Advertisement

Mechanostability of Virus Capsids and Their Proteins in Structure-Based Coarse-Grained Models

  • Marek CieplakEmail author
Chapter
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 8)

Abstract

We outline a simple coarse-grained molecular dynamics model of proteins which is based on the knowledge of their native structures. We apply the model to study properties of selected proteins that are found in virus capsids, such as in CCMV and its mutant. We characterize their folding kinetics and force-displacement curves obtained during stretching. The stretching curves are shown to be sensitive to the mutations. We make a short review of possible mechanical clamps (motifs that are most resistant to stretching) that have been found in large scale surveys of mechanostability with the use of the model. We then discuss stretching of multimeric complexes of such proteins and demonstrate existence of strong dependence of the force-displacement curves on selection of a pair of termini involved in stretching. Finally, we consider nanoindentation processes in several virus capsids. We show that values of characteristic forces at which the capsids collapse are not correlated with mechanostabilities of the constituting proteins. We also show that the response to nanoindentation recognizes existence of single point mutations in the proteins but not in the initial stages of the process.

Notes

Acknowledgements

M. Cieplak is grateful to M. Chwastyk, P. Cieplak, K. Modro, M. Sikora, and T. Włodarski for discussions and help with some figures and data. The computer resources were financed by the European Regional Development Fund under the Operational Programme Innovative Economy NanoFun POIG.02.02.00-00-025/09. The research on the revised version of this chapter has been supported by the Polish National Science Centre Grant No. 2014/15/B/ST3/01905.

