Advertisement

Corneal Haze, Refractive Surgery, and Implications for Choroidal Neovascularization

  • Amitoj Singh
  • Afrah Jalil Abd
  • Aseel Al-Mashahedah
  • Jagat Rakesh Kanwar
Chapter

Abstract

Visual impairment is a multifactorial issue affecting 285 million people world-wide and influencing their quality of life. Although surgical procedures such as photorefractive keratectomy (PRK), laser in situ keratomileusis (LASIK), laser sub-epithelial keratomileusis (LASEK), and implantation of synthetic intra-ocular lenses have shown promise in correcting refractive errors, post-operative complications represented by blurry vision (corneal haze) are widely recorded, with the duration of the symptom varying with each case from a few days to months. In addition to surgical procedures, corneal injuries such as alkali burns, infections, etc. cause keratocyte apoptosis, which triggers a wound-healing cascade leading to corneal haze. Corneal haze is the result of aggressive wound healing and the formation of scar tissue post-surgery, which involves the differentiation of keratocytes to myofibroblasts causing fibrosis, and unorganized deposition of collagen types IV and VII leading to reduced ocular clarity. Therefore, the goal of future research is to promote wound healing through regeneration without fibrosis, and reducing the oxidative damage caused by reactive oxygen species. Consequently, significant research is being undertaken in reducing these complications, in addition to increasing the efficacy of the existing drug formulations to reduce ocular toxicity, corneal haze, and reduce the rate of wound healing. This chapter presents a comprehensive review of the current treatments available, and new prospects for therapy.

Keywords

Haze PRK LASIK LASEK Myopia Choroidal neovascularization 

Notes

Acknowledgements

The authors are grateful to the National Health and Medical Research Council (NHMRC; APP1050286) and Australia-India Strategic Research Fund (AISRF).

References

  1. 1.
    Pascolini D, Mariotti SP. Global estimates of visual impairment. Br J Ophthalmol. 2012;96:614–8. bjophthalmol.-300539.PubMedCrossRefGoogle Scholar
  2. 2.
    Fahd D, de la Cruz J, Jain S, Azar D. Corneal haze after refractive surgery. In: Management of complications in refractive surgery. Berlin: Springer; 2008. p. 179–86.CrossRefGoogle Scholar
  3. 3.
    Jester JV, Moller-Pedersen T, Huang J, Sax CM, Kays WT, Cavangh HD, Petroll WM, Piatigorsky J. The cellular basis of corneal transparency: evidence for ‘corneal crystallins. J Cell Sci. 1999;5:613–22.Google Scholar
  4. 4.
    Shimmura S, Masumizu T, Nakai Y, Urayama K, Shimazaki J, Bissen-Miyajima H, Kohno M, Tsubota K. Excimer laser-induced hydroxyl radical formation and keratocyte death in vitro. Invest Ophthalmol Vis Sci. 1999a;6:1245–9.Google Scholar
  5. 5.
    Bilgihan A, Bilgihan K, Yis O, Sezer C, Akyol G, Hasanreisoglu B. Effects of topical vitamin E on corneal superoxide dismutase, glutathione peroxidase activities and polymorphonuclear leucocyte infiltration after photorefractive keratectomy. Acta Ophthalmol Scand. 2003b;2:177–80.CrossRefGoogle Scholar
  6. 6.
    Scorolli L, Meduri A, Morara M, Scalinci S, Meduri R. Effect of cytochrome c peroxidase on the corneal epithelial healing process after excimer laser photo-ablation in transgenic mice. Eur Surg Res. Eur Chirurgische Forschung. Recherches Chirurgicales Europeennes. 2006;2:82–7.Google Scholar
  7. 7.
    Stojanovic A, Nitter TA. Correlation between ultraviolet radiation level and the incidence of late-onset corneal haze after photorefractive keratectomy. J Cataract Refract Surg. 2001;3:404–10.CrossRefGoogle Scholar
  8. 8.
    Ambrósio R, Wilson SE. LASIK vs LASEK vs PRK: advantages and indications. Semin Ophthalmol, Informa UK Ltd UK. 2003;18:2–10.CrossRefGoogle Scholar
  9. 9.
    Roberts TV, Lawless M, Chan CC, Jacobs M, Ng D, Bali SJ, Hodge C, Sutton G. Femtosecond laser cataract surgery: technology and clinical practice. Clin Exp Ophthalmol. 2013;2:180–6.CrossRefGoogle Scholar
  10. 10.
    Ang RT, Dartt DA, Tsubota K. Dry eye after refractive surgery. Curr Opin Ophthalmol. 2001;4:318–22.CrossRefGoogle Scholar
  11. 11.
    Kim SJ, Flach AJ, Jampol LM. Nonsteroidal anti-inflammatory drugs in ophthalmology. Surv Ophthalmol. 2010;2:108–33.CrossRefGoogle Scholar
  12. 12.
    Netto MV, Mohan RR, Ambrósio R Jr, Hutcheon AE, Zieske JD, Wilson SE. Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy. Cornea. 2005;5:509–22.CrossRefGoogle Scholar
  13. 13.
    Taneri S, Zieske JD, Azar DT. Evolution, techniques, clinical outcomes, and pathophysiology of LASEK: review of the literature. Surv Ophthalmol. 2004;6:576–602.CrossRefGoogle Scholar
  14. 14.
    Kim J, Sah W, Park C, Hahn T, Kim M. Myopic regression after photorefractive keratectomy. Ophthal Surg Lasers. 1996;27(5 Suppl):S435–9.Google Scholar
  15. 15.
    Williams DK. Multizone photorefractive keratectomy for high and very high myopia: long-term results. J Cataract Refract Surg. 1997;7:1034–41.CrossRefGoogle Scholar
  16. 16.
    Mohan RR, Hutcheon AE, Choi R, Hong J, Lee J, Mohan RR, Ambrósio R, Zieske JD, Wilson SE. Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK. Exp Eye Res. 2003;1:71–87.CrossRefGoogle Scholar
  17. 17.
    Spadea L, Fasciani R, Necozione S, Balestrazzi E. Role of the corneal epithelium in refractive changes following laser in situ keratomileusis for high myopia. J Refract Surg. 2000;2:133.Google Scholar
  18. 18.
    Wilson SE, Liu JJ, Mohan RR. Stromal-epithelial interactions in the cornea. Prog Ret Eye Res. 1999;18:293–309.CrossRefGoogle Scholar
  19. 19.
    Wilson SE, Mohan RR, Hong J-W, Lee J-S, Choi R, Mohan RR. The wound healing response after laser in situ keratomileusis and photorefractive keratectomy: elusive control of biological variability and effect on custom laser vision correction. Arch Ophthalmol. 2001a;6:889–96.CrossRefGoogle Scholar
  20. 20.
    Wilson SE, Mohan RR, Mohan RR, Ambrósio R, Hong J, Lee J. The corneal wound healing response:: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog Ret Eye Res. 2001b;5:625–37.CrossRefGoogle Scholar
  21. 21.
    Nagy ZZ, Hiscott P, Seitz B, Shlötzer-Schrehardt U, Simon M, Süveges I, Naumann GO. Ultraviolet-B enhances corneal stromal response to 193-nm excimer laser treatment. Ophthalmology. 1997;3:375–80.CrossRefGoogle Scholar
  22. 22.
    Netto MV, Mohan RR, Sinha S, Sharma A, Dupps W, Wilson SE. Stromal haze, myofibroblasts, and surface irregularity after PRK. Exp Eye Res. 2006;5:788–97.CrossRefGoogle Scholar
  23. 23.
    Kuo IC, Lee SM, Hwang DG. Late-onset corneal haze and myopic regression after photorefractive keratectomy (PRK). Cornea. 2004;4:350–5.CrossRefGoogle Scholar
  24. 24.
    Møller-Pedersen T, Cavanagh HD, Petroll WM, Jester JV. Corneal haze development after PRK is regulated by volume of stromal tissue removal. Cornea. 1998;6:627–39.CrossRefGoogle Scholar
  25. 25.
    Nakamura Y, Sotozono C, Kinoshita S. The epidermal growth factor receptor (EGFR): role in corneal wound healing and homeostasis. Exp Eye Res. 2001;5:511–7.CrossRefGoogle Scholar
  26. 26.
    Serrao S, Lombardo M, Eng FM. Photorefractive keratectomy with and without smoothing: a bilateral study. J Refract Surg. 2003;1:58.Google Scholar
  27. 27.
    Stramer BM, Zieske JD, Jung J-C, Austin JC, Fini ME. Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes. Invest Ophthalmol Vis Sci. 2003;10:4237–46.CrossRefGoogle Scholar
  28. 28.
    Tang X, Liao Z. A clinical study of correlation between ablation depth and corneal subepithelial haze after photorefractive keratectomy. Chin J Ophthalmol. 1997;3:204–6.Google Scholar
  29. 29.
    Vinciguerra P, Azzolini M, Airaghi P, Radice P, Vito De Molfetta M. Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes. J Refract Surg. 1998;2:S199.Google Scholar
  30. 30.
    Franzco GS. Accuracy and precision of LASIK flap thickness using the IntraLase femtosecond laser in 1000 consecutive cases. J Refract Surg. 2008;8:802.Google Scholar
  31. 31.
    Melki SA, Azar DT. LASIK complications: etiology, management, and prevention. Surv Ophthalmol. 2001;2:95–116.CrossRefGoogle Scholar
  32. 32.
    O’Doherty M, Kirwan C, O’Keeffe M, O’Doherty J. Postoperative pain following epi-LASIK, LASEK, and PRK for myopia. J Refract Surg. 2007;2:133.Google Scholar
  33. 33.
