Market Basket Analysis Using Community Detection Approach: A Real Case

  • Sepideh Faridizadeh
  • Neda AbdolvandEmail author
  • Saeedeh Rajaee Harandi
Part of the Lecture Notes in Social Networks book series (LNSN)


Market basket analysis, as an important analysis tool, helps businesses to improve product promotion and to recommend systems development. The association rules based on the Apriori algorithm is the conventional method of market basket analysis. In this research by modeling transactional data as product network, customer network, and customer-product network through applying a well-known network analysis technique, a number of hidden patterns in the connections among customers and products were detected. The required data is taken from an online retail store in Iran. Transactional data over a period of 6 months with around 320,616 transactions in 2015 was analyzed by the community detection method. Extracted networks from the database depict the complexity of patterns in customer behavior or in the behavior of co-purchased products. Ultimately, findings of this research indicated that the applied method would be more practical and expressive to discover complex relations in comparison to other traditional methods like the association rule mining model. In addition, the findings will be capable enough to be used as the basis of new algorithms for developing the recommender systems.


Customer shopping behavior Community detection Product network Customer network Recommender system Transactional data 


  1. 1.
    Videla-Cavieres, I. F., & Ríos, S. A. (2014). Extending market basket analysis with graph mining techniques: A real case. Expert Systems with Applications, 41(4 Part 2), 1928–1936.CrossRefGoogle Scholar
  2. 2.
    Raeder, T., & Chawla, N. V. (2011). Market basket analysis with networks. Social Network Analysis and Mining, 1, 1–17.CrossRefGoogle Scholar
  3. 3.
    Kim, H. K., Kim, J. K., & Chen, Q. Y. (2012). A product network analysis for extending the market basket analysis. Expert Systems with Applications, 39(8), 7403–7410.CrossRefGoogle Scholar
  4. 4.
    Phan, D. D., & Vogel, D. R. (2010). A model of customer relationship management and business intelligence systems for catalogue and online retailers. Information Management, 47(2), 69–77.CrossRefGoogle Scholar
  5. 5.
    Blattberg, R., Byung-Do, K., & Scott, N. (2008). Database marketing: Analyzing and managing customers (p. 875). New York: Springer.CrossRefGoogle Scholar
  6. 6.
    Han, J., & Kamber, M. (2006). Data mining concepts and techniques., Second ed. Waltham, MA: Elsevier.Google Scholar
  7. 7.
    Klemettinen, M., & Mannila, H. (1994). Finding interesting rules from large sets of discovered association rules. In Proceedings of the Third International Conference on Information and Knowledge Management (pp. 401–407).Google Scholar
  8. 8.
    Lee, J. S., Jun, C. H., Lee, J., & Kim, S. (2005). Classification-based collaborative filtering using market basket data. Expert Systems with Applications, 29(3), 700–704.CrossRefGoogle Scholar
  9. 9.
    Zhu, X., Ye, H., & Gong, S. (2009). A personalized recommendation system combining case-based reasoning and user-based collaborative filtering, In 2009 Chinese Control and Decision Conference CCDC 2009 (pp. 4026–4028).Google Scholar
  10. 10.
    Adomavicius, G., & Tuzhilin, A. (2005). Towards the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749.CrossRefGoogle Scholar
  11. 11.
    Zhao, Z.-D., & Shang, M.-S. (2010). User-based collaborative-filtering recommendation algorithms on Hadoop. In 2010 Third International Conference on Knowledge Discovery and Data Mining (pp. 478–481).Google Scholar
  12. 12.
    Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application developments: A survey. Decision Support Systems, 74, 12–32.CrossRefGoogle Scholar
  13. 13.
    Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proceeding VLDB ’94 Proc. 20th Int. Conf. Very Large Data Bases (Vol. 1215, pp. 487–499).Google Scholar
  14. 14.
    Ahlemeyer-Stubbe, A., & Coleman, S. (2014). A practical guide to data mining for business and industry. West Sussex, UK: Wiley.CrossRefGoogle Scholar
  15. 15.
    Zaki, M. J., Parthasarathy, S., Ogihara, M., Li, W. (1997). New algorithms for fast discovery of association rules. In KDD (Vol. 7, pp. 283–286).Google Scholar
  16. 16.
    Petrison, L. A., Blattberg, R. C., & Wang, P. (1997). Database marketing. Journal of Interactive Marketing, 11(4), 109–125.Google Scholar
  17. 17.
    Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. ACM SIGMOD Record, 22(2), 207–216.CrossRefGoogle Scholar
  18. 18.
    Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM SIGMOD Record, 29(2), 1–12.CrossRefGoogle Scholar
  19. 19.
    Zaki, M. J. (2000). Generating non-redundant association rules, In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 34–43).Google Scholar
  20. 20.
    Brijs, T., Vanhoof, K., & Wets, G. (2003). Defining interestingness for association rules. International Journal “Information Theories & Applications”, 10(4), 370–376.Google Scholar
  21. 21.
    Tan, P.-N., Kumar, V., & Srivastava, J. (2004). Selecting the right objective measure for association analysis. Information Systems, 29(4), 293–313.CrossRefGoogle Scholar
  22. 22.
