Advertisement

Biodegradable Polymeric Implants for Retina and Posterior Segment Disease

  • Aditi Pandhare
  • Priyanka Bhatt
  • Hardeep Singh Saluja
  • Yashwant V. Pathak
Chapter

Abstract

Drug delivery to the retina and posterior segment of the eye is challenging as the traditional procedures involve frequent clinical visits and administration of medications, drugs, and other injections that could potentially increase chances of infection and intraocular hazards.

Biodegradable implants are explored to overcome these limitations, and these implants are formulated from biocompatible polymers which can achieve a sustained release of therapeutic agent in ocular target site such as the retina or posterior segment of the eye with minimal side effects. These polymers are not toxic and can be broken down via enzymatic activity as well as hydrolysis within our body in months or years, and therefore, they have sufficient biocompatibility, especially when incorporated in systems for posterior eye disorders. This chapter discusses about examples of such implants, their formulation, material used, advantages, disadvantages, and possible toxicity profile as well as use of biodegradable polymeric implants in drug delivery for the retina and posterior segment of the eye.

References

  1. 1.
    Sutariya VB, Pathak Y. Biointeractions of nanomaterials. Boca Raton: CRC Press; 2015.Google Scholar
  2. 2.
    Kiernan DF, Lim JI. Topical drug delivery for posterior segment disease. 2010. Retina Today. Retrieved from http://retinatoday.com/pdfs/0510RT_Feature_Lim_Mosh.pdf.
  3. 3.
    Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems: a shift to the posterior segment. Drug Discov Today. 2008;13(3–4):135–43.  https://doi.org/10.1016/j.drudis.2007.11.002.CrossRefPubMedGoogle Scholar
  4. 4.
    Sarao V, Veritti D, Boscia F, Lanzetta P. Intravitreal steroids for the treatment of retinal diseases. Sci World J Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910383/. 2014;2014:1.CrossRefGoogle Scholar
  5. 5.
    Wang J, Jiang A, Joshi M, Christoforidis J. Drug delivery implants in the treatment of vitreous inflammation. Mediat Inflamm. 2013;2013:1. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804444/.Google Scholar
  6. 6.
    Kuno N, Fujii S. Recent advances in ocular drug delivery systems. Polymers. 2011;3(1):193–221. Retrieved from http://www.mdpi.com/2073-4360/3/1/193.CrossRefGoogle Scholar
  7. 7.
    Shah SS, Denham LV, Elison JR, Bhattacharjee PS, Clement C, Huq T, Hill JM. Drug delivery to the posterior segment of the eye for pharmacologic therapy. Expert Rev Ophthalmol. 2010;5(1):75–93. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2839363/.CrossRefGoogle Scholar
  8. 8.
    Lee DJ. Intraocular implants for the treatment of autoimmune uveitis. J Funct Biomater. 2015;6(3):605–66.  https://doi.org/10.3390/jfb6030650.CrossRefGoogle Scholar
  9. 9.
    Cebeci Z, Kir N. Role of implants in the treatment of diabetic macular edema: focus on the dexamethasone intravitreal implant. Diabetes Metab Syndr Obes. 2015;8:555–66. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655951/ (zafel).CrossRefGoogle Scholar
  10. 10.
    Shin JP, Park YC, Oh JH, Lee JW, Kim YM, Lim JO, Kim SY. Biodegradable intrascleral implant of triamcinolone acetonide in experimental uveitis. J Ocul Pharmacol Ther. 2009;25(3):201–8.  https://doi.org/10.1089/jop.2008.0086.CrossRefPubMedGoogle Scholar
  11. 11.
    Alhalafi AM. Applications of polymers in intraocular drug delivery systems. Oman J Ophthalmol. 2017;10(1):3–8. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338049/.CrossRefGoogle Scholar
  12. 12.
    Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49(12):832–64. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136871/.CrossRefGoogle Scholar
  13. 13.
    Dugel PU, Bandello F, Loewenstein A. Dexamethasone intravitreal implant in the treatment of diabetic macular edema. Clin Ophthalmol. 2015;9:1321–35. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509543/.CrossRefGoogle Scholar
  14. 14.
    Valverde-Megías A, Cifuentes-Canorea P, Ruiz-Medrano J, Peña-García P, Megías-Fresno A, Donate-López J, García-Feijoo J. Systemic effects of repeated intraocular dexamethasone intravitreal implant in diabetic patients: a retrospective study. Diabetes Ther. 2017;8(5):1087–96.  https://doi.org/10.1007/s13300-017-0307-y.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fung AE. A novel sustained-release intravitreal drug delivery system for retinal vascular disease. 2010. Retina Today. Retrieved from http://retinatoday.com/2010/04/a-novel-sustainedrelease-intravitreal-drug-delivery-system-for-retinal-vascular-disease/.
  16. 16.
    Liu Y, Peng Y, Lwin N, Venkatraman SS, Wong TT, Mehta JS. A biodegradable, sustained-released, prednisolone acetate microfilm drug delivery system effectively prolongs corneal allograft survival in the rat Keratoplasty model. PLoS. 2013;8:e70419. Retrieved from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0070419.CrossRefGoogle Scholar
  17. 17.
    Liu Y, Ng AH, Ng XW, Yan P, Venkatraman SS, Mehta JS, Wong TT. Evaluation of a sustained-release prednisolone acetate biodegradable subconjunctival implant in a non-human primate model. Transl Vis Sci Technol. 2017;6(5):9.  https://doi.org/10.1167/tvst.6.5.9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ang M, Ng X, Wong C, Yan P, Chee S, Venkatraman SS, Wong TT. Evaluation of a prednisolone acetate-loaded subconjunctival implant for the treatment of recurrent uveitis in a rabbit model. PLoS One. 2014;9(8):9.  https://doi.org/10.1371/journal.pone.0105658.CrossRefGoogle Scholar
  19. 19.
    Ng XW, Liu KL, Veluchamy AB, Lwin NC, Wong TT, Venkatraman SS. A biodegradable ocular implant for long-term suppression of intraocular pressure. Drug Deliv Transl Res. 2015;5(5):469–79.  https://doi.org/10.1007/s13346-015-0240-4.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Meireles A, Goldsmith C, El-Ghrably I, Erginay A, Habib M, Pessoa B, Coelho J, Patel T, Tadayoni R, Massin P, Atorf J, Augustin AJ. Efficacy of 0.2 μg/day fluocinolone acetonide implant (ILUVIEN) in eyes with diabetic macular edema and prior vitrectomy. Eye. 2017;31(5):684–90.  https://doi.org/10.1038/eye.2016.303.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lewis RA, Christie WC, Day DG, Craven ER, Walters T, Bejanian M, Lee SS, Goodkin ML, Zhang J, Whitcup SM, Robinson MR, Bimatoprost SR Study Group. Bimatoprost sustained-release implants for Glaucoma therapy: 6-month results from a phase I/II clinical trial. Am J Ophthalmol. 2017;175:137–47.  https://doi.org/10.1016/j.ajo.2016.11.020.CrossRefPubMedGoogle Scholar
  22. 22.
    Mahapatrol A, Singh D. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnol. 2011;9:55.  https://doi.org/10.1186/1477-3155-9-55.CrossRefGoogle Scholar
  23. 23.
    Sabzevari A, Adibkia K, Hashemi H, Geest BG, Mohsenzadeh N, Atyabi F, Ghahremani MH, Khoshayand MR, Dinarvand R. Improved anti-inflammatory effects in rabbit eye model using biodegradable poly beta-amino ester nanoparticles of triamcinolone acetonide. Invest Ophthalmol Vis Sci. 2013;54(8):5520.  https://doi.org/10.1167/iovs.13-12296.CrossRefPubMedGoogle Scholar
  24. 24.
    Tahara K, Karasawa K, Onodera R, Takeuchi H. Feasibility of drug delivery to the eyes posterior segment by topical instillation of PLGA nanoparticles. Asian J Pharm Sci. 2017;12(4):394–9.  https://doi.org/10.1016/j.ajps.2017.03.002.CrossRefGoogle Scholar
  25. 25.
    Chang E, McClellan AJ, Farley WJ, Li DQ, Pflugfelder SC, De Paiva CS. Biodegradable PLGA-based drug delivery systems for modulating ocular surface disease under experimental murine dry eye. J Clin Exp Ophthalmol, 2011;2(11).  https://doi.org/10.4172/2155-9570.1000191.
  26. 26.
    Christoforidis JB, Chang S, Jiang A, Wang J, Cebulla CM. Intravitreal devices for the treatment of vitreous inflammation. Mediat Inflamm. 2012;2012:126463. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3441042/.Google Scholar
  27. 27.
    Jampel HD, Leong KW, Dunkelburger GR, Qulgley HA. Glaucoma filtration surgery in monkeys using 5-fluorouridine in polyanhydride disks. Arch Ophthalmol. 1990;108:430. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/2106872CrossRefGoogle Scholar
  28. 28.
    Lee DA, Leong KW, Panek WC, Eng CT, Glasgow BJ. The use of bioerodible polymers and 5-fluorouracil in glaucoma filtration surgery. Invest Ophthalmol Vis Sci. 1988;29(11):1692. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/3053529.PubMedGoogle Scholar
  29. 29.
    Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG. Drug delivery to the posterior segment of the eye. Drug Discov Today. 2011;16(5–6):270–7.  https://doi.org/10.1016/j.drudis.2010.12.004.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Aditi Pandhare
    • 1
  • Priyanka Bhatt
    • 1
  • Hardeep Singh Saluja
    • 2
  • Yashwant V. Pathak
    • 1
  1. 1.College of PharmacyUniversity of South FloridaTampaUSA
  2. 2.Department of Pharmaceutical SciencesSouthwestern Oklahoma State University College of PharmacyWeatherfordUSA

Personalised recommendations