    Pallikaris IG, Katsanevaki VJ, Kalyvianaki MI, Naoumidi II. Advances in subepithelial excimer refractive surgery techniques: Epi-LASIK. Curr Opin Ophthalmol. 2003;4:207–12.CrossRefGoogle Scholar
  34. 34.
    Nordan LT, Slade SG, Kurtz R. Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial US clinical series. J Refract Surg. 2003;1:8.Google Scholar
  35. 35.
    Ratkay-Traub I, Hopp B, Bor Z, Dux L, Becker D, Krenacs T. Regeneration of rabbit cornea following excimer laser photorefractive keratectomy: a study on gap junctions, epithelial junctions and epidermal growth factor receptor expression in correlation with cell proliferation. Exp Eye Res. 2001a;73:291–302.PubMedCrossRefGoogle Scholar
  36. 36.
    Ratkay-Traub I, Juhasz T, Horvath C, Suarez C, Kiss K, Ferincz I, Kurtz R. Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation. Ophthalmol Clin North Am. 2001b;2:347–55. viii–ix.Google Scholar
  37. 37.
    Schallhorn SC, Amesbury EC, Tanzer DJ. Avoidance, recognition, and management of LASIK complications. Am J Ophthalmol. 2006;4:733.CrossRefGoogle Scholar
  38. 38.
    Gimbel HV, Basti S, Kaye GB, Ferensowicz M. Experience during the learning curve of laser in situ keratomileusis. J Cataract Refract Surg. 1996;5:542–50.CrossRefGoogle Scholar
  39. 39.
    Yee RW, Yee SB. Update on laser subepithelial keratectomy (LASEK). Curr Opin Ophthalmol. 2004;4:333–41.CrossRefGoogle Scholar
  40. 40.
    Zhao L-Q, Zhu H, Li L-M. Laser-assisted subepithelial keratectomy versus laser in situ keratomileusis in myopia: a systematic review and meta-analysis. ISRN Ophthalmol. 2014;2014:672146.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Abad J-C, An B, Power WJ, Foster CS, Azar DT, Talamo JH. A prospective evaluation of alcohol-assisted versus mechanical epithelial removal before photorefractive keratectomy. Ophthalmology. 1997;10:1566–75.CrossRefGoogle Scholar
  42. 42.
    Carones F, Fiore T, Brancato R. Mechanical vs. alcohol epithelial removal during photorefractive keratectomy. J Refract Surg. 1999;5:556.Google Scholar
  43. 43.
    Chen CC, Chang J-H, Lee JB, Javier J, Azar DT. Human corneal epithelial cell viability and morphology after dilute alcohol exposure. Invest Ophthalmol Vis Sci. 2002;8:2593–602.Google Scholar
  44. 44.
    Espana E, Grueterich M, Tseng SG. Immunofluorescent study on basement membrane proteins and epithelial survival following brief ethanol exposure like LASEK. Invest Ophthalmol Vis Sci. 2002;13:1686.Google Scholar
  45. 45.
    Kim S-Y, Sah W-J, Lim Y-W, Hahn T-W. Twenty percent alcohol toxicity on rabbit corneal epithelial cells: electron microscopic study. Cornea. 2002;4:388–92.CrossRefGoogle Scholar
  46. 46.
    Long Q, Chu R, Zhou X, Dai J. Correlation between TGF-[beta] 1 in tears and corneal haze following LASEK and Epi-LASIK. J Refract Surg. 2006;7:708.Google Scholar
  47. 47.
    Azar DT, Ang RT, Lee J-B, Kato T, Chen CC, Jain S, Gabison E, Abad J-C. Laser subepithelial keratomileusis: electron microscopy and visual outcomes of flap photorefractive keratectomy. Curr Opin Ophthalmol. 2001;4:323–8.CrossRefGoogle Scholar
  48. 48.
    Claringbold TV. Laser-assisted subepithelial keratectomy for the correction of myopia. J Cataract Refract Surg. 2002;1:18–22.CrossRefGoogle Scholar
  49. 49.
    Kornilovsky IM. Clinical results after subepithelial photorefractive keratectomy (LASEK). J Refract Surg (Thorofare, NJ: 1995). 2000;17(2 Suppl):S222–3.Google Scholar
  50. 50.
    Lee JB, Choe C-M, Seong GJ, Gong HY, Kim EK. Laser subepithelial keratomileusis for low to moderate myopia: 6-month follow-up. Jpn J Ophthalmol. 2002;3:299–304.CrossRefGoogle Scholar
  51. 51.
    Scerrati E. Laser in situ keratomileusis vs. laser epithelial keratomileusis (LASIK vs. LASEK). J Refract Surg (Thorofare, NJ: 1995). 2000;17(2 Suppl):219–21.Google Scholar
  52. 52.
    Dastjerdi MH, Soong HK. LASEK (laser subepithelial keratomileusis). Curr Opin Ophthalmol. 2002;4:261–3.CrossRefGoogle Scholar
  53. 53.
    Qazi MA, Johnson TW, Pepose JS. Development of late-onset subepithelial corneal haze after laser-assisted subepithelial keratectomy with prophylactic intraoperative mitomycin-C: case report and literature review. J Cataract Refract Surg. 2006;9:1573–8.CrossRefGoogle Scholar
  54. 54.
    De Benito-Llopis LM, Teus A, Sánchez-Pina JM, Hernández-Verdejo JL. Comparison between LASEK and LASIK for the correction of low myopia. J Refract Surg. 2007;2:139.Google Scholar
  55. 55.
    Maycock NJ, Marshall J. Genomics of corneal wound healing: a review of the literature. Acta Ophthalmol. 2014;3:170–e184.CrossRefGoogle Scholar
  56. 56.
    Wilson SE, He Y-G, Weng J, Li Q, McDowall AW, Vital M, Chwang EL. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Exp Eye Res. 1996;4:325–38.CrossRefGoogle Scholar
  57. 57.
    Weng J, Mohan RR, Li Q, Wilson SE. IL-1 upregulates keratinocyte growth factor and hepatocyte growth factor mRNA and protein production by cultured stromal fibroblast cells: interleukin-1 [beta] expression in the cornea. Cornea. 1997;4:465–71.Google Scholar
  58. 58.
    Strissel KJ, Girard MT, West-Mays JA, Rinehart WB, Cook JR, Brinckerhoff CE, Fini ME. Role of serum amyloid A as an intermediate in the IL-1 and PMA-stimulated signaling pathways regulating expression of rabbit fibroblast collagenase. Exp Cell Res. 1997a;2:275–87.CrossRefGoogle Scholar
  59. 59.
    Strissel KJ, Rinehart WB, Fini ME. Regulation of paracrine cytokine balance controlling collagenase synthesis by corneal cells. Invest Ophthalmol Vis Sci. 1997b;2:546–52.Google Scholar
  60. 60.
    West-Mays JA, Strissel KJ, Sadow PM, Fini ME. Competence for collagenase gene expression by tissue fibroblasts requires activation of an interleukin 1 alpha autocrine loop. Proc Nat Acad Sci. 1995;15:6768–72.CrossRefGoogle Scholar
  61. 61.
    Sherwin T, Green CR. Stromal wound healing. In: Corneal surgery: theory, technique and tissue. 4th ed. Missouri: Mosby Elsevier; 2009. p. 45–56.Google Scholar
  62. 62.
    Zieske JD. Extracellular matrix and wound healing. Curr Opin Ophthalmol. 2001;4:237–41.CrossRefGoogle Scholar
  63. 63.
    Bilgihan K, Bilgihan A, Akata F, Hasanreisoğlu B, Türközkan N. Excimer laser corneal surgery and free oxygen radicals. Jpn J Ophthalmol. 1995;2:154–7.Google Scholar
  64. 64.
    Cejka C, Cejkova J. Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries. Oxid Med Cell Longev. 2015;2015:1–10.CrossRefGoogle Scholar
  65. 65.
    Hayashi S, Ishimoto S-I, Wu G-S, Wee WR, Rao NA, McDonnell PJ. Oxygen free radical damage in the cornea after excimer laser therapy. Br J Ophthalmol. 1997;2:141–4.CrossRefGoogle Scholar
  66. 66.
    Landry R, Pettit G, Hahn D, Ediger M. Preliminary evidence of free radical formation during argon fluoride excimer laser irradiation of corneal tissue. Lasers Light Ophthalmol. 1994;6:87.Google Scholar
  67. 67.
    Bilgihan K, Bilgihan A, Adiguzel U, Sezer C, Yis O, Akyol G, Hasanreisoglu B. Keratocyte apoptosis and corneal antioxidant enzyme activities after refractive corneal surgery. Eye. 2002;1:63–8.CrossRefGoogle Scholar
  68. 68.
    Kasetsuwan NF, Wu M, Hsieh F, Sanchez D, McDonnell PJ. EFfect of topical ascorbic acid on free radical tissue damage and inflammatory cell influx in the cornea after excimer laser corneal surgery. Arch Ophthalmol. 1999;5:649–52.CrossRefGoogle Scholar
  69. 69.
    Marks-Hull H, Shiao T-Y, Araki-Sasaki K, Traver R, Vasiliou V. Expression of ALDH3 and NMO1 in human corneal epithelial and breast adenocarcinoma cells. In: Enzymology and molecular biology of carbonyl metabolism 6. New York: Springer; 1997. p. 59–68.Google Scholar
  70. 70.
    Pappa A, Chen C, Koutalos Y, Townsend AJ, Vasiliou V. Aldh3a1 protects human corneal epithelial cells from ultraviolet-and 4-hydroxy-2-nonenal-induced oxidative damage. Free Radic Biol Med. 2003a;9:1178–89.CrossRefGoogle Scholar
  71. 71.