    Du Mouchel, W., & Pregibon, D. (2001). Empirical Bayes screening for multi-item associations, In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD’01 (pp. 67–76).Google Scholar
  23. 23.
    Easley, D., & Kleinberg, J. (2010). Networks, crowds, and markets: reasoning about a highly connected world (Vol. 81). Cambridge University Press.Google Scholar
  24. 24.
    Cuvelier, E., & Aufaure, M.-A. A. (2012). Graph mining and communities detection. In M.-A. Aufaure & E. Zimányi (Eds.), Business intelligence, vol. 96 (pp. 117–138). Berlin Heidelberg: LNBIP Springer.CrossRefGoogle Scholar
  25. 25.
    Stam, C. C. J., & Reijneveld, J. C. J. (2007). Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys., 1, 3.CrossRefGoogle Scholar
  26. 26.
    Wang, Y., & Lin, K. J. (2008). Reputation-oriented trustworthy computing in e-commerce environments. IEEE Internet Computing, 12(4), 55–59 25.CrossRefGoogle Scholar
  27. 27.
    Shai, O., & Preiss, K. (1999). Graph theory representations of engineering systems and their embedded knowledge. Artificial Intelligence in Engineering, 13(3), 273–285.CrossRefGoogle Scholar
  28. 28.
    Huang, Z., Zeng, D. D., & Chen, H. (2007). Analyzing consumer-product graphs: Empirical findings and applications in recommender systems. Management Science, 53(7), 1146–1164.CrossRefGoogle Scholar
  29. 29.
    McSherry, F., & Mironov, I. (2009). Differentially private recommender systems: building privacy into the netflix prize, In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 627–636).Google Scholar
  30. 30.
    Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining of massive data., Second ed. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  31. 31.
    Beel, J., Langer, S., Genzmehr, M., Gipp, B., Breitinger, C., & Nürnberger, A. (2013). Research paper recommender system evaluation: A quantitative literature survey. In RepSys (pp. 15–22).Google Scholar
  32. 32.
    Amatriain, X., Jaimes, A., Oliver, N., & Pujol, J. (2011). Data mining methods for recommender systems. Recommender Systems Handbook, pp. 39–71.Google Scholar
  33. 33.
    Girvan, M., Girvan, M., Newman, M. E. J., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826.CrossRefGoogle Scholar
  34. 34.
    Schafer, J., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering recommender systems. In Adaptive Web (pp. 291–324).Google Scholar
  35. 35.
    Newman, M. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577–8582.CrossRefGoogle Scholar
  36. 36.
    Sankar, C. P., Asokan, K., & Kumar, K. S. (2015). Exploratory social network analysis of affiliation networks of Indian listed companies. Social Networks, 43, 113–120.CrossRefGoogle Scholar
  37. 37.
    Newman, M., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 1–16.CrossRefGoogle Scholar
  38. 38.
    Pons, P., & Latapy, M. (2005). Computing communities in large networks using random walks. Journal of Graph Algorithms and Applications, 10(2), 191–218.CrossRefGoogle Scholar
  39. 39.
    Newman, M. E. J. (2004). Detecting community structure in networks. The European Physical Journal B, 38(2), 321–330.CrossRefGoogle Scholar
  40. 40.
    Bhowmick, S., & Srinivasan, S. (2013). A template for parallelizing the Louvain method for modularity maximization. Dynamics On and Of Complex Networks, 2, 111–124.Google Scholar
  41. 41.
    Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 74(3), 036104.CrossRefGoogle Scholar
  42. 42.
    Newman, M. E. J.. Analysis of weighted networks. Physical Review E, Vol.70, No.5 2004: 056131.Google Scholar
  43. 43.
    Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008, 6.CrossRefGoogle Scholar
  44. 44.
    Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 74(3).Google Scholar
  45. 45.
    Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6 Pt 2), 066111.CrossRefGoogle Scholar
  46. 46.
    Kawonga, M., Blaauw, D., & Fonn, S. (2015). Exploring the use of social network analysis to measure communication between disease programme and district managers at sub-national level in South Africa. Social Science & Medicine, 135, 1–14.CrossRefGoogle Scholar
  47. 47.
    de Nooy, W., Mrvar, A., & Batagelj, V. (2005). Exploratory social network analysis with Pajek. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  48. 48.
    Bhaskaran, S. R., & Gilbert, S. M. (2005). Selling and leasing strategies for durable goods with complementary products. Management Science, 51(8), 1278–1290.CrossRefGoogle Scholar
  49. 49.
    Celdrán, A. H., Pérez, M. G., García Clemente, F. J., & Pérez, G. M. (2016). Design of a recommender system based on users’ behavior and collaborative location and tracking. Journal of Computer Science, 12, 83–94.CrossRefGoogle Scholar
  50. 50.
    Kim, H. K., Kim, J. K., & Ryu, Y. U. (2009). Personalized recommendation over a customer network for ubiquitous shopping. IEEE Transactions on Services Computing, 2(2), 140–151.CrossRefGoogle Scholar
  51. 51.
    Gregory, S. (2009). Finding overlapping communities using disjoint community detection algorithms. Studies in Computational Intelligence, 207, 47–61.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sepideh Faridizadeh
    • 1
  • Neda Abdolvand
    • 1
    Email author
  • Saeedeh Rajaee Harandi
    • 1
  1. 1.Department of Social Science and EconomicsAlzahra UniversityTehranIran

Personalised recommendations