References

  1. 1.
    Neuman, K.C., Nagy, A.: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008)CrossRefGoogle Scholar
  2. 2.
    Weiss, S.: Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999)CrossRefGoogle Scholar
  3. 3.
    Schuler, B., Lipman, E.A., Eaton, W.A.: Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419, 743–747 (2002)CrossRefGoogle Scholar
  4. 4.
    Yang, H., Luo, G.B., Karnchanaphanurach, P., Louie, T.M., Rech, I., Cova, S., Xun, L.Y., Xie, X.S.: Protein conformational dynamics probed by single-molecule electron transfer. Science 302, 262–266 (2003)CrossRefGoogle Scholar
  5. 5.
    Borgia, M.B., Borgia, A., Best, R.B., Steward, A., Nettels, D., Wunderlich, B., Schuler, B., Clarke, J.: Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins. Nature 474, 662–665 (2011)CrossRefGoogle Scholar
  6. 6.
    Carrion-Vasquez, M., Oberhauser, A.F., Fowler, S.B., Marszalek, P.E., Broedel, P.E.: Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl. Acad. Sci. USA 96, 3694–3699 (1999)CrossRefGoogle Scholar
  7. 7.
    Fernandez, J.M., Li, H.B.: Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303, 1674–1678 (2004)CrossRefGoogle Scholar
  8. 8.
    Cecconi, C., Shank, E.A., Bustamante, C., Marqusee, S.: Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005)CrossRefGoogle Scholar
  9. 9.
    Carrion-Vazquez, M., Cieplak, M., Oberhauser, A.F.: Protein mechanics at the single-molecule level. In: Meyers R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7026–7050. Springer, New York (2009)CrossRefGoogle Scholar
  10. 10.
    Crampton, N., Brockwell, D.J.: Unravelling the design principles for single protein mechanical strength. Curr. Opin. Struct. Biol. 20, 508–517 (2010)CrossRefGoogle Scholar
  11. 11.
    Del Rio, A., Perez-Jimenez, R., Liu, R.C., Roca-Cusachs, P., Fernandez, J.M., Sheetz, M.P.: Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009)CrossRefGoogle Scholar
  12. 12.
    Vogel, V.: Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35, 459–488 (2006)CrossRefGoogle Scholar
  13. 13.
    Hervas, R., Oroz, J., Galera-Prat, A., Goni, O., Valbuena, A., Vera, A.M., Gomez-Socilia, A., Losada-Urzaiz, F., Uversky, V.N., Menendez, M., Laurents, D.V., Bruix, M., Carrion-Vazquez, M.: Common features at the start of the neurodegeneration cascade. PLoS Biol. 10, e1001335 (2012)CrossRefGoogle Scholar
  14. 14.
    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997)CrossRefGoogle Scholar
  15. 15.
    Improta, S., Politou, A.S., Pastore. A.: Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Struct. 4, 323–337 (1996)CrossRefGoogle Scholar
  16. 16.
    Marszalek, P.E., Lu, H., Li, H.B., Carrion-Vazquez, M., Oberhauser, A.F., Schulten, K., Fernandez, J.M.: Mechanical unfolding intermediates in titin modules. Nature 402, 100–103 (1999)CrossRefGoogle Scholar
  17. 17.
    Lu, H., Schulten, K.: Steered molecular dynamics simulation of conformational changes of immunoglobulin domain I27 interprete atomic force microscopy observations. Chem. Phys. 247, 141–153 (1999)CrossRefGoogle Scholar
  18. 18.
    Paci, E., Karplus, M.: Unfolding proteins by external forces and temperature: the importance of topology and energetics. Proc. Natl. Acad. Sci. USA 97, 6521–6526 (2000)CrossRefGoogle Scholar
  19. 19.
    Bockelmann, U., Essevaz-Roulet, B., Heslot, F.: Molecular stick-slip motion revealed by opening DNA with piconewton forces. Phys. Rev. Lett. 79, 4489–4492 (1997)CrossRefGoogle Scholar
  20. 20.
    Hoang, T.X., Cieplak, M.: Molecular dynamics of folding of secondary structures in Go-like models of proteins. J. Chem. Phys. 112, 6851–6862 (2000)CrossRefGoogle Scholar
  21. 21.
    Cieplak, M., Hoang, T.X., Robbins, M.O.: Folding and stretching in a Go-like model of titin, proteins: function. Struct. Genet. 49, 114–124 (2002)CrossRefGoogle Scholar
  22. 22.
    Cieplak, M., Hoang, T.X.: Universality classes in folding times of proteins. Biophys. J. 84, 475–488 (2003)CrossRefGoogle Scholar
  23. 23.
    Cieplak, M., Hoang, T.X., Robbins, M.O.: Thermal effects in stretching of Go-like models of titin and secondary structures. Proteins: Struct. Funct. Bio. 56, 285–297 (2004)CrossRefGoogle Scholar
  24. 24.
    Sułkowska, J.I., Cieplak, M.: Mechanical stretching of proteins—a theoretical survey of the Protein Data Bank. J. Phys.: Cond. Mat. 19, 283201 (2007)Google Scholar
  25. 25.
    Yang, L.J., Tan, C.H., Hsieh, M.J., Wang, J.M., Duan, Y., Cieplak, P., Caldwell, J., Kollman, P.A., Luo, R.: New-generation amber united-atom force field. J. Phys. Chem. B 110, 13166–13176 (2006)CrossRefGoogle Scholar
  26. 26.
    Go, N.: Theoretical studies of protein folding. Annu. Rev. Biophys. Bioeng. 12, 183–210 (1983)CrossRefGoogle Scholar
  27. 27.
    Abe, H., Go, N.: Noninteracting local-structure model of folding and unfolding transition in globular proteins. II. Application to two-dimensional lattice proteins. Biopolymers 20, 1013–1031 (1981)CrossRefGoogle Scholar
  28. 28.
    Sali, A., Shakhnovich, E., Karplus, M.: How does a protein fold. Nature 369, 248–251 (1994)CrossRefGoogle Scholar
  29. 29.
    Shrivastava, I., Vishveshwara, S., Cieplak, M., Maritan, A., Banavar, J.R.: Lattice model for rapidly folding protein-like heteropolymers. Proc. Natl. Acad. Sci. USA 92, 9206–9209 (1995)CrossRefGoogle Scholar
  30. 30.
    Sułkowska, J.I., Cieplak, M.: Selection of optimal variants of Go-like models of proteins through studies of stretching. Biophys. J. 95, 3174–3191 (2008)CrossRefGoogle Scholar
  31. 31.
    Cieplak, M., Sułkowska, J.I.: Structure-based models of biomolecules: stretchnig of proteins, dynamics of knots, hydrodynamic effects, and indentation of virus capsids. In: Koliński, A. (ed.) Chapter 8 in Multiscale Approaches to Protein Modeling: Structure Prediction, Dynamics, Thermodynamics and Macromolecular Assemblies, pp. 179–208. Springer, New York (2010)Google Scholar
  32. 32.
    Clementi, C., Nymeyer, H., Onuchic, J.N.: Topological and energetic factors: what determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298, 937–953 (2000)CrossRefGoogle Scholar
  33. 33.
    Karanicolas, J., Brooks III, C.L.: The origins of asymmetry in the folding transition states of protein L and protein G. Protein Sci. 11, 2351–2361 (2002)CrossRefGoogle Scholar
  34. 34.
    Cieplak, M.: Cooperativity and contact order in protein folding. Phys. Rev. E 69, 031907 (2004)CrossRefGoogle Scholar
  35. 35.
    Wallin, S., Zeldovich, K.B., Shakhnovich, E.I.: Folding mechanics of a knotted protein. J. Mol. Biol. 368, 884–893 (2007)CrossRefGoogle Scholar
  36. 36.
    Tsai, J., Taylor, R., Chothia, C., Gerstein, M.: The packing density in proteins: Standard radii and volumes. J. Mol. Biol. 290, 253–266 (1999)CrossRefGoogle Scholar
  37. 37.
    Settanni, G., Hoang, T.X., Micheletti, C., Maritan, A.: Folding pathways of prion and doppel. Biophys. J. 83, 3533–3541 (2002)CrossRefGoogle Scholar
  38. 38.
    Wołek, K., Gómez-Sicilia, Á., Cieplak, M.: Determination of contact maps in proteins: a combination of structural and chemical approaches. J. Chem. Phys. 143, 243105 (2015)CrossRefGoogle Scholar
  39. 39.
    Veitshans, T., Klimov, D., Thirumalai, D.: Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence dependent properties. Fold. Des. 2, 1–22 (1997)CrossRefGoogle Scholar
  40. 40.
    Szymczak, P., Cieplak, M.: Stretching of proteins in a uniform flow. J. Chem. Phys. 125, 164903 (2006)CrossRefGoogle Scholar
  41. 41.
    Valbuena, A., Oroz, J., Hervas, R., Vera, A.M., Rodriguez, D., Menendez, M., Sułkowska, J.I., Cieplak, M., Carrion-Vazquez, M.: On the remarkable mechanostability of scaffoldins and the mechanical clamp motif. Proc. Natl. Acad. Sci. USA 106, 13791–13796 (2009)CrossRefGoogle Scholar
  42. 42.
    Sikora, M., Sułkowska, J.I., Cieplak, M.: Mechanical strength of 17 132 model proteins and cysteine slipknots. PloS Comp. Biol. 5, e1000547 (2008)CrossRefGoogle Scholar