    Serbecic N, Beutelspacher SC. Anti-oxidative vitamins prevent lipid-peroxidation and apoptosis in corneal endothelial cells. Cell Tissue Res. 2005;3:465–75.CrossRefGoogle Scholar
  72. 72.
    Cantore M, Siano S, Coronnello M, Mazzetti L, Franchi-Micheli S, Boldrini E, Ciuffi M, Failli P. Pirenoxine prevents oxidative effects of argon fluoride excimer laser irradiation in rabbit corneas: biochemical, histological and cytofluorimetric evaluations. J Photochem Photobiol B: Biol. 2005;1:35–42.CrossRefGoogle Scholar
  73. 73.
    Čejková J, Štípek S, Crkovska J, Ardan T, Platenik J, Čejka C, Midelfart A. UV rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage. Physiol Res. 2004a;53:1–10.PubMedGoogle Scholar
  74. 74.
    Čejková J, Vejražka M, Pláteník J, Štípek S. Age-related changes in superoxide dismutase, glutathione peroxidase, catalase and xanthine oxidoreductase/xanthine oxidase activities in the rabbit cornea. Exp Gerontol. 2004b;10:1537–43.CrossRefGoogle Scholar
  75. 75.
    Shimmura S, Tadano K, Tsubota K. UV dose-dependent caspase activation in a corneal epithelial cell line. Curr Eye Res. 2004;2:85–92.CrossRefGoogle Scholar
  76. 76.
    Atilano SR, Chwa M, Kim DW, Jordan N, Udar N, Coskun P, Jester J, Wallace DC, Kenney MC. Hydrogen peroxide causes mitochondrial DNA damage in corneal epithelial cells. Cornea. 2009;4:426–33.CrossRefGoogle Scholar
  77. 77.
    Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochim et Biophys Acta (BBA)-Bioenergetics. 1998;1:53–67.CrossRefGoogle Scholar
  78. 78.
    Jain S, Hahn TW, McCally RL, Azar DT. Antioxidants reduce corneal light scattering after excimer keratectomy in rabbits. Lasers Surg Med. 1995;2:160–5.CrossRefGoogle Scholar
  79. 79.
    Lassen N, Black WJ, Estey T, Vasiliou V. The role of corneal crystallins in the cellular defense mechanisms against oxidative stress. Semin Cell Dev Biol, Elsevier. 2008;19:100–12.CrossRefGoogle Scholar
  80. 80.
    Monboisse J, Borel J. Oxidative damage to collagen. In: Free radicals and aging. New York: Springer; 1992. p. 323–7.CrossRefGoogle Scholar
  81. 81.
    Ambekar R, Toussaint KC, Johnson AW. The effect of keratoconus on the structural, mechanical, and optical properties of the cornea. J Mech Behav Biomed Mater. 2011;3:223–36.CrossRefGoogle Scholar
  82. 82.
    Chace KV, Carubelli R, Nordquist RE, Rowsey JJ. Effect of oxygen free radicals on corneal collagen. Free Radic Res. 1991;1:591–4.Google Scholar
  83. 83.
    Ohshima M, Jung S-K, Yasuda T, Sakano Y, Fujimoto D. Active oxygen-induced modification alters properties of collagen as a substratum for fibroblasts. Matrix. 1993;3:187–94.CrossRefGoogle Scholar
  84. 84.
    Yanagiya N, Akiba J, Kado M, Hikichi T, Yoshida A. Effects of peroxynitrite on rabbit cornea. Graefe’s Arch Clin Exp Ophthalmol. 2000;7:584–8.CrossRefGoogle Scholar
  85. 85.
    Downes JE, Swann PG, Holmes RS. Ultraviolet light-induced pathology in the eye: associated changes in ocular aldehyde dehydrogenase and alcohol dehydrogenase activities. Cornea. 1993;3:241–8.CrossRefGoogle Scholar
  86. 86.
    Joyce NC, Zhu CC, Harris DL. Relationship among oxidative stress, DNA damage, and proliferative capacity in human corneal endothelium. Invest Ophthalmol Vis Sci. 2009;5:2116–22.CrossRefGoogle Scholar
  87. 87.
    Cejkova J, Stipek S, Crkovska J, Ardan T. Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays. Histochem Biochem Stud. 2000;4:1043–50.Google Scholar
  88. 88.
    Uma L, Hariharan J, Sharma Y, Balasubramanian D. Effect of UVB radiation on corneal aldehyde dehydrogenase. Curr Eye Res. 1996;6:685–90.CrossRefGoogle Scholar
  89. 89.
    Niizuma T, Ito S, Hayashi M, Futemma M, Utsumi T, Ohashi K. Cooling the cornea to prevent side effects of photorefractive keratectomy. Ophthal Lit. 1995;48:177.Google Scholar
  90. 90.
    Choi YS, Kim JY, Wee WR, Lee JH. Effect of the application of human amniotic membrane on rabbit corneal wound healing after excimer laser photorefractive keratectomy. Cornea. 1998;4:389–95.CrossRefGoogle Scholar
  91. 91.
    Park WC, Tseng SC. Modulation of acute inflammation and keratocyte death by suturing, blood, and amniotic membrane in PRK. Invest Ophthalmol Vis Sci. 2000;10:2906–14.Google Scholar
  92. 92.
    Cheung IM, McGhee CN, Sherwin T. A new perspective on the pathobiology of keratoconus: interplay of stromal wound healing and reactive species-associated processes. Clin Exp Optom. 2013;2:188–96.CrossRefGoogle Scholar
  93. 93.
    Kennedy M, Kim KH, Harten B, Brown J, Planck S, Meshul C, Edelhauser H, Rosenbaum JT, Armstrong CA, Ansel JC. Ultraviolet irradiation induces the production of multiple cytokines by human corneal cells. Invest Ophthalmol Vis Sci. 1997;12:2483–91.Google Scholar
  94. 94.
    Podskochy A, Gan L, Fagerholm P. Apoptosis in UV-exposed rabbit corneas. Cornea. 2000;1:99–103.CrossRefGoogle Scholar
  95. 95.
    Rogers CS, Chan L-M, Sims YS, Byrd KD, Hinton DL, Twining SS. The effects of sub-solar levels of UV-A and UV-B on rabbit corneal and lens epithelial cells. Exp Eye Res. 2004;5:1007–14.CrossRefGoogle Scholar
  96. 96.
    Atalla LR, Sevanian A, Rao NA. Immunohistochemical localization of glutathione peroxidase in ocular tissue. Curr Eye Res. 1988;10:1023–7.CrossRefGoogle Scholar
  97. 97.
    Behndig A, Svensson B, Marklund SL, Karlsson K. Superoxide dismutase isoenzymes in the human eye. Invest Ophthalmol Vis Sci. 1998;3:471–5.Google Scholar
  98. 98.
    Mayer U. Comparative investigations of catalase activity in different ocular tissues of cattle and man. Albrecht von Graefes Arch für klinische und Exp Ophthalmol. 1980;4:261–5.CrossRefGoogle Scholar
  99. 99.
    Olofsson EM, Marklund SL, Pedrosa-Domellöf F, Behndig A. Interleukin-1alpha downregulates extracellular-superoxide dismutase in human corneal keratoconus stromal cells. Mol Vis. 2007;13:1285–90.PubMedGoogle Scholar
  100. 100.
    Berthoud VM, Beyer EC. Oxidative stress, lens gap junctions, and cataracts. Antioxid Redox Signal. 2009;2:339–53.CrossRefGoogle Scholar
  101. 101.
    Laux-Fenton WT, Donaldson PJ, Kistler J, Green CR. Connexin expression patterns in the rat cornea: molecular evidence for communication compartments. Cornea. 2003;5:457–64.CrossRefGoogle Scholar
  102. 102.
    Håskjold E, Bjerknes R, Refsum SB. Cell kinetics during healing of corneal epithelial wounds. Acta Ophthalmol. 1989;2:174–80.Google Scholar
  103. 103.
    Sandvig KU, Haaskjold E. The proliferative response during regeneration of a ringshaped defect in the corneal epithelium. Acta Ophthalmol. 1993;1:39–43.Google Scholar
  104. 104.
    Risek B, Pozzi A, Gilula NB. Modulation of gap junction expression during transient hyperplasia of rat epidermis. J Cell Sci. 1998;10:1395–404.Google Scholar
  105. 105.
    Shi Y, Tabesh M, Sugrue SP. Role of cell adhesion-associated protein, pinin (DRS/memA), in corneal epithelial migration. Invest Ophthalmol Vis Sci. 2000;6:1337–45.Google Scholar
  106. 106.
    Grupcheva CN, Laux WT, Rupenthal ID, McGhee J, McGhee C, Green CR. Improved corneal wound healing through modulation of gap junction communication using connexin43-specific antisense oligodeoxynucleotides. Invest Ophthalmol Vis Sci. 2012;3:1130–8.CrossRefGoogle Scholar
  107. 107.
    Yuan X, Chen Z, Yang Z, Gao J, Zhang A, Wu SM, Jacoby R. Expression pattern of connexins in the corneal and limbal epithelium of a primate. Cornea. 2009;2:194–9.CrossRefGoogle Scholar
  108. 108.
    Gong X, Li E, Klier G, Huang Q, Wu Y, Lei H, Kumar NM, Horwitz J, Gilula NB. Disruption of α 3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell. 1997;6:833–43.CrossRefGoogle Scholar
  109. 109.
    Tsai M-J, Hsu Y-L, Wu K-Y, Yang R-C, Chen Y-J, Yu H-S, Kuo P-L. Heat effect induces production of inflammatory cytokines through heat shock protein 90 pathway in cornea cells. Curr Eye Res. 2013;4:464–71.CrossRefGoogle Scholar
  110. 110.
    Peterson CW, Carter RT, Bentley E, Murphy CJ, Chandler HL. Heat-shock protein expression in canine corneal wound healing. Vet Ophthalmol. 2015;19:262–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Song IS, Kang S-S, Kim E-S, Park H-M, Choi CY, Tchah H, Kim JY. Heat shock protein 27 phosphorylation is involved in epithelial cell apoptosis as well as epithelial migration during corneal epithelial wound healing. Exp Eye Res. 2014;118:36–41.PubMedCrossRefGoogle Scholar
  112. 112.
    Arrigo A-P, Firdaus WJ, Mellier G, Moulin M, Paul C, Diaz-Latoud C, Kretz-Remy C. Cytotoxic effects induced by oxidative stress in cultured mammalian cells and protection provided by Hsp27 expression. Methods. 2005;2:126–38.CrossRefGoogle Scholar
  113. 113.
    Ciocca DR, Oesterreich S, Chamness GC, MCGuire WL, Fuqua SA. Biological and clinical implications of heat shock protein 27000 (Hsp27): a review. J Nat Can Inst. 1993;19:1558–70.CrossRefGoogle Scholar
  114. 114.
    Goldstein AL, Hannappel E, Kleinman HK. Thymosin β 4: actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med. 2005;9:421–9.CrossRefGoogle Scholar
  115. 115.
    Sanders MC, Goldstein AL, Wang Y-L. Thymosin beta 4 (Fx peptide) is a potent regulator of actin polymerization in living cells. Proc Natl Acad Sci. 1992;89:4678–82.PubMedCrossRefGoogle Scholar
  116. 116.
    Sosne G, Christopherson PL, Barrett RP, Fridman R. Thymosin-β4 modulates corneal matrix metalloproteinase levels and polymorphonuclear cell infiltration after alkali injury. Invest Ophthalmol Vis Sci. 2005;7:2388–95.CrossRefGoogle Scholar
  117. 117.
    Girardi M, Sherling MA, Filler RB, Shires J, Theodoridis E, Hayday AC, Tigelaar RE. Anti-inflammatory effects in the skin of thymosin-β4 splice-variants. Immunology. 2003;1:1–7.CrossRefGoogle Scholar
  118. 118.
    Suzuki K, Saito J, Yanai R, Yamada N, Chikama T-i, Seki K, Nishida T. Cell–matrix and cell–cell interactions during corneal epithelial wound healing. Prog Retin Eye Res. 2003;2:113–33.CrossRefGoogle Scholar
  119. 119.
    Murakami J, Nishida T, Otori T. Coordinated appearance of beta 1 integrins and fibronectin during corneal wound healing. J Lab Clin Med. 1992;1:86–93.Google Scholar
  120. 120.
    Clark RA, Lanigan JM, DellaPelle P, Manseau E, Dvorak HF, Colvin RB. Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol. 1982;5:264–9.CrossRefGoogle Scholar
  121. 121.
    Grinnell F, Billingham RE, Burgess L. Distribution of fibronectin during wound healing in vivo. J Invest Dermatol. 1981;3:181–9.CrossRefGoogle Scholar
  122. 122.
    Juhasz I, Murphy G, Yan H-C, Herlyn M, Albelda S. Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous human wound healing in vivo. Am J Pathol. 1993;5:1458.Google Scholar
  123. 123.
    Nakamura M, Nagano T, Chikama T-I, Nishida T. Up-regulation of phosphorylation of focal adhesion kinase and paxillin by combination of substance P and IGF-1 in SV-40 transformed human corneal epithelial cells. Biochem Biophys Res Commun. 1998;1:16–20.CrossRefGoogle Scholar
  124. 124.
    Dugina V, Fontao L, Chaponnier C, Vasiliev J, Gabbiani G. Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors. J Cell Sci. 2001;18:3285–96.Google Scholar
  125. 125.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;5:349–63.CrossRefGoogle Scholar
  126. 126.
    Kolozsvári L, Nógrádi A, Hopp B, Bor Z. UV absorbance of the human cornea in the 240-to 400-nm range. Invest Ophthalmol Vis Sci. 2002;7:2165–8.Google Scholar
  127. 127.
    Ringvold A. Corneal epithelium and UV-protection of the eye. Acta Ophthalmol Scand. 1998;2:149–53.CrossRefGoogle Scholar
  128. 128.
    Caballero B, Gleason RE, Wurtman RJ. Plasma amino acid concentrations in healthy elderly men and women. Am J Clin Nutr. 1991;5:1249–52.CrossRefGoogle Scholar
  129. 129.
    Shashar N, Harosi FI, Banaszak AT, Hanlon RT. UV radiation blocking compounds in the eye of the cuttlefish Sepia officinalis. Biol Bull. 1998;2:187.CrossRefGoogle Scholar
  130. 130.
    Truscott RJ, Wood AM, Carver JA, Sheil MM, Stutchbury GM, Zhu J, Kilby GW. A new UV-filter compound in human lenses. FEBS Lett. 1994;2:173–6.CrossRefGoogle Scholar
  131. 131.
    Van Heyningen R. The glucoside of 3-hydroxy-kynurenine and other fluorescent compounds in the human lens. The Hurntin lens in relation to cataract. Ciba Foundation Symposium. 2009.Google Scholar
  132. 132.
    Wood AM, Truscott RJ. Ultraviolet filter compounds in human lenses: 3-hydroxykynurenine glucoside formation. Vis Res. 1994;11:1369–74.CrossRefGoogle Scholar
  133. 133.
    Wood AM, Truscott RJ. UV filters in human lenses: tryptophan catabolism. Exp Eye Res. 1993;3:317–25.CrossRefGoogle Scholar
  134. 134.
    Moroni F. Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol. 1999;1:87–100.CrossRefGoogle Scholar
  135. 135.
    Malina HZ, Martin XD. Deamination of 3-hydroxykynurenine in bovine lenses: a possible mechanism of cataract formation in general. Graefe’s Arch Clin Exp Ophthalmol. 1995;1:38–44.CrossRefGoogle Scholar
  136. 136.
    Van Heyningen R. Fluorescent glucoside in the human lens. Nature. 1971;230:393–4.PubMedCrossRefGoogle Scholar
  137. 137.
    Bova LM, Wood AM, Jamie JF, Truscott RJ. UV filter compounds in human lenses: the origin of 4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid O- -D-glucoside. Invest Ophthalmol Vis Sci. 1999;40:3237–44.PubMedGoogle Scholar
  138. 138.
    Garner B, Vazquez S, Griffith R, Lindner RA, Carver JA, Truscott RJ. Identification of glutathionyl-3-hydroxykynurenine glucoside as a novel fluorophore associated with aging of the human lens. J Biol Chem. 1999;30:20847–54.CrossRefGoogle Scholar
  139. 139.
    Serbecic N, Lahdou I, Scheuerle A, Höftberger R, Aboul-Enein F. Function of the tryptophan metabolite, L-kynurenine, in human corneal endothelial cells. Molecular Vision. 2009;15:1312.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Serbecic N, Beutelspacher SC. Indoleamine 2, 3-dioxygenase protects corneal endothelial cells from UV mediated damage. Exp Eye Res. 2006;3:416–26.CrossRefGoogle Scholar
  141. 141.
    Manzer R, Pappa A, Estey T, Sladek N, Carpenter JF, Vasiliou V. Ultraviolet radiation decreases expression and induces aggregation of corneal ALDH3A1. Chem-Biol Interact. 2003a;143:45–53.PubMedCrossRefGoogle Scholar
  142. 142.
    Pappa A, Estey T, Manzer R, Brown D, Vasiliou V. Human aldehyde dehydrogenase 3A1 (ALDH3A1): biochemical characterization and immunohistochemical localization in the cornea. Biochem. J. 2003b;376:615–23.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Manzer R, Qamar L, Estey T, Pappa A, Petersen DR, Vasiliou V. Molecular cloning and baculovirus expression of the rabbit corneal aldehyde dehydrogenase (ALDH1A1) cDNA. DNA and Cell Biol. 2003b;5:329–38.CrossRefGoogle Scholar
  144. 144.
    Curry S, Brick P, Franks NP. Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochim et Biophys Acta (BBA)-Mol Cell Biol Lipids. 1999;2:131–40.CrossRefGoogle Scholar
  145. 145.
    Jarabak R, Westley J, Dungan JM, Horowitz P. A chaperone-mimetic effect of serum albumin on rhodanese. J Biochem Toxicol. 1993;1:41–8.CrossRefGoogle Scholar
  146. 146.
    Piatigorsky J. Gene sharing in lens and cornea: facts and implications. Prog Retin Eye Res. 1998;2:145–74.CrossRefGoogle Scholar
  147. 147.
    Zieske J, Bukusoglu G, Yankauckas M. Characterization of a potential marker of corneal epithelial stem cells. Invest Ophthalmol Vis Sci. 1992;1:143–52.Google Scholar
  148. 148.
    Piatigorsky J. Enigma of the abundant water-soluble cytoplasmic proteins of the cornea: the “refracton” hypothesis. Cornea. 2001;8:853–8.CrossRefGoogle Scholar
  149. 149.
    Mao Y, Liu J, Xiang H, Li DW. Human αA-and αB-crystallins bind to Bax and Bcl-Xs to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ. 2004;5:512–26.CrossRefGoogle Scholar
  150. 150.
    Hu W-F, Gong L, Cao Z, Ma H, Ji W, Deng M, Liu M, Hu X-H, Chen P, Yan Q. αA-and αB-crystallins interact with caspase-3 and Bax to guard mouse lens development. Curr Mol Med. 2012;2:177–87.CrossRefGoogle Scholar
  151. 151.
    Lee S-H, Leem H-S, Jeong S-M, Lee K-J. Bevacizumab accelerates corneal wound healing by inhibiting TGF-βexpression in alkali-burned mouse cornea. BMB Rep. 2009;12:800–5.CrossRefGoogle Scholar
  152. 152.
    Matsuda H, Smelser GK. Epithelium and stroma in alkali-burned corneas. Arch Ophthalmol. 1973;5:396–401.CrossRefGoogle Scholar
  153. 153.
    Hackett JM, Lagali N, Merrett K, Edelhauser H, Sun Y, Gan L, Griffith M, Fagerholm P. Biosynthetic corneal implants for replacement of pathologic corneal tissue: performance in a controlled rabbit alkali burn model. Invest Ophthalmol Vis Sci. 2011;2:651–7.CrossRefGoogle Scholar
  154. 154.
    Ye J, Yao K, Kim J. Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model: engraftment and involvement in wound healing. Eye. 2006;4:482–90.CrossRefGoogle Scholar
  155. 155.
    He J, Bazan NG, Bazan HE. Alkali-induced corneal stromal melting prevention by a novel platelet-activating factor receptor antagonist. Arch Ophthalmol. 2006;1:70–8.CrossRefGoogle Scholar
  156. 156.
    Takahashi H, Igarashi T, Fujimoto C, Ozaki N, Ishizaki M. Immunohistochemical observation of amniotic membrane patching on a corneal alkali burn in vivo. Jpn J Ophthalmol. 2007;1:3–9.CrossRefGoogle Scholar
  157. 157.
    Von Fischern T, Lorenz U, Burchard W-G, Reim M, Schrage NF. Changes in mineral composition of rabbit corneas after alkali burn. Graefe’s Arch Clin Exp Ophthalmol. 1998;7:553–8.CrossRefGoogle Scholar
  158. 158.
    Zhang H, Li C, Baciu PC. Expression of integrins and MMPs during alkaline-burn-induced corneal angiogenesis. Invest Ophthalmol Vis Sci. 2002;4:955–62.Google Scholar
  159. 159.
    Chung JH, Fagerholm P, Lindström B. The behaviour of corneal epithelium following a standardized alkali wound. Acta Ophthalmol. 1987;5:529–37.Google Scholar
  160. 160.
    Cheng H-C, Yeh S-I, Tsao Y-P, Kuo P-C. Subconjunctival injection of recombinant AAV-angiostatin ameliorates alkali burn induced corneal angiogenesis. Mol Vis. 2007;13:2344–52.PubMedGoogle Scholar
  161. 161.
    Zhao B, Ma A, Martin FL, Fullwood NJ. An investigation into corneal alkali burns using an organ culture model. Cornea. 2009;5:541–6.CrossRefGoogle Scholar
  162. 162.
    Bhasker S, Kislay R, Rupinder KK, Jagat KR. Evaluation of nanoformulated therapeutics in an ex-vivo bovine corneal irritation model. Toxicol Vitro. 2015;5:917–25.CrossRefGoogle Scholar
  163. 163.
    Mohan RR, Stapleton WM, Sinha S, Netto MV, Wilson SE. A novel method for generating corneal haze in anterior stroma of the mouse eye with the excimer laser. Exp Eye Res. 2008;2:235–40.CrossRefGoogle Scholar
  164. 164.
    Drew AF, Schiman HL, Kombrinck KW, Bugge TH, Degen JL, Kaufman AH. Persistent corneal haze after excimer laser photokeratectomy in plasminogen-deficient mice. Invest Ophthalmol Vis Sci. 2000;1:67–72.Google Scholar
  165. 165.
    Fantes FE, Hanna KD, Waring GO, Pouliquen Y, Thompson KP, Savoldelli M. Wound healing after excimer laser keratomileusis (photorefractive keratectomy) in monkeys. Arch Ophthalmol. 1990;5:665–75.CrossRefGoogle Scholar
  166. 166.
    Foreman D, Pancholi S, Jarvis-Evans J, McLeod D, Boulton M. A simple organ culture model for assessing the effects of growth factors on corneal re-epithelialization. Exp Eye Res. 1996;5:555–64.CrossRefGoogle Scholar
  167. 167.
    Szybalski W, Iyer V. Crosslinking of dna by enzymatically or chemically activated mitomycins and porfiromycins, bifunctionally “alkylating” antibiotics. Fed Proc. 1964;23:946–57.PubMedGoogle Scholar
  168. 168.
    Mao Y, Varoglu M, Sherman DH. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol. 1999;4:251–63.CrossRefGoogle Scholar
  169. 169.
    Carones F, Vigo L, Scandola E, Vacchini L. Evaluation of the prophylactic use of mitomycin-C to inhibit haze formation after photorefractive keratectomy. J Cataract Refract Surg. 2002;12:2088–95.CrossRefGoogle Scholar
  170. 170.
    Tomasz M. Mitomycin C: small, fast and deadly (but very selective). Chem Biol. 1995;9:575–9.CrossRefGoogle Scholar
  171. 171.
    Hashemi H, Taheri SM, Fotouhi A, Kheiltash A. Evaluation of the prophylactic use of mitomycin-C to inhibit haze formation after photorefractive keratectomy in high myopia: a prospective clinical study. BMC Ophthalmol. 2004;4:12.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Morales AJ, Zadok D, Mora-Retana R, Martínez-Gama E, Robledo NE, Chayet AS. Intraoperative mitomycin and corneal endothelium after photorefractive keratectomy. Am J Ophthalmol. 2006;23:400–4.CrossRefGoogle Scholar
  173. 173.
    Nassiri N, Farahangiz S, Rahnavardi M, Rahmani L, Nassiri N. Corneal endothelial cell injury induced by mitomycin-C in photorefractive keratectomy: nonrandomized controlled trial. J Cataract Refract Surg. 2008;6:902–8.CrossRefGoogle Scholar
  174. 174.
    Bilgihan A, Bilgihan K, Yis O, Safak Yis N, Hasanreisoglu B. The effect of excimer laser keratectomy on corneal glutathione-related enzymes in rabbits. Free Radic Res. 2003a;4:399–403.CrossRefGoogle Scholar
  175. 175.
    Finzel BC, Poulos TL, Kraut J. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. J Biol Chem. 1984;21:13027–36.Google Scholar
  176. 176.
    Scalinci SZ, Scorolli L, Meduri A, Grenga PL, Corradetti G, Metrangolo C. Effect of basic fibroblast growth factor and cytochrome c peroxidase combination in transgenic mice corneal epithelial healing process after excimer laser photoablation. Clin Ophthalmol (Auckland, N.Z.). 2011;5:215–21.PubMedCentralCrossRefGoogle Scholar
  177. 177.
    Williams R, Paterson C, Eakins K, Bhattacherjee P. Ascorbic acid inhibits the activity of polymorphonuclear leukocytes in inflamed ocular tissues. Exp Eye Res. 1984;3:261–5.CrossRefGoogle Scholar
  178. 178.
    Stojanovic A, Ringvold A, Nitter T. Ascorbate prophylaxis for corneal haze after photorefractive keratectomy. J Refract Surg. 2003;3:338–43.Google Scholar
  179. 179.
    John A. Long term results of a prospective randomized bilateral eye comparison trial of higher fluence, shorter duration ultraviolet A radiation, and riboflavin collagen cross linking for progressive keratoconus. Clin Ophthalmol. 2012;6:97–101.Google Scholar
  180. 180.
    Kanellopoulos AJ, Binder PS. Management of corneal ectasia after LASIK with combined, same-day, topography-guided partial transepithelial PRK and collagen cross-linking: the Athens protocol. J Refract Surg. 2011;5:323–31.CrossRefGoogle Scholar
  181. 181.
    Krueger RR, John Kanellopoulos A. Stability of simultaneous topography-guided photorefractive keratectomy and riboflavin/UVA cross-linking for progressive keratoconus: case reports. J Refract Surg. 2010;10:S827.CrossRefGoogle Scholar
  182. 182.
    Bilgihan K, Adiguzel U, Sezer C, Akyol G, Hasanreisoglu B. Effects of topical vitamin E on keratocyte apoptosis after traditional photorefractive keratectomy. Ophthalmol J Int D’ophtalmol. Int J Ophthalmol. Z fur Augenheilkd. 2000a;3:192–6.Google Scholar
  183. 183.
    Bilgihan K, Ozdek S, Ozo gcaron C, Gurelik G, Bilgihan A, Hasanreiso B, Gcaron B. Topical vitamin E and hydrocortisone acetate treatment after photorefractive keratectomy. Eye. 2000b;2:231–7.CrossRefGoogle Scholar
  184. 184.
    Vetrugno M, Maino A, Cardia G, Quaranta GM, Cardia L. A randomised, double masked, clinical trial of high dose vitamin A and vitamin E supplementation after photorefractive keratectomy. Br J Ophthalmol. 2001a;5:537–9.CrossRefGoogle Scholar
  185. 185.
    Reimondez-Troitiño S, Csaba N, Alonso M, De La Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm. 2015;95:279–93.PubMedCrossRefGoogle Scholar
  186. 186.
    Tomás-Juan J, Larrañaga AM-G, Hanneken L. Corneal regeneration after photorefractive keratectomy: a review. J Optom. 2015;8:149–69.PubMedCrossRefGoogle Scholar
  187. 187.
    Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sinica B. 2016;7:281–91.CrossRefGoogle Scholar
  188. 188.
    Daba KT. Bacteriology and risk factors of bacterial keratitis in Ethiopia. Arch De Med. 2015;9:6.Google Scholar
  189. 189.
    Deng SX, Penland S, Gupta S, Fiscella R, Edward DP, Tessler HH, Goldstein DA. Methotrexate reduces the complications of endophthalmitis resulting from intravitreal injection compared with dexamethasone in a rabbit model. Invest Opthalmol Vis Sci. 2006;47:1516.CrossRefGoogle Scholar
  190. 190.
    Hao J, Wang X, Bi Y, Teng Y, Wang J, Li F, Li Q, Zhang J, Guo F, Liu J. Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery. Colloids Surf B: Biointerfaces. 2014;114:111–20.PubMedCrossRefGoogle Scholar
  191. 191.
    Sunkireddy P, Jha SN, Kanwar JR, Yadav SC. Natural antioxidant biomolecules promises future nanomedicine based therapy for cataract. Colloids Surf B: Biointerfaces. 2013;112:554–62.PubMedCrossRefGoogle Scholar
  192. 192.
    Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26:1197.PubMedCrossRefGoogle Scholar
  193. 193.
    Yañez-Soto B, Mannis MJ, Schwab IR, Li JY, Leonard BC, Abbott NL, Murphy CJ. Interfacial phenomena and the ocular surface. Ocul Surf. 2014;12:178–201.PubMedCrossRefGoogle Scholar
  194. 194.
    Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5:567–81.PubMedCrossRefGoogle Scholar
  195. 195.
    Wilson CG, Tan LE. Nanostructures overcoming the ocular barrier: physiological considerations and mechanistic issues. In: Nanostructured biomaterials for overcoming biological barriers, RSC Drug Discovery Series. Cambridge: RSC Publishing Ltd; 2012. p. 173–89.CrossRefGoogle Scholar
  196. 196.
    Duvvuri S, Majumdar S, Mitra AK. Role of metabolism in ocular drug delivery. Curr Drug Metabol. 2004;5:507–15.CrossRefGoogle Scholar
  197. 197.
    Dalkara D, Kolstad KD, Caporale N, Visel M, Klimczak RR, Schaffer DV, Flannery JG. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther. 2009;17:2096–102.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. Genes Dev. 1999;3:239–52.CrossRefGoogle Scholar
  199. 199.
    Jarrin M, Mansergh FC, Boulton ME, Gunhaga L, Wride MA. Survivin expression is associated with lens epithelial cell proliferation and fiber cell differentiation. Mol Vis. 2012;18:2758.PubMedPubMedCentralGoogle Scholar
  200. 200.
    Altieri DC. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer. 2008;1:61–70.CrossRefGoogle Scholar
  201. 201.
    Mohan RR, Rodier JT, Sharma A. Corneal gene therapy: basic science and translational perspective. Ocul Surf. 2013;3:150–64.CrossRefGoogle Scholar
  202. 202.
    Li F, Brattain MG. Role of the survivin gene in pathophysiology. Am J Pathol. 2006;1:1–11.CrossRefGoogle Scholar
  203. 203.
    Altieri DC. Survivin in apoptosis control and cell cycle regulation in cancer. Prog Cell Cycle Res. 2002;5:447–52.Google Scholar
  204. 204.
    Altieri DC. The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Curr Opin Cell Biol. 2006;6:609–15.CrossRefGoogle Scholar
  205. 205.
    Rosa J, Canovas P, Islam A, Altieri DC, Doxsey SJ. Survivin modulates microtubule dynamics and nucleation throughout the cell cycle. Mol Biol Cell. 2006;3:1483–93.CrossRefGoogle Scholar
  206. 206.
    Adida C, Crotty PJ, McGrath J, Berrebi D, Diebold J, Altieri DC. Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol. 1998;1:43.Google Scholar
  207. 207.
    Kobayashi K, Hatano M, Otaki M, Ogasawara T, Tokuhisa T. Expression of a murine homologue of the inhibitor of apoptosis protein is related to cell proliferation. Proc Natl Acad Sci. 1999;4:1457–62.CrossRefGoogle Scholar
  208. 208.
    Lovicu FJ, Robinson ML. Development of the ocular lens. New York: Cambridge University Press; 2004.CrossRefGoogle Scholar
  209. 209.
    Mansergh FC, Wride MA, Walker VE, Adams S, Hunter SM, Evans MJ. Gene expression changes during cataract progression in Sparc null mice: differential regulation of mouse globins in the lens. Mol Vis. 2004;10:490–511.PubMedGoogle Scholar
  210. 210.
    Piatigorsky J. Lens differentiation in vertebrates: a review of cellular and molecular features. Differentiation. 1981;1:134–53.CrossRefGoogle Scholar
  211. 211.
    Wride MA. Cellular and molecular features of lens differentiation: a review of recent advances. Differentiation. 1996;2:77–93.CrossRefGoogle Scholar
  212. 212.
    Santagati MG, La Terra Mule S, Amico C, Pistone M, Rusciano D, Enea V. Lactoferrin expression by bovine ocular surface epithelia: a primary cell culture model to study lactoferrin gene promoter activity. Ophthal Res. 2005;5:270–8.CrossRefGoogle Scholar
  213. 213.
    Kijlstra A, Jeurissen S, Koning K. Lactoferrin levels in normal human tears. Br J Ophthalmol. 1983;3:199–202.CrossRefGoogle Scholar
  214. 214.
    Mackie I, Seal D. Diagnostic implications of tear protein profiles. Br J Ophthalmol. 1984;5:321–4.CrossRefGoogle Scholar
  215. 215.
    Boukes R, Boonstra A, Breebaart A, Reits D, Glasius E, Luyendyk L, Kijlstra A. Analysis of human tear protein profiles using high performance liquid chromatography (HPLC). Doc Ophthalmol. 1987;1–2:105–13.CrossRefGoogle Scholar
  216. 216.
    Rapacz P, Tedesco J, Donshik PC, Ballow M. Tear lysozyme and lactoferrin levels in giant papillary conjunctivitis and vernal conjunctivitis. Eye Contact Lens. 1998;4:207–9.Google Scholar
  217. 217.
    Jensen O, Gluud B, Birgens H. The concentration of lactoferrin in tears during post-operative ocular inflammation. Acta Ophthalmol. 1985;3:341–5.Google Scholar
  218. 218.
    Kuizenga A, van Haeringen NJ, Kijlstra A. Inhibition of hydroxyl radical formation by human tears. Invest Ophthalmol Vis Sci. 1987;2:305–13.Google Scholar
  219. 219.
    Augustin AJ, Spitznas M, Kaviani N, Meller D, Koch FH, Grus F, Göbbels MJ. Oxidative reactions in the tear fluid of patients suffering from dry eyes. Graefe’s Arch Clin Expl Ophthalmol. 1995;11:694–8.CrossRefGoogle Scholar
  220. 220.
    Shimmura S, Suematsu M, Shimoyama M, Tsubota K, Oguchi Y, Shimurai Y. Subthreshold UV radiation-induced peroxide formation in cultured corneal epithelial cells: the protective effects of lactoferrin. Exp Eye Res. 1996;5:519–26.CrossRefGoogle Scholar
  221. 221.
    da Silva SB, Borges S, Ramos Ó, Pintado M, Ferreira D, Sarmento B. Treating retinopathies–nanotechnology as a tool in protecting antioxidants agents. In: Systems biology of free radicals and antioxidants. Berlin: Springer; 2014. p. 3539–58.CrossRefGoogle Scholar
  222. 222.
    Reimondez-Troitiño S, Alcalde I, Csaba N, Íñigo-Portugués A, de la Fuente M, Bech F, Riestra AC, Merayo-Lloves J, Alonso MJ. Polymeric nanocapsules: a potential new therapy for corneal wound healing. Drug Deliv Translat Res. 2016;6:708–21.CrossRefGoogle Scholar
  223. 223.
    Adijanto J, Naash MI. Nanoparticle-based technologies for retinal gene therapy. Eur J Pharm Biopharm. 2015;95:353–67.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Chaurasia SS, Lim RR, Lakshminarayanan R, Mohan RR. Nanomedicine approaches for corneal diseases. J Funct Biomater. 2015;6:277–98.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Badawi AA, El-Laithy HM, El Qidra RK, El Mofty H, El Dally M. Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res. 2008;31:1040–9.PubMedCrossRefGoogle Scholar
  226. 226.
    El-Kamel A. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm. 2000;241:47–55.CrossRefGoogle Scholar
  227. 227.
    Budai L, Hajdú M, Budai M, Gróf P, Béni S, Noszál B, Klebovich I, Antal I. Gels and liposomes in optimized ocular drug delivery: studies on ciprofloxacin formulations. Int J Pharm. 2007;343:34–40.PubMedCrossRefGoogle Scholar
  228. 228.
    Kompella UB, Sundaram S, Raghava S, Escobar ER. Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol Vis. 2006;12:1185–98.PubMedGoogle Scholar
  229. 229.
    Liu Z, Li J, Nie S, Liu H, Ding P, Pan W. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm. 2006;315:12–7.PubMedCrossRefGoogle Scholar
  230. 230.
    Gavini E, Chetoni P, Cossu M, Alvarez MG, Saettone MF, Giunchedi P. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: in vitro/in vivo studies. Eur J Pharm Biopharm. 2004;57:207–12.PubMedCrossRefGoogle Scholar
  231. 231.
    Herrero-Vanrell R, Fernandez-Carballido A, Frutos G, Cadorniga R. Enhancement of the mydriatic response to tropicamide by bioadhesive polymers. J Ocul Pharmacol Ther. 2000;16:419–28.PubMedCrossRefGoogle Scholar
  232. 232.
    Nien CJ, Flynn KJ, Chang M, Brown D, Jester JV. Reducing peak corneal haze after photorefractive keratectomy in rabbits: prednisolone acetate 1.00% versus cyclosporine A 0.05%. J Cataract Refract Surg. 2011;37:937–44.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Vetrugno M, Maino A, Quaranta GM, Cardia L. The effect of early steroid treatment after PRK on clinical and refractive outcomes. Acta Ophthalmol Scand. 2001b;79:23–7.PubMedCrossRefGoogle Scholar
  234. 234.
    Woreta FA, Gupta A, Hochstetler B, Bower KS. Management of post-photorefractive keratectomy pain. Surv Ophthalmol. 2013;58:529–35.PubMedCrossRefGoogle Scholar
  235. 235.
    Souto EB, Doktorovova S, Gonzalez-Mira E, Egea M, Garcia ML. Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. Curr Eye Res. 2010;35:537–52.PubMedCrossRefGoogle Scholar
  236. 236.
    Rodríguez-Agirretxe I, Vega SC, Rezola R, Vecino E, Mendicute J, Suarez-Cortes T, Acera A. The PLGA implant as an antimitotic delivery system after experimental trabeculectomy PLGA implant as an antimitotic delivery system. Investigat Ophthalmol Vis Sci. 2013;54:5227–35.CrossRefGoogle Scholar
  237. 237.
    Akbani I, Bashir M, Shakeel M. Nanomedicine and its role in Ophthalmology. Nanotechnol Ophthalmol. 2014;2:5–11.Google Scholar
  238. 238.
    Sharma A, Tandon A, Tovey JC, Gupta R, Robertson JD, Fortune JA, Klibanov AM, Cowden JW, Rieger FG, Mohan RR. Polyethylenimine-conjugated gold nanoparticles: Gene transfer potential and low toxicity in the cornea. Nanomed: Nanotechnol, Biol Med. 2011;7:505–13.CrossRefGoogle Scholar
  239. 239.
    Tandon A, Sharma A, Rodier JT, Klibanov AM, Rieger FG, Mohan RR. BMP7 gene transfer via gold nanoparticles into stroma inhibits corneal fibrosis in vivo. PLoS ONE. 2013;8:e66434.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Kim J, Takahashi M, Shimizu T, Shirasawa T, Kajita M, Kanayama A, Miyamoto Y. Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech Ageing Dev. 2008;129:322–31.PubMedCrossRefGoogle Scholar
  241. 241.
    Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release. 2011;149:65–71.PubMedCrossRefGoogle Scholar
  242. 242.
    Maneewattanapinyo P, Banlunara W, Thammacharoen C, Ekgasit S, Kaewamatawong T. An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci. 2011;73:1417–23.PubMedCrossRefGoogle Scholar
  243. 243.
    De la Fuente M, Seijo B, Alonso M. Bioadhesive hyaluronan–chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene ther. 2008;15:668–76.PubMedCrossRefGoogle Scholar
  244. 244.
    Peng C-C, Chauhan A. Extended cyclosporine delivery by silicone–hydrogel contact lenses. J Control Release. 2011;154:267–74.PubMedCrossRefGoogle Scholar
  245. 245.
    Wang MX, Adams CP. Biochemical contact lens for treating injured corneal tissue, Google Patents. 2000.Google Scholar
  246. 246.
    Swaminathan S, Vavia PR, Trotta F, Cavalli R. Nanosponges encapsulating dexamethasone for ocular delivery: formulation design, physicochemical characterization, safety and corneal permeability assessment. J Biomed Nanotechnol. 2013;9:998–1007.PubMedCrossRefGoogle Scholar
  247. 247.
    Lee Y-H, Chang S-F, Liaw J. Anti-apoptotic gene delivery with cyclo-(d-Trp-Tyr) peptide nanotube via eye drop following corneal epithelial debridement. Pharmaceutics. 2015;7:122–36.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Vega-Estrada A, Silvestre-Albero J, Rodriguez AE, Rodriguez-Reinoso F, Gomez-Tejedor JA, Antolinos-Turpin CM, Bataille L, Alio JL. Biocompatibility and biomechanical effect of single wall carbon nanotubes implanted in the corneal stroma: a proof of concept investigation. J Ophthalmol. 2016;2016:4041767.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Müller R, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47:3–19.PubMedCrossRefGoogle Scholar
  250. 250.
    Smolin G, Okumoto M, Feiler S, Condon D. Idoxuridine-liposome therapy for herpes simplex keratitis. Am J Ophthalmol. 1981;91:220–5.PubMedCrossRefGoogle Scholar
  251. 251.
    Sun Y, Fox T, Adhikary G, Kester M, Pearlman E. Inhibition of corneal inflammation by liposomal delivery of short-chain, C-6 ceramide. J Leukocyte Biol. 2008;83:1512–21.PubMedCrossRefGoogle Scholar
  252. 252.
    Calabretta MK, Kumar A, McDermott AM, Cai C. Antibacterial activities of poly (amidoamine) dendrimers terminated with amino and poly (ethylene glycol) groups. Biomacromolecules. 2007;8:1807–11.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Khandare J, Kolhe P, Pillai O, Kannan S, Lieh-Lai M, Kannan RM. Synthesis, cellular transport, and activity of polyamidoamine dendrimer− methylprednisolone conjugates. Bioconjug Chem. 2005;16:330–7.PubMedCrossRefGoogle Scholar
  254. 254.
    Tong Y-C, Chang S-F, Kao WW-Y, Liu C-Y, Liaw J. Polymeric micelle gene delivery of bcl-x L via eye drop reduced corneal apoptosis following epithelial debridement. J Control Release. 2010;147:76–83.PubMedCrossRefGoogle Scholar
  255. 255.
    Vaishya RD, Khurana V, Patel S, Mitra AK. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev: Nanomed Nanobiotechnol. 2014;6:422–37.Google Scholar
  256. 256.
    De Campos AM, Sánchez A, Gref R, Calvo P, Alonso J. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci. 2003;20:73–81.PubMedCrossRefGoogle Scholar
  257. 257.
    Calvo P, Vila-Jato JL, Alonso MJ. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J Pharm Sci. 1996;85:530–6.PubMedCrossRefGoogle Scholar
  258. 258.
    Saw S-M, Katz J, Schein OD, Chew S-J, Chan T-K. Epidemiology of myopia. Epidemiol Rev. 1996;18:175–87.PubMedCrossRefGoogle Scholar
  259. 259.
    Cheung CMG, Arnold JJ, Holz FG, Park KH, Lai TY, Larsen M, Mitchell P, Ohno-Matsui K, Chen S-J, Wolf S. Myopic Choroidal Neovascularization: Review, Guidance, and Consensus Statement on Management. Ophthalmology. 2017;124:1690–711.PubMedCrossRefGoogle Scholar
  260. 260.
    Moriyama M, Ohno-Matsui K, Futagami S, Yoshida T, Hayashi K, Shimada N, Kojima A, Tokoro T, Mochizuki M. Morphology and long-term changes of choroidal vascular structure in highly myopic eyes with and without posterior staphyloma. Ophthalmology. 2007;114:1755–62. e1.PubMedCrossRefGoogle Scholar
  261. 261.
    Neelam K, Cheung CMG, Ohno-Matsui K, Lai TY, Wong TY. Choroidal neovascularization in pathological myopia. Prog Retin Eye Res. 2012;31:495–525.PubMedCrossRefGoogle Scholar
  262. 262.
    Zheng Y-F, Pan C-W, Chay J, Wong TY, Finkelstein E, Saw S-M. The economic cost of myopia in adults aged over 40 years in Singapore cost of myopia in Singapore. Invest Ophthalmol Vis Sci. 2013;54:7532–7.PubMedCrossRefGoogle Scholar
  263. 263.
    Hotchkiss ML, Fine LS. Pathologic myopia and choroidal neovascularization. Am J Ophthalmol. 1981;91:177–83.PubMedCrossRefGoogle Scholar
  264. 264.
    Yoshida T, Ohno-Matsui K, Ohtake Y, Takashima T, Futagami S, Baba T, Yasuzumi K, Tokoro T, Mochizuki M. Long-term visual prognosis of choroidal neovascularization in high myopia: a comparison between age groups1 1The authors have no financial interest in any products/drugs discussed in this article. Ophthalmology. 2002;109:712–9.PubMedCrossRefGoogle Scholar
  265. 265.
    Ikuno Y, Sayanagi K, Soga K, Sawa M, Gomi F, Tsujikawa M, Tano Y. Lacquer crack formation and choroidal neovascularization in pathologic myopia. Retina. 2008;28:1124–31.PubMedCrossRefGoogle Scholar
  266. 266.
    Ohno-Matsui K, Yoshida T, Futagami S, Yasuzumi K, Shimada N, Kojima A, Tokoro T, Mochizuki M. Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia. Br J Ophthalmol. 2003;87:570–3.PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Silva R. Myopic maculopathy: a review. Ophthalmologica. 2012;228:197–213.PubMedCrossRefGoogle Scholar
  268. 268.
    Curtin BJ, Karlin DB. Axial length measurements and fundus changes of the myopic eye. Am J Ophthalmol. 1971;71:42–53.PubMedCrossRefGoogle Scholar
  269. 269.
    Ikuno Y, Jo Y, Hamasaki T, Tano Y. Ocular risk factors for choroidal neovascularization in pathologic myopia. Invest Ophthalmol Vis Sci. 2010;51:3721–5.PubMedCrossRefGoogle Scholar
  270. 270.
    Seko Y, Seko Y, Fujikura H, Pang J, Tokoro T, Shimokawa H. Induction of vascular endothelial growth factor after application of mechanical stress to retinal pigment epithelium of the rat in vitro. Invest Ophthalmol Vis Sci. 1999;40:3287–91.PubMedGoogle Scholar
  271. 271.
    Shiose S, Hata Y, Noda Y, Sassa Y, Takeda A, Yoshikawa H, Fujisawa K, Kubota T, Ishibashi T. Fibrinogen stimulates in vitro angiogenesis by choroidal endothelial cells via autocrine VEGF. Graefe’s Arch Clin Exp Ophthalmol. 2004;242:777–83.CrossRefGoogle Scholar
  272. 272.
    Barteselli G, Lee SN, El-Emam S, Hou H, Ma F, Chhablani J, Conner L, Cheng L, Bartsch D-U, Freeman WR. Macular choroidal volume variations in highly myopic eyes with myopic traction maculopathy and choroidal neovascularization. Retina. 2014;34:880–9.PubMedCrossRefGoogle Scholar
  273. 273.
    Byeon SH, Kwon OW, Lee SC, Kim SS, Koh HJ. Indocyanine green angiographic features of myopic subfoveal choroidal neovascularization as a prognostic factor after photodynamic therapy. Kor J Ophthalmol. 2006;20:18–25.CrossRefGoogle Scholar
  274. 274.
    Kang HM, Koh HJ. Ocular risk factors for recurrence of myopic choroidal neovascularization: long-term follow-up study. Retina. 2013;33:1613–22.PubMedCrossRefGoogle Scholar
  275. 275.
    Leveziel N, Yu Y, Reynolds R, Tai A, Meng W, Caillaux V, Calvas P, Rosner B, Malecaze F, Souied EH. Genetic factors for choroidal neovascularization associated with high myopia genetic factors related to myopic CNV. Invest Ophthalmol Vis Sci. 2012;53:5004–9.PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Miyake M, Yamashiro K, Akagi-Kurashige Y, Kumagai K, Nakata I, Nakanishi H, Oishi A, Tsujikawa A, Yamada R, Matsuda F. Vascular endothelial growth factor gene and the response to anti-vascular endothelial growth factor treatment for choroidal neovascularization in high myopia. Ophthalmology. 2014;121:225–33.PubMedCrossRefGoogle Scholar
  277. 277.
    Long Q, Ye J, Li Y, Wang S, Jiang Y. C-reactive protein and complement components in patients with pathological myopia. Optom Vis Sci. 2013;90:501–6.PubMedCrossRefGoogle Scholar
  278. 278.
    Tong J-P, Chan W-M, Liu DT, Lai TY, Choy K-W, Pang C-P, Lam DS. Aqueous humor levels of vascular endothelial growth factor and pigment epithelium–derived factor in polypoidal choroidal vasculopathy and choroidal neovascularization. Am J Ophthalmol. 2006;141:456–62.PubMedCrossRefGoogle Scholar
  279. 279.
    Yamamoto Y, Miyazaki D, Sasaki S-i, Miyake K-i, Kaneda S, Ikeda Y, Baba T, Yamasaki A, Noguchi Y, Inoue Y. Associations of inflammatory cytokines with choroidal neovascularization in highly myopic eyes. Retina. 2015;35:344–50.PubMedCrossRefGoogle Scholar
  280. 280.
    Parodi MB, Iacono P, Papayannis A, Sheth S, Bandello F. Laser photocoagulation, photodynamic therapy, and intravitreal bevacizumab for the treatment of juxtafoveal choroidal neovascularization secondary to pathologic myopia. Arch Ophthalmol. 2010;128:437–42.PubMedCrossRefGoogle Scholar
  281. 281.
    Virgili G, Menchini F. Laser photocoagulation for choroidal neovascularisation in pathologic myopia. Cochrane Lib. 2005;19:CD004765.Google Scholar
  282. 282.
    Adelberg DA, Del Priore LV, Kaplan HJ. Surgery for subfoveal membranes in myopia, angioid streaks, and other disorders. Retina. 1995;15:198–205.PubMedCrossRefGoogle Scholar
  283. 283.
    Hamelin N, Glacet-Bernard A, Brindeau C, Mimoun G, Coscas G, Soubrane G. Surgical treatment of subfoveal neovascularization in myopia: macular translocation vs surgical remova. Am J Ophthalmol. 2002;133:530–6.PubMedCrossRefGoogle Scholar
  284. 284.
    Fujikado T, Ohji M, Kusaka S, Hayashi A, Kamei M, Okada AA, Oda K, Tano Y. Visual function after foveal translocation with 360-degree retinotomy and simultaneous torsional muscle surgery in patients with myopic neovascular maculopathy. Am J Ophthalmol. 2001;131:101–10.PubMedCrossRefGoogle Scholar
  285. 285.
    Sakimoto S, Sakaguchi H, Ohji M, Gomi F, Ikuno Y, Fujikado T, Kamei M, Nishida K. Consecutive case series with long-term follow-up of full macular translocation for myopic choroidal neovascularisation. Br J Ophthalmol. 2014;98:1221–5. bjophthalmol-2013-304189.PubMedCrossRefGoogle Scholar
  286. 286.
    Yamada Y, Miyamura N, Suzuma K, Kitaoka T. Long-term follow-up of full macular translocation for choroidal neovascularization. Am J Ophthalmol. 2010;149:453–7. e1.PubMedCrossRefGoogle Scholar
  287. 287.
    El Matri L, Chebil A, Kort F. Current and emerging treatment options for myopic choroidal neovascularization. Clin Ophthalmol (Auckland, NZ). 2015;9:733.CrossRefGoogle Scholar
  288. 288.
    Blinder KJ, Blumenkranz MS, Bressler NM, Bressler SB, Donato G, Lewis H, Lim JI, Menchini U, Miller JW, Mones JM. Verteporfin therapy of subfoveal choroidal neovascularization in pathologic myopia: 2-year results of a randomized clinical trial--VIP report no 3. Ophthalmology. 2003;110:667–73.PubMedCrossRefGoogle Scholar
  289. 289.
    Chew M, Tan C. Treatment options for myopic CNV-Is photodynamic therapy still relevant. Indian J Ophthalmol. 2014;62:834.PubMedPubMedCentralCrossRefGoogle Scholar
  290. 290.
    Group ViPTS. Photodynamic therapy of subfoveal choroidal neovascularization in pathologic myopia with verteporfin. 1-year results of a randomized clinical trial–VIP report no. 1. Ophthalmology. 2001;108:841.CrossRefGoogle Scholar
  291. 291.
    Pece A, Isola V, Vadalà M, Matranga D. Photodynamic therapy with verteporfin for subfoveal choroidal neovascularization secondary to pathologic myopia: long-term study. Retina. 2006;26:746–51.PubMedCrossRefGoogle Scholar
  292. 292.
    Ruiz-Moreno J, Amat P, Montero J, Lugo F. Photodynamic therapy to treat choroidal neovascularisation in highly myopic patients: 4 years’ outcome. Br J Ophthalmol. 2008;92:792–4.PubMedCrossRefGoogle Scholar
  293. 293.
    Sakaguchi H, Ikuno Y, Gomi F, Kamei M, Sawa M, Tsujikawa M, Oshima Y, Kusaka S, Tano Y. Intravitreal injection of bevacizumab for choroidal neovascularisation associated with pathological myopia. Br J Ophthalmol. 2007;91:161–5.PubMedCrossRefGoogle Scholar
  294. 294.
    Yamamoto I, Rogers AH, Reichel E, Yates PA, Duker JS. Intravitreal bevacizumab (Avastin) as treatment for subfoveal choroidal neovascularisation secondary to pathological myopia. Br J Ophthalmol. 2007;91:157–60.PubMedCrossRefGoogle Scholar
  295. 295.
    Silva RM, Ruiz-Moreno JM, Nascimento J, Carneiro Ã, Rosa P, Barbosa A, Carvalheira F, Abreu JRF, Cunha-vaz JG. Short-term efficacy and safety of intravitreal ranibizumab for myopic choroidal neovascularization. Retina. 2008;28:1117–23.PubMedCrossRefGoogle Scholar
  296. 296.
    Abd A, Kanwar R, Kanwar J. Aged macular degeneration: current therapeutics for management and promising new drug candidates. Drug Discov Today. 2017;22:1671–9.  https://doi.org/10.1016/j.drudis.2017.07.010.CrossRefPubMedGoogle Scholar
  297. 297.
    Wong TY, Ohno-Matsui K, Leveziel N, Holz FG, Lai TY, Yu HG, Lanzetta P, Chen Y, Tufail A. Myopic choroidal neovascularisation: current concepts and update on clinical management. Br J Ophthalmol. 2015;99:289–96.PubMedCrossRefGoogle Scholar
  298. 298.
    Tang R, Tan J, Deng Z, Sz Z, Yb M, Zhang W. Insulin-like growth factor-2 antisense oligonucleotides inhibits myopia by expression blocking of retinal insulin-like growth factor-2 in guinea pig. Clin Exp Ophthalmol. 2012;40:503–11.PubMedCrossRefGoogle Scholar
  299. 299.
    Hirani A, Grover A, Lee YW, Pathak Y, Sutariya V. Triamcinolone acetonide nanoparticles incorporated in thermoreversible gels for age-related macular degeneration. Pharm Dev Technol. 2016;21:61–7.PubMedCrossRefGoogle Scholar
  300. 300.
    Xu X, Weng Y, Xu L, Chen H. Sustained release of Avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery. Int J Biol Macromol. 2013;60:272–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Amitoj Singh
    • 1
  • Afrah Jalil Abd
    • 1
  • Aseel Al-Mashahedah
    • 1
  • Jagat Rakesh Kanwar
    • 1
  1. 1.Nanomedicine Laboratory of Immunology and Molecular Biochemical Research (NLIMBR), Centre Molecular and Medical Research (CMMR), School of MedicineFaculty of Health Deakin UniversityWaurn PondsAustralia

Personalised recommendations