Advertisement

Colloidal Carrier Systems for Transscleral Drug Delivery

  • Komal Parmar
  • Jayvadan K. Patel
Chapter

Abstract

This chapter aims to describe colloidal carrier systems for transscleral drug delivery as a possible treatment approach for posterior segment ocular diseases. Complexities of eye anatomy pose several difficulties in the treatment of posterior segment ocular diseases. The transscleral route of drug delivery has demonstrated an alternative method to the already widely accepted topical, oral, and intraocular routes for drug administration into retinal segment of the eye. By combining this route of administration with a colloidal carrier system, the active pharmaceutical ingredient shows a higher potential of reaching its target location at a higher concentration while simultaneously mounting patient compliance.

References

  1. 1.
    Abdelkader H, Ismail S, Kamal A, et al. Preparation of niosomes as an ocular delivery system for naltrexone hydrochloride: physicochemical characterization. Pharmazie. 2010;65(11):811–7.PubMedGoogle Scholar
  2. 2.
    Ali J, Fazil M, Qumbar M, et al. Colloidal drug delivery system: amplify the ocular delivery. Drug Deliv. 2016;23(3):710–26.PubMedGoogle Scholar
  3. 3.
    Ali M, Byrne ME. Challenges and solutions in topical ocular drug-delivery systems. Expert Rev Clin Pharmacol. 2008;1(1):145–61.CrossRefGoogle Scholar
  4. 4.
    Aliautdin RN, Iezhitsa IN, Agarval R. Transcorneal drug delivery: prospects for the use of liposomes. Vestn oftalmol. 2014;130(4):117–22.PubMedGoogle Scholar
  5. 5.
    Ambati J, Canakis CS, Miller JW, et al. Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci. 2000;41(5):1181–5.PubMedGoogle Scholar
  6. 6.
    Ambati J, Gragoudas ES, Miller JW, et al. Transscleral delivery of bioactive protein to the choroid and retina. Invest Ophthalmol Vis Sci. 2000a;41:1186–91.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Augustin AJ, D’Amico DJ, Mieler WF, et al. Safety of posterior juxtascleral depot administration of the angiostatic cortisene anecortave acetate for treatment of subfoveal choroidal neovascularization in patients with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2005;243(1):9–12.CrossRefGoogle Scholar
  8. 8.
    Carrasquillo KG, Ricker JA, Rigas IK, et al. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest Ophthalmol Vis Sci. 2003;44(1):290–9.CrossRefGoogle Scholar
  9. 9.
    Chen MS, Hou PK, Tai TY, et al. Blood ocular barriers. Tzu Chi Med J. 2008;20(1):25–34.CrossRefGoogle Scholar
  10. 10.
    Civiale C, Licciardi M, Cavallaro G, et al. Polyhydroxyethyl aspartamide-based micelles for ocular drug delivery. Int J Pharm. 2009;378(1–2):177–86.CrossRefGoogle Scholar
  11. 11.
    Crampton HL, Simanek EE. Dendrimers as drug delivery vehicles: non-covalent interactions of bioactive compounds with dendrimers. Polym Int. 2007;56:489–96.CrossRefGoogle Scholar
  12. 12.
    Cruysberg LP, Nuijts RM, Geroski DH, et al. In vitro human scleral permeability of fluorescein, dexamethasone-fluorescein, methotrexate-fluorescein and rhodamine 6G and the use of a coated coil as a new drug delivery system. J Ocul Pharmacol Ther. 2002;18:559–69.CrossRefGoogle Scholar
  13. 13.
    Curtin BJ. Physiopathologic aspects of scleral stress-strain. Trans Am Ophthalmol Soc. 1969;67:417–61.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Davis BM, Normando EM, Guo L, et al. Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small. 2014;10(8):1575–84.CrossRefGoogle Scholar
  15. 15.
    Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57(15):2215–37.CrossRefGoogle Scholar
  16. 16.
    Dunlevy JR, Rada JA. Interaction of lumican with aggrecan in the aging human sclera. Invest Ophthalmol Vis Sci. 2004;45:3849–56.CrossRefGoogle Scholar
  17. 17.
    Elsaid N, Jackson TL, Gunic M, et al. Positively charged amphiphilic chitosan derivative for the transscleral delivery of rapamycin. Invest Ophthalmol Vis Sci. 2012;53(13):8105–11.CrossRefGoogle Scholar
  18. 18.
    Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond). 2013;27(7):787–94.Google Scholar
  19. 19.
    Gillies ER, Frechet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005;10:35–43.CrossRefGoogle Scholar
  20. 20.
    Hironaka K, Inokuchi Y, Tozuka Y, et al. Design and evaluation of a liposomal delivery system targeting the posterior segment of the eye. J Control Release. 2009;136(3):247–53.CrossRefGoogle Scholar
  21. 21.
    Jockovich ME, Moshfeghi AA, Hernandez E, et al. Posterior juxtascleral injection of anecortave acetate: localization in rabbit eyes by magnetic resonance and ecographic imaging. Invest Ophthalmol Vis Sci. 2005;46(13):482.Google Scholar
  22. 22.
    Kaur IP, Garg A, Singla AK, et al. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004;269(1):1–14.CrossRefGoogle Scholar
  23. 23.
    Lu Y, Zhou N, Huang X, et al. Effect of intravitreal injection of bevacizumab-chitosan nanoparticles on retina of diabetic rats. Int J Ophthalmol. 2014;7(1):1–7.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Luo D, Zhu B, Zheng Z, et al. Subtenon vs Intravitreal triamcinolone injection in diabetic macular edema, a prospective study in Chinese population. Pak J Med Sci. 2014;30(4):749–54.CrossRefGoogle Scholar
  25. 25.
    Mandal A, Bisht R, Rupenthal ID, et al. Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release. 2017;248:96–116.CrossRefGoogle Scholar
  26. 26.
    Maurice DM, Polgar J. Diffusion across the sclera. Exp Eye Res. 1977;25:577–82.CrossRefGoogle Scholar
  27. 27.
    Mishra GP, Bagui M, Tamboli V, et al. Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv. 2011;2011:863734.  https://doi.org/10.1155/2011/863734.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Myc A, Majoros IJ, Thomas TP, et al. Dendrimer-based targeted delivery of an apoptotic sensor in cancer cells. Biomacromolecules. 2007;8:13–8.CrossRefGoogle Scholar
  29. 29.
    Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev. 2005;57:2063–79.CrossRefGoogle Scholar
  30. 30.
    Paganelli F, Cardillo JA, Dare AR, et al. Controlled transscleral drug delivery formulations to the eye: establishing new concepts and paradigms in ocular anti-inflammatory therapeutics and antibacterial prophylaxis. Expert Opin Drug Deliv. 2010;7(8):955–65.CrossRefGoogle Scholar
  31. 31.
    Patel A, Cholkar K, Agrahari V, et al. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47–64.CrossRefGoogle Scholar
  32. 32.
    Prosperi-Porta G, Kedzior S, Muirhead B, et al. Phenylboronic-acid-based polymeric micelles for mucoadhesive anterior segment ocular drug delivery. Biomacromolecules. 2016;17(4):1449–57.CrossRefGoogle Scholar
  33. 33.
    Sahoo R, Biswas N, Guha A, et al. Nonionic surfactant vesicles in ocular delivery: innovative approaches and perspectives. Biomed Res Int. 2014;2014:263604.  https://doi.org/10.1155/2014/263604.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sampat KM, Garg SJ. Complications of intravitreal injections. Curr Opin Ophthalmol. 2010;21(3):178–83.CrossRefGoogle Scholar
  35. 35.
    Schultz C, Breaux J, Schentag J, et al. Drug delivery to the posterior segment of the eye through hydrogel contact lenses. Clin Exp Optom. 2011;94(2):212–8.CrossRefGoogle Scholar
  36. 36.
    Shah JN, Shah HJ, Groshev A, et al. Nanoparticulate transscleral ocular drug delivery. J Biomol Res Ther. 2014;3:116.  https://doi.org/10.4172/2167-7956.1000116.CrossRefGoogle Scholar
  37. 37.
    Shah SS, Denham LV, Elison JR, et al. Drug delivery to the posterior segment of the eye for pharmacologic therapy. Exp Rev Ophthalmol. 2010;5(1):75–93.CrossRefGoogle Scholar
  38. 38.
    Srirangam R, Majumdar S. Transscleral drug delivery to the posterior segment of the eye: particulate and colloidal formulations and biopharmaceutical considerations. Advances in Ocular Drug Delivery, Research Signpost. India: Kerala; 2012. p. 33–6.Google Scholar
  39. 39.
    Tan Ling SK. Study on ocular drug delivery system for treatment of posterior segment eye diseases. 2014. http://hdl.handle.net/10356/55726.
  40. 40.
    Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;172:33–70.CrossRefGoogle Scholar
  41. 41.
    Vaishya RD, Khurana V, Patel S, et al. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(5):422–37.CrossRefGoogle Scholar
  42. 42.
    Van Kooij B, Rothova A, De Vries P. The pros and cons of intravitreal triamcinolone injections for uveitis and inflammatory cystoid macular edema. Ocul Immunol Inflamm. 2006;14(2):73–85.CrossRefGoogle Scholar
  43. 43.
    Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release. 2005;102(1):23–38.CrossRefGoogle Scholar
  44. 44.
    Viness P, Choonara YE, du Toit LC. Intraocular drug delivery technologies: advancing treatment of posterior segment disorders of the eye. In: Pathak Y, Sutariya V, Hirani A, editors. Nano-biomaterials for ophthalmic drug delivery. Cham: Springer; 2016. p. 413.Google Scholar
  45. 45.
    Wang XH, Shuang L, Liang L. Evaluation of RPD peptide hydrogel in the posterior segment of the rabbit eye. J Biomater Sci Polym Ed. 2013;24(10):1185–97.CrossRefGoogle Scholar
  46. 46.
    Watson PG, Young RD. Scleral structure, organisation and disease. A review. Exp Eye Res. 2004;78(3):609–23.CrossRefGoogle Scholar
  47. 47.
    Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364(2):298–327.CrossRefGoogle Scholar
  48. 48.
    Yavuz B, Pehlivan SB, Vural İ, et al. In Vitro/In Vivo evaluation of dexamethasone-PAMAM dendrimer complexes for retinal drug delivery. J Pharm Sci. 2015;104(11):3814–23.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Komal Parmar
    • 1
  • Jayvadan K. Patel
    • 2
  1. 1.ROFEL, Shri G.M. Bilakhia College of PharmacyVapiIndia
  2. 2.Nootan Pharmacy College, Faculty of PharmacySankalchand Patel UniversityVisnagarIndia

Personalised recommendations