  43. 43.
    Wołek, K., Cieplak, M.: Criteria for folding in structure-based models of proteins. J. Chem. Phys. 144, 185102 (2016)CrossRefGoogle Scholar
  44. 44.
    Sikora, M., Cieplak, M.: Mechanical stability of multidomain proteins and novel mechanical clamps. Proteins: Struct. Funct. Bioinf. 79, 1786–1799 (2011)CrossRefGoogle Scholar
  45. 45.
    Sikora, M., Sułkowska, J.I., Witkowski, B.S., Cieplak, M.: BSDB: the biomolecule stretching database. Nucl. Acid. Res. 39, D443–D450 (2011)CrossRefGoogle Scholar
  46. 46.
    Chen, J., Callis, P.R., King, J.: Mechanism of the very efficient quenching of tryptophan fluorescence in human \(\gamma \)D- and \(\gamma \)S-crystallins: the \(\gamma \)-crystallin fold may have evolved to protect tryptophan resdidues from ultraviolet photodamage. Biochemistry 48, 3708–3716 (2009)CrossRefGoogle Scholar
  47. 47.
    Flaugh, S.L., Kosinski-Collins, M.S., King, J.: Interdomain side-chain interactions in human \(\gamma \)D-crystallin influencing folding and stability. Prot. Sci. 14, 2030–2043 (2005)CrossRefGoogle Scholar
  48. 48.
    McDonald, N.Q., Lapatto, R., Murray-Rust, J., Gunning, J., Wlodawer, A., Blundell, T.L.: New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature 354, 411414 (1991)Google Scholar
  49. 49.
    Murray-Rust, J., McDonald, N.Q., Blundell, T.L., Hosang, M., Oefner, C., Winkler, F., Bradshaw, R.A.: Topological similarities in TGF-beta 2, PDGF-BB and NGF define a superfamily of polypeptide growth factors. Structure 1, 153–159 (1993)CrossRefGoogle Scholar
  50. 50.
    Sun, P.D., Davies, D.R.: The cystine-knot growth-factor superfamily. Annu. Rev. Biophys. Biomol. Struct. 24, 269–291 (1995)CrossRefGoogle Scholar
  51. 51.
    Iyer, S., Acharya, K.R.: The cystine signature and molecular-recognition processes of the vascular endothelial growth factor family of angiogenic cytokines. FEBS J. 278, 4304–4322 (2011)CrossRefGoogle Scholar
  52. 52.
    Peplowski, L., Sikora, M., Nowak, W., Cieplak, M.: Molecular jamming—the cysteine slipknot mechanical clamp in all-atom simulations. J. Chem. Phys. 134, 085102 (2011)CrossRefGoogle Scholar
  53. 53.
    Sikora, M., Cieplak, M.: Cystine plug and other novel mechanisms of large mechanical stability in dimeric proteins. Phys. Rev. Lett. 109, 208101 (2012)CrossRefGoogle Scholar
  54. 54.
    Sikora, M., Cieplak, M.: Formation of cystine slipknots in dimeric proteins. PLoS ONE 8, e57443 (2013)CrossRefGoogle Scholar
  55. 55.
    Niewieczerzał, S., Cieplak, M.: Hydrodynamic interactions in protein folding. J. Chem. Phys. 21, 124905 (2009)Google Scholar
  56. 56.
    Plaxco, K.W., Simons, K.T., Baker, D.: Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277, 985–994 (1998)CrossRefGoogle Scholar
  57. 57.
    Plaxco, K.W., Simons, K.T., Ruczinski, I., Baker, D.: Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics. Biochemistry 39, 11177–11183 (2000)CrossRefGoogle Scholar
  58. 58.
    Cieplak, M., Hoang, T.X., Robbins, M.O.: Stretching of proteins in the entropic limit. Phys. Rev. E 69, 011912 (2004)CrossRefGoogle Scholar
  59. 59.
    Yang, G., Cecconi, C., Baase, W.A., Vetter, I.R., Breyer, W.A., Haack, J.A., Matthews, B.W., Dahlquist, F.W., Bustamante, C.: Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. Proc. Natl. Acad. Sci. USA 97, 139–144 (2000)CrossRefGoogle Scholar
  60. 60.
    Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M., Jaskólski, M.: Human cystatin C, an amyloidogenic protein dimerizes through three-dimensional domain swapping. Nature Struct. Biol. 8, 316–320 (2001)CrossRefGoogle Scholar
  61. 61.
    Chwastyk, M., Jaskólski, M., Cieplak, M.: The volume of cavities in proteins and virus capsids. Proteins 84, 1275–1286 (2016)CrossRefGoogle Scholar
  62. 62.
    Caspar, D., Klug, A.: Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27, 1–24 (1962)CrossRefGoogle Scholar
  63. 63.
    Roos, W.H., Bruisma, R., Wuite, G.J.L.: Physical virology. Nat. Phys. 6, 733–743 (2010)CrossRefGoogle Scholar
  64. 64.
    Michel, J.P., Ivanovska, I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J.L., Schmidt, C.F.: Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl. Acad. Sci. USA 103, 6184–6189 (2006)CrossRefGoogle Scholar
  65. 65.
    Klug, W.S., Bruinsma, R.F., Michel, J.-P., Knobler, C.M., Ivanovska, I.L., Schmidt, C.F., Wuite, G.J.L.: Failure of viral shells. Phys. Rev. Lett. 97, 228101 (2006)CrossRefGoogle Scholar
  66. 66.
    Carrasco, C., Carreira, A., Schaap, I.A.T., Serena, P.A., Gomez-Herrero, J., Mateu, M.G., de Pablo, P.J.: DNA-mediated anisotropic mechanical reinforcement of a virus. Proc. Natl. Acad. Sci. USA 103, 13706–13711 (2006)CrossRefGoogle Scholar
  67. 67.
    Carrasco, C., Castellanos, M., de Pablo, P.J., Mateu, M.G.: Manipulation of the mechanical properties of a virus by protein engineering. Proc. Natl. Acad. Sci. USA 105, 4150–4155 (2008)CrossRefGoogle Scholar
  68. 68.
    Cieplak, M., Robbins, M.O.: Nanoindentation of virus capsids in a molecular model. J. Chem. Phys. 132, 015101 (2010)CrossRefGoogle Scholar
  69. 69.
    Cieplak, M., Robbins, M.O.: Nnaoindentation of 35 virus capsids in a molecular model: relating mechanical properties to structure. PLoS ONE 8, e63640 (2013)CrossRefGoogle Scholar
  70. 70.
    Carrillo-Tripp, M., Shepherd, C.M., Borelli, I.A., Venkataraman, S., Lander, G., Natarajan, P., Johnson, J.E., Brooks III, C.L., Reddy, V.S.: VIPERdb2: and enhanced and web API enabled relational database for structural virology. Nucl. Acids Res. 37, D436–D442 (2009). http://viperdb.scripps.edu/CrossRefGoogle Scholar
  71. 71.
    Gibbons, M.M., Klug, W.S.: Nonlinear finite-element analysis of nanoindentation of viral capsids. Phys. Rev. E 75, 031901 (2007)CrossRefGoogle Scholar
  72. 72.
    Gibbons, M.M., Klug, W.S.: Influence of nonuniform geometry on nanoindentation of viral capsids. Biophys. J. 95, 3640–3649 (2008)CrossRefGoogle Scholar
  73. 73.
    Endres, D., Zlotnick, A.: Model-based analysis of assembly kinetics for virus capsids or other spherical polymers Biophys. J. 83, 1217–1230 (2002)CrossRefGoogle Scholar
  74. 74.
    Wales, D.J.: The energy landscape as a unifying theme in molecular science. Phil. Trans. R. Soc. 363, 357–377 (2005)CrossRefGoogle Scholar
  75. 75.
    Johnston, I.G., Louis, A.A., Doye, J.P.K.: Modelling the self-assembly of virus capsids. J. Phys.: Cond. Matter 22, 104101 (2010)Google Scholar
  76. 76.
    Elrad, O.M., Hagan, M.F.: Mechanisms of size control and polymorphism in viral capsid assembly. Nano Lett. 8, 3850–3857 (2008)CrossRefGoogle Scholar
  77. 77.
    Elrad, O.M., Hagan, M.F.: Encapsulation of a polumer by an icosahedral virus. Phys. Biol. 7, 045003 (2010)CrossRefGoogle Scholar
  78. 78.
    Rapaport, D.C.: Role of reversibility in viral capsid growth: a paradigm for self-assembly. Phys. Rev. Lett. 101, 186101 (2008)CrossRefGoogle Scholar
  79. 79.
    Zlotnick, A., Porterfield, J.Z., Wang, J.C.-Y.: To build a virus on a nucleic acid substrate. Biophys. J. 104, 1595–1604 (2013)CrossRefGoogle Scholar
  80. 80.
    Garmann, R.F., Comas-Garcia, M., Gopal, A., Knobler, C.M., Gelbart, W.M.: The assembly pathway of an icosahedral single-stranded RNA virus depends on the strength of inter-subunit attractions. J. Mol. Biol. 426, 1050–1060 (2014)CrossRefGoogle Scholar
  81. 81.
    Wołek, K., Cieplak, M.: Self-assembly of model proteins into virus capsids. J. Phys. Cond. Matter 47, 474003 (2017)CrossRefGoogle Scholar
  82. 82.
    Cieplak, M., Allen, D.B., Leheny, R.L., Reich, D.H.: Proteins at air-water interfaces: a coarse-grained approach. Langmuir 30, 12888–96 (2014)CrossRefGoogle Scholar
  83. 83.
    Zhao, Y., Cieplak, M.: Structural changes in barley protein LTP1 isoforms at air-water interfaces. Langmuir 33, 4769–4780 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations