamics simulation study. Chem. Phys. Lett. 352(5–6), 323–327 (2002)zbMATHCrossRefGoogle Scholar
  174. 174.
    Rog, T., Pasenkiewicz-Gierula, M.: Cholesterol effects on the phosphatidylcholine bilayer nonpolar region: a molecular simulation study. Biophys. J. 81, 2190–2202 (2001)CrossRefGoogle Scholar
  175. 175.
    Rog, T., Pasenkiewicz-Gierula, M.: Cholesterol effects on the phospholipid condensation and packing in the bilayer: a molecular simulation study. FEBS Lett. 502, 68–71 (2001)CrossRefGoogle Scholar
  176. 176.
    Rog, T., Pasenkiewicz-Gierula, M.: Effects of epicholesterol on the phosphatidylcholine bilayer: a molecular simulation study. Biophys. J. 84(3), 1818–1826 (2003)CrossRefGoogle Scholar
  177. 177.
    Rog, T., Pasenkiewicz-Gierula, M.: Non-polar interactions between cholesterol and phospholipids: a molecular dynamics simulation study. Biophys. Chem. 107(2), 151–164 (2004)zbMATHCrossRefGoogle Scholar
  178. 178.
    Rog, T., Pasenkiewicz-Gierula, M.: Cholesterol-sphingomyelin interactions: a molecular dynamics simulation study. Biophys. J. 91(10), 3756–3767 (2006)CrossRefGoogle Scholar
  179. 179.
    Rog, T., Pasenkiewicz-Gierula, M.: Cholesterol effects on a mixed-chain phosphatidylcholine bilayer: a molecular dynamics simulation study. Biochimie 88(5), 449–460 (2006)CrossRefGoogle Scholar
  180. 180.
    Rog, T., Pasenkiewicz-Gierula, M., Vattulainen, I., Karttunen, M.: What happens if cholesterol is made smoother: importance of methyl substituents in cholesterol ring structure on phosphatidylcholine-sterol interaction. Biophys. J. 92(10), 3346–3357 (2007)CrossRefGoogle Scholar
  181. 181.
    Rog, T., Pasenkiewicz-Gierula, M., Vattulainen, I., Karttunen, M.: Ordering effects of cholesterol and its analogues. Biochim. Biophys. Acta 1788, 97–121 (2009)CrossRefGoogle Scholar
  182. 182.
    Rog, T., Stimson, L.M., Pasenkiewicz-Gierula, M., Vattulainen, I., Karttunen, M.: Replacing the cholesterol hydroxyl group with the ketone group facilitates sterol flip-flop and promotes membrane fluidity. J. Phys. Chem. B 112(7), 1946–1952 (2008)CrossRefGoogle Scholar
  183. 183.
    Rosso, L., Gould, I.R.: Structure and dynamics of phospholipid bilayers using recently developed general all-atom force fields. J. Comput. Chem. 29(1), 24–37 (2008)CrossRefGoogle Scholar
  184. 184.
    Samanta, S., Hezaveh, S., Milano, G., Roccatano, D.: Diffusion of 1,2-Dimethoxyethane and 1,2-dimethoxypropane through phosphatidycholine bilayers: a molecular dynamics study. J. Phys. Chem. B 116(17), 5141–5151 (2012)CrossRefGoogle Scholar
  185. 185.
    Schuler, L.D., Daura, X., Van Gunsteren, W.F.: An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem. 22(11), 1205–1218 (2001)CrossRefGoogle Scholar
  186. 186.
    Schwille, P., Korlach, J., Webb, W.W.: Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36(3), 176–182 (1999)CrossRefGoogle Scholar
  187. 187.
    Scott, H.L.: Modeling the lipid component of membranes. Curr. Opin. Struct. Biol. 12(4), 495–502 (2002)CrossRefGoogle Scholar
  188. 188.
    Shi, Q., Voth, G.A.: Multi-scale modeling of phase separation in mixed lipid bilayers. Biophys. J. 89(4), 2385–2394 (2005)CrossRefGoogle Scholar
  189. 189.
    Shin, Y.K., Ewert, U., Budil, D.E., Freed, J.H.: Microscopic versus macroscopic diffusion in model membranes by electron-spin-resonance spectral-spatial imaging. Biophys. J. 59(4), 950–957 (1991)CrossRefGoogle Scholar
  190. 190.
    Shinoda, W., Shimizu, M., Okazaki, S.: Molecular dynamics study on electrostatic properties of a lipid bilayer: polarization, electrostatic potential, and the effects on structure and dynamics of water near the interface. J. Phys. Chem. B 102(34), 6647–6654 (1998)CrossRefGoogle Scholar
  191. 191.
    Siu, S.W.I., Pluhackova, K., Bockmann, R.A.: Optimization of the OPLS-AA force field for long hydrocarbons. J. Chem. Theory. Comput. 8(4), 1459–1470 (2012)CrossRefGoogle Scholar
  192. 192.
    Smondyrev, A.M., Berkowitz, M.L.: Molecular dynamics simulation of dipalmitoylphosphatidylcholine membrane with cholesterol sulfate. Biophys. J. 78(4), 1672–1680 (2000)CrossRefGoogle Scholar
  193. 193.
    Smondyrev, A.M., Berkowitz, M.L.: Effects of oxygenated sterol on phospholipid bilayer properties: a molecular dynamics simulation. Chem. Phys. Lipids 112(1), 31–39 (2001)CrossRefGoogle Scholar
  194. 194.
    Soni, S.P., Ward, J.A., Sen, S.E., Feller, S.E., Wassall, S.R.: Effect of trans unsaturation on molecular organization in a phospholipid membrane. Biochemistry 48(46), 11097–11107 (2009)CrossRefGoogle Scholar
  195. 195.
    Stepniewski, M., Bunker, A., Pasenkiewicz-Gierula, M., Karttunen, M., Rog, T.: Effects of the lipid bilayer phase state on the water membrane interface. J. Phys. Chem. B 114(36), 11784–11792 (2010)CrossRefGoogle Scholar
  196. 196.
    Stouch, T.R.: Lipid-membrane structure and dynamics studied by all-atom molecular-dynamics simulations of hydrated phospholipid-bilayers. Mol. Simulat. 10(2–6), 335–362 (1993)CrossRefGoogle Scholar
  197. 197.
    Subczynski, W.K., Hyde, J.S., Kusumi, A.: Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes: a pulse ESR spin labeling study. Biochemistry 30(35), 8578–8590 (1991)CrossRefGoogle Scholar
  198. 198.
    Subczynski, W.K., Mainali, L., Raguz, M., O’Brien, W.J.: Organization of lipids in fiber-cell plasma membranes of the eye lens. Exp. Eye Res. 156, 79–86 (2017)CrossRefGoogle Scholar
  199. 199.
    Subczynski, W.K., Wisniewska, A., Yin, J.-J., Hyde, J.S., Kusumi, A.: Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry 33, 7670–7681 (1994)CrossRefGoogle Scholar
  200. 200.
    Sundaralingam, M.: Molecular structures and conformations of the phospholipids and sphingomyelins. Ann. NY Acad. Sci. 195, 324–355 (1972)CrossRefGoogle Scholar
  201. 201.
    Tabony, J., Perly, B.: Quasi-elastic neutron-scattering measurements of fast local translational diffusion of lipid molecules in phospholipid-bilayers. Biochim. Biophys. Acta 1063(1), 67–72 (1991)CrossRefGoogle Scholar
  202. 202.
    Takaoka, Y., Pasenkiewicz-Gierula, M., Miyagawa, H., Kitamura, K., Tamura, Y., Kusumi, A.: Molecular dynamics generation of nonarbitrary membrane models reveals lipid orientational correlations. Biophys. J. 79(6), 3118–3138 (2000)CrossRefGoogle Scholar
  203. 203.
    Tepper, H.L., Voth, G.A.: Mechanisms of passive ion permeation through lipid bilayers: insights from simulations. J. Phys. Chem. B 110(42), 21327–21337 (2006)CrossRefGoogle Scholar
  204. 204.
    Terama, E., Ollila, O.H.S., Salonen, E., Rowat, A.C., Trandum, C., Westh, P., Patra, M., Karttunen, M., Vattulainen, I.: Influence of ethanol on lipid membranes: from lateral pressure profiles to dynamics and partitioning. J. Phys. Chem. B 112(13), 4131–4139 (2008)CrossRefGoogle Scholar
  205. 205.
    Tessier, M.B., DeMarco, M.L., Yongye, A.B., Woods, R.J.: Extension of the GLYCAM06 biomolecular force field to lipids, lipid bilayers and glycolipids. Mol. Simulat. 34(4), 349–363 (2008)CrossRefGoogle Scholar
  206. 206.
    Tieleman, D.P., Marrink, S.J., Berendsen, H.J.C.: A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim. Biophys. Acta-Rev. Biomem. 1331(3), 235–270 (1997)CrossRefGoogle Scholar
  207. 207.
    Tristram-Nagle, S., Nagle, J.F.: Lipid bilayers: thermodynamics, structure, fluctuations, and interactions. Chem. Phys. Lipids 127(1), 3–14 (2004)CrossRefGoogle Scholar
  208. 208.
    Truscott, R.J.: Age-related nuclear cataract: a lens transport problem. Ophthalmic. Res. 32, 185–194 (2000)CrossRefGoogle Scholar
  209. 209.
    Tu, K.C., Klein, M.L., Tobias, D.J.: Constant-pressure molecular dynamics investigation of cholesterol effects in a dipalmitoylphosphatidylcholine bilayer. Biophys. J. 75(5), 2147–2156 (1998)CrossRefGoogle Scholar
  210. 210.
    Tuchtenhagen, J., Ziegler, W., Blume, A.: Acyl-chain conformational ordering in liquid-crystalline bilayers—comparative Ft-Ir and H-2-Nmr studies of phospholipids differing in headgroup structure and chain-length. Eur. Biophys. J. 23(5), 323–335 (1994)CrossRefGoogle Scholar
  211. 211.
    Ulrich, A.S., Volke, F., Watts, A.: The dependence of phospholipid headgroup mobility on hydration as studied by deuterium-Nmr spin-lattice relaxation-time measurements. Chem. Phys. Lipids. 55(1), 61–66 (1990)CrossRefGoogle Scholar
  212. 212.
    Vacha, R., Berkowitz, M.L., Jungwirth, P.: Molecular model of a cell plasma membrane with an asymmetric multicomponent composition: water permeation and ion effects. Biophys. J. 96(11), 4493–4501 (2009)CrossRefGoogle Scholar
  213. 213.
    Vainio, S., Jansen, M., Koivusalo, M., Rog, T., Karttunen, M., Vattulainen, I., Ikonen, E.: Significance of sterol structural specificity—desmosterol cannot replace cholesterol in lipid rafts. J. Biol. Chem. 281(1), 348–355 (2006)CrossRefGoogle Scholar
  214. 214.
    van Gunsteren, W.F., Daura, X., Mark, A.E.: Gromos force field. In: von Rague Schleyer, P. (ed.) Encyclopedia of Computational Chemistry, vol. 2, pp. 1211–1216. Wiley (1998)Google Scholar
  215. 215.
    van Meer, G.: Cellular lipidomics. EMBO J. 24(18), 3159–3165 (2005)CrossRefGoogle Scholar
  216. 216.
    van Meer, G., Voelker, D.R., Feigenson, G.W.: Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9(2), 112–124 (2008)CrossRefGoogle Scholar
  217. 217.
    Vattulainen, I., Rog, T.: Lipid simulations: a perspective on lipids in action. Cold Spring Harbor Perspect. Biol. 3(4) (2011)CrossRefGoogle Scholar
  218. 218.
    Vaz, W.L.C., Almeida, P.F.: Microscopic versus macroscopic diffusion in one-component fluid phase lipid bilayer-membranes. Biophys. J. 60(6), 1553–1554 (1991)CrossRefGoogle Scholar
  219. 219.
    Veatch, S.L., Keller, S.L.: Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. Acta-Mol. Cell Res. 1746(3), 172–185 (2005)CrossRefGoogle Scholar
  220. 220.
    Vist, M.R., Davis, J.H.: Phase-Equilibria of cholesterol dipalmitoyl-phosphatidylcholine mixtures—H-2 nuclear magnetic-resonance and differential scanning calorimetry. Biochemistry 29(2), 451–464 (1990)CrossRefGoogle Scholar
  221. 221.
    Volkov, V.V., Palmer, D.J., Righini, R.: Heterogeneity of water at the phospholipid membrane interface. J. Phys. Chem. B 111(6), 1377–1383 (2007)CrossRefGoogle Scholar
  222. 222.
    Vollhardt, D.: Effect of unsaturation in fatty acids on the main characteristics of Langmuir monolayers. J. Phys. Chem. C 111(18), 6805–6812 (2007)CrossRefGoogle Scholar
  223. 223.
    White, S.H., Jacobs, R.E., King, G.I.: Partial specific volumes of lipid and water in mixtures of egg lecithin and water. Biophys. J. 52(4), 663–665 (1987)CrossRefGoogle Scholar
  224. 224.
    Widomska, J., Raguz, M., Subczynski, W.K.: Oxygen permeability of the lipid bilayer membrane made of calf lens lipids. Biochim. Biophys. Acta-Biomem. 1768(10), 2635–2645 (2007)CrossRefGoogle Scholar
  225. 225.
    Wiener, M.C., White, S.H.: Structure of a Fluid Dioleoylphosphatidylcholine bilayer determined by joint refinement of X-Ray and neutron-diffraction data. 2. Distribution and packing of terminal methyl-groups. Biophys. J. 61(2), 428–433 (1992)CrossRefGoogle Scholar
  226. 226.
    Wiener, M.C., White, S.H.: Structure of a Fluid Dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron-diffraction data. 3. Complete structure. Biophys. J. 61(2), 434–447 (1992)CrossRefGoogle Scholar
  227. 227.
    Wilkinson, D.A., Nagle, J.F.: Dilatometry and calorimetry of saturated phosphatidylethanolamine dispersions. Biochemistry 20(1), 187–192 (1981)CrossRefGoogle Scholar
  228. 228.
    Zhang, Z., Lu, L., Berkowitz, M.L.: Energetics of cholesterol transfer between lipid bilayers. J. Phys. Chem. B 112(12), 3807–3811 (2008)CrossRefGoogle Scholar
  229. 229.
    Zhao, W., Gurtovenko, A.A., Vattuainen, I., Karttunen, M.: Cationic Dimyristoylphosphatidylcholine and Dioleoyloxytrimethylammonium propane lipid bilayers: atomistic insight for structure and dynamics. J. Phys. Chem. B 116(1), 269–276 (2012)CrossRefGoogle Scholar
  230. 230.
    Zhao, W., Rog, T., Gurtovenko, A.A., Vattulainen, I., Karttunen, M.: Atomic-scale structure and electrostatics of anionic palmitoyloleoylphosphatidyl-glycerol lipid bilayers with Na+ counterions. Biophys. J. 92(4), 1114–1124 (2007)CrossRefGoogle Scholar
  231. 231.
    Zhao, W., Rog, T., Gurtovenko, A.A., Vattulainen, I., Karttunen, M.: Role of phosphatidylglycerols in the stability of bacterial membranes. Biochimie 90(6), 930–938 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marta Pasenkiewicz-Gierula
    • 1
    Email author
  • Michał Markiewicz
    • 1
  1. 1.Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics, and BiotechnologyJagiellonian UniversityKrakowPoland

Personalised recommendations