Advertisement

Molecular Biology in Tardigrades

  • Thomas C. BoothbyEmail author
Chapter
Part of the Zoological Monographs book series (ZM, volume 2)

Abstract

Molecular biology, a term first coined in the 1930s, can be viewed as a set of techniques and approaches, as well as a subdiscipline within biology. Molecular approaches have and continue to be used in nearly every area of biological study today, including genetics, biochemistry, biophysics, cell and developmental biology, physiology, and evolutionary biology. The adoption of molecular techniques to tardigrade research has helped to propel these fascinating animals from obscure biological novelties to important emerging models.

References

  1. Bertolani R, Rebecchi L, Giovannini I, Cesari M (2011) DNA barcoding and integrative taxonomy of Macrobiotus hufelandi CAS Schultze 1834, the first tardigrade species to be described, and some related species. Zootaxa 2997:e36Google Scholar
  2. Blaxter M, Elsworth B, Daub J (2004) DNA taxonomy of a neglected animal phylum: an unexpected diversity of tardigrades. Proc R Soc B Biol Sci 271:S189–S192.  https://doi.org/10.1098/rsbl.2003.0130 CrossRefGoogle Scholar
  3. Blaxter M, Mann J, Chapman T et al (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc B Biol Sci 360:1935–1943.  https://doi.org/10.1098/rstb.2005.1725 CrossRefGoogle Scholar
  4. Boothby TC, Tenlen JR, Smith FW et al (2015) Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proc Natl Acad Sci 112:15976–15981.  https://doi.org/10.1073/pnas.1510461112 CrossRefPubMedGoogle Scholar
  5. Boothby TC, Tapia H, Brozena AH et al (2017) Tardigrades use intrinsically disordered proteins to survive desiccation. Mol Cell 65:975–984.  https://doi.org/10.1016/j.molcel.2017.02.018 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703CrossRefGoogle Scholar
  7. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10:1028–1034.  https://doi.org/10.1038/nmeth.2641 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096.  https://doi.org/10.1126/science.1258096 CrossRefGoogle Scholar
  9. Erkut C, Penkov S, Khesbak H et al (2011) Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation. Curr Biol 21:1331–1336.  https://doi.org/10.1016/j.cub.2011.06.064 CrossRefPubMedGoogle Scholar
  10. Fire A, SiQun X, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefGoogle Scholar
  11. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMedPubMedCentralGoogle Scholar
  12. Gabriel WN, Goldstein B (2007) Segmental expression of Pax3/7 and engrailed homologs in tardigrade development. Dev Genes Evol 217:421–433.  https://doi.org/10.1007/s00427-007-0152-5 CrossRefGoogle Scholar
  13. Gabriel WN, McNuff R, Patel SK et al (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–559.  https://doi.org/10.1016/j.ydbio.2007.09.055 CrossRefGoogle Scholar
  14. Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17:175–188.  https://doi.org/10.1038/nrg.2015.16 CrossRefPubMedGoogle Scholar
  15. Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541.  https://doi.org/10.1038/nature04791 CrossRefGoogle Scholar
  16. Hannon GJ (2002) RNA interference. Nature 418:244–251CrossRefGoogle Scholar
  17. Hashimoto T, Horikawa DD, Saito Y et al (2016) Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat Commun 7:12808.  https://doi.org/10.1038/ncomms12808 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2:666–673.  https://doi.org/10.1016/j.celrep.2012.08.003 CrossRefPubMedGoogle Scholar
  19. Hengherr S, Heyer AG, Köhler H-R, Schill RO (2008) Trehalose and anhydrobiosis in tardigrades - evidence for divergence in responses to dehydration: trehalose and anhydrobiosis in tardigrades. FEBS J 275:281–288.  https://doi.org/10.1111/j.1742-4658.2007.06198.x CrossRefPubMedGoogle Scholar
  20. Hering L, Bouameur J-E, Reichelt J et al (2016) Novel origin of Lamin-derived cytoplasmic intermediate filaments in tardigrades. eLife 5:e11117CrossRefGoogle Scholar
  21. Hoekstra FA, Crowe LM, Crowe JH (1989) Differential desiccation sensitivity of corn and Pennisetum pollen linked to their sucrose contents. Plant Cell Environ 12:83–91CrossRefGoogle Scholar
  22. Holmstrup M, Hedlund K, Boriss H (2002) Drought acclimation and lipid composition in Folsomia candida: implications for cold shock, heat shock and acute desiccation stress. J Insect Physiol 48:961–970CrossRefGoogle Scholar
  23. Hughes CS, Foehr S, Garfield DA et al (2014) Ultrasensitive proteome analysis using paramagnetic bead technology. Mol Syst Biol 10:757–757.  https://doi.org/10.15252/msb.20145625 CrossRefPubMedGoogle Scholar
  24. Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806CrossRefGoogle Scholar
  25. Hygum TL, Fobian D, Kamilari M et al (2017) Comparative investigation of copper tolerance and identification of putative tolerance related genes in tardigrades. Front Physiol 8:95.  https://doi.org/10.3389/fphys.2017.00095 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ingemar Jönsson K, Harms-Ringdahl M, Torudd J (2005) Radiation tolerance in the eutardigrade Richtersius coronifer. Int J Radiat Biol 81:649–656.  https://doi.org/10.1080/09553000500368453 CrossRefPubMedGoogle Scholar
  27. Jackson AL, Bartz SR, Schelter J et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637CrossRefGoogle Scholar
  28. Jönsson KI, Persson O (2010) Trehalose in three species of desiccation tolerant tardigrades. Open Zool J 3:1–5CrossRefGoogle Scholar
  29. Kolodziejczyk AA, Kim JK, Svensson V et al (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58:610–620.  https://doi.org/10.1016/j.molcel.2015.04.005 CrossRefGoogle Scholar
  30. Koutsovoulos G, Kumar S, Laetsch DR et al (2016) No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc Natl Acad Sci:201600338.  https://doi.org/10.1073/pnas.1600338113 CrossRefGoogle Scholar
  31. Lapinski J, Tunnacliffe A (2003) Anhydrobiosis without trehalose in bdelloid rotifers. FEBS Lett 553:387–390.  https://doi.org/10.1016/S0014-5793(03)01062-7 CrossRefGoogle Scholar
  32. Levin M, Anavy L, Cole AG et al (2016) The mid-developmental transition and the evolution of animal body plans. Nature 531:637–641.  https://doi.org/10.1038/nature16994 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mali B, Grohme MA, Förster F et al (2010) Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer. BMC Genomics 11:168CrossRefGoogle Scholar
  34. Miller JC, Holmes MC, Wang J et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785.  https://doi.org/10.1038/nbt1319 CrossRefPubMedGoogle Scholar
  35. Mussolino C, Morbitzer R, Lutge F et al (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39:9283–9293.  https://doi.org/10.1093/nar/gkr597 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Obinata T, Ono K, Ono S (2011) Detection of a troponin I-like protein in non-striated muscle of the tardigrades (water bears). BioArchitecture 1:96–102.  https://doi.org/10.4161/bioa.1.2.16251 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23:1061–1067.  https://doi.org/10.1093/bioinformatics/btm071 CrossRefPubMedGoogle Scholar
  38. Rebecchi L, Altiero T, Guidetti R et al (2009) Tardigrade resistance to space effects: first results of experiments on the LIFE-TARSE mission on FOTON-M3 (September 2007). Astrobiology 9:581–591CrossRefGoogle Scholar
  39. Rizzo AM, Negroni M, Altiero T et al (2010) Antioxidant defences in hydrated and desiccated states of the tardigrade Paramacrobiotus richtersi. Comp Biochem Physiol B Biochem Mol Biol 156:115–121.  https://doi.org/10.1016/j.cbpb.2010.02.009 CrossRefPubMedGoogle Scholar
  40. Rizzo AM, Altiero T, Corsetto PA et al (2015) Space flight effects on antioxidant molecules in dry tardigrades: the TARDIKISS experiment. Biomed Res Int 2015:1–7.  https://doi.org/10.1155/2015/167642 CrossRefGoogle Scholar
  41. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355.  https://doi.org/10.1038/nbt.2842 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sarkies P, Selkirk ME, Jones JT et al (2015) Ancient and novel small RNA pathways compensate for the loss of piRNAs in multiple independent nematode lineages. PLoS Biol 13:e1002061.  https://doi.org/10.1371/journal.pbio.1002061 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Schill RO (2007) Comparison of different protocols for DNA preparation and PCR amplification of mitochondrial genes of tardigrades. J Limnol 66:164–170CrossRefGoogle Scholar
  44. Schokraie E, Hotz-Wagenblatt A, Warnken U et al (2010) Proteomic analysis of tardigrades: towards a better understanding of molecular mechanisms by anhydrobiotic organisms. PLoS One 5:e9502.  https://doi.org/10.1371/journal.pone.0009502 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Schokraie E, Hotz-Wagenblatt A, Warnken U et al (2011) Investigating heat shock proteins of tardigrades in active versus anhydrobiotic state using shotgun proteomics: investigating heat shock proteins of tardigrades. J Zool Syst Evol Res 49:111–119.  https://doi.org/10.1111/j.1439-0469.2010.00608.x CrossRefGoogle Scholar
  46. Schokraie E, Warnken U, Hotz-Wagenblatt A et al (2012) Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state. PLoS One 7:e45682.  https://doi.org/10.1371/journal.pone.0045682 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Shannon AJ, Tyson T, Dix I et al (2008) Systemic RNAi mediated gene silencing in the anhydrobiotic nematode Panagrolaimus superbus. BMC Mol Biol 9:58.  https://doi.org/10.1186/1471-2199-9-58 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Smith FW, Jockusch EL (2014) The metameric pattern of Hypsibius dujardini (Eutardigrada) and its relationship to that of other panarthropods. Front Zool 11(1):66CrossRefGoogle Scholar
  49. Smith FW, Boothby TC, Giovannini I et al (2016) The compact body plan of tardigrades evolved by the loss of a large body region. Curr Biol 26:224–229.  https://doi.org/10.1016/j.cub.2015.11.059 CrossRefGoogle Scholar
  50. Tanaka S, Tanaka J, Miwa Y et al (2015) Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic tardigrade improve osmotic tolerance of human cells. PLoS One 10:e0118272.  https://doi.org/10.1371/journal.pone.0118272 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Taniguchi Y, Choi PJ, Li G-W et al (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–538CrossRefGoogle Scholar
  52. Tapia H, Koshland DE (2014) Trehalose is a versatile and long-lived chaperone for desiccation tolerance. Curr Biol 24:2758–2766.  https://doi.org/10.1016/j.cub.2014.10.005 CrossRefPubMedGoogle Scholar
  53. Tenlen JR, McCaskill S, Goldstein B (2013) RNA interference can be used to disrupt gene function in tardigrades. Dev Genes Evol 223:171–181.  https://doi.org/10.1007/s00427-012-0432-6 CrossRefPubMedGoogle Scholar
  54. Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646.  https://doi.org/10.1038/nrg2842 CrossRefPubMedGoogle Scholar
  55. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232CrossRefGoogle Scholar
  56. Wang C, Grohme MA, Mali B et al (2014) Towards decrypting cryptobiosis—analyzing anhydrobiosis in the tardigrade Milnesium tardigradum using transcriptome sequencing. PLoS One 9:e92663.  https://doi.org/10.1371/journal.pone.0092663 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Westh P, Ramløv H (1991) Trehalose accumulation in the tardigrade Adorybiotus coronifer during anhydrobiosis. J Exp Zool 258:303–311CrossRefGoogle Scholar
  58. Wetterstrand KA (2016) DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP). www.genome.gov/sequencingcosts. Accessed 23 May 2016
  59. Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295:2456–2459CrossRefGoogle Scholar
  60. Yamaguchi A, Tanaka S, Yamaguchi S et al (2012) Two novel heat-soluble protein families abundantly expressed in an anhydrobiotic tardigrade. PLoS One 7:e44209.  https://doi.org/10.1371/journal.pone.0044209 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations