Advertisement

Environmental Adaptations: Cryobiosis

  • Steffen HengherrEmail author
  • Ralph O. Schill
Chapter
Part of the Zoological Monographs book series (ZM, volume 2)

Abstract

Tardigrades are well known to withstand very low temperatures in the anhydrobiotic state. However, they even tolerate such low temperatures like −196 °C in the fully hydrated state which is then described with the term cryobiosis. Although this extreme subzero temperature tolerance got quite a lot of attention, there is little knowledge regarding their physiological and biochemical adaptations connected to ecological representative subzero temperatures. General studies on cold tolerance have highlighted some strategies including freeze avoidance, rapid cold hardening and freeze tolerance. Although studies on survival rates, cooling rates and ice formation in tardigrades show high interspecific variations in subzero temperature survival, the water bears seem to tolerate ice formation within their bodies and therefore belong to freeze-tolerant organisms. Calorimetric studies also provide evidence for homogenous ice nucleation, indicating that ice formation is not largely affected by ice-nucleating agents. Ability to tolerate low temperatures and freezing even in embryonic developmental stages further increases the adaptive benefit of tardigrades to cope with low-temperature events.

References

  1. Bale JS (1996) Insect cold hardiness: a matter of life and death. Eur J Entomol 93:369–382Google Scholar
  2. Block W (1991) To freeze or not to freeze - invertebrate survival of subzero temperatures. Funct Ecol 5:284–290CrossRefGoogle Scholar
  3. Clark MS, Worland MR (2008) How insects survive the cold: molecular mechanisms - a review. J Comp Physiol B Biochem Syst Environ Physiol 178:917–933CrossRefGoogle Scholar
  4. Convey P (2000) How does cold constrain life cycles of terrestrial plants and animals. CryoLetters 21:73–82PubMedGoogle Scholar
  5. Crowe JH, Folkert A, Hoekstra I, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599CrossRefGoogle Scholar
  6. Danks HV, Kukal O, Ring RA (1994) Insect cold-hardiness – insights from the Arctic. Arctic 47:391–404CrossRefGoogle Scholar
  7. DeVries AL (1971) Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172:1152CrossRefGoogle Scholar
  8. DeVries AL (1986) Antifreeze glycopeptides and peptides: interactions with ice and water. Methods Enzymol 127:293–303CrossRefGoogle Scholar
  9. Doucet D, Walker VK, Qin W (2009) The bugs that came in from the cold: molecular adaptations to low temperatures in insects. Cell Mol Life Sci 66:1404–1418CrossRefGoogle Scholar
  10. Duman JG (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63:327–357CrossRefGoogle Scholar
  11. Elnitsky MA, Hayward SAL, Rinehart JP, Denlinger DL, Lee RE (2008) Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. J Exp Biol 211:524–530CrossRefGoogle Scholar
  12. Franks F (1985) Biophysics and biochemistry at low temperatures. Cambridge University Press, Cambridge, UKGoogle Scholar
  13. Grewal PS, Bornstein-Forest S, Burnell AM, Glazer I, Jagdale GB (2006) Physiological, genetic, and molecular mechanisms of chemoreception, thermobiosis, and anhydrobiosis in entomopathogenic nematodes. Biol Control 38:54–65CrossRefGoogle Scholar
  14. Halberg KA, Persson D, Ramløv H, Westh P, Møbjerg-Kristensen R, Møbjerg N (2009) Cyclomorphosis in Tardigrada: adaptation to environmental constraints. J Exp Biol 212:2803–2811CrossRefGoogle Scholar
  15. Hengherr S, Brümmer F, Schill RO (2008a) Anhydrobiosis in tardigrades and ist effects on longevity traits. J Zool (Lond) 275:216–220CrossRefGoogle Scholar
  16. Hengherr S, Heyer AG, Köhler HR, Schill RO (2008b) Trehalose and anhydrobiosis in tardigrades-evidence for divergence in responses to dehydration. FEBS J 275:281–288CrossRefGoogle Scholar
  17. Hengherr S, Worland MR, Reuner A, Brümmer F, Schill RO (2009) Freeze tolerance, supercooling points and ice formation: comparative studies on the subzero temperature survival of limno-terrestrial tardigrades. J Exp Biol 212:802–807CrossRefGoogle Scholar
  18. Hengherr S, Reuner A, Brümmer F, Schill RO (2010) Ice crystallization and freeze tolerance in embryonic stages of the tardigrade Milnesium tardigradum. Comp Biochem Physiol A 156:151–155CrossRefGoogle Scholar
  19. Horikawa DD, Sakashita T, Katagiri C, Watanabe M, Kikawada T, Nakahara Y, Hamada N, Wada S, Funayama T, Higashi S (2006) Radiation tolerance in the tardigrade Milnesium tardigradum. Int J Radiat Biol 82:843–848CrossRefGoogle Scholar
  20. Jönsson KI, Schill RO (2007) Induction of Hsp70 by desiccation, ionising radiation and heat-shock in the eutardigrade Richtersius coronifer. Comp Biochem Physiol B Biochem Mol Biol 146:456–460CrossRefGoogle Scholar
  21. Kagoshima H, Kito T, Aizu T, Shin-I H, Kanda S, Kobayashi A, Toyoda A, Fujiyama Y, Kohara P, Convey P, Niki H (2012) Multi-decadal survival of an antarctic nematode, Plectus murrayi, in a -20°C stored moss sample. CryoLetters 33:280–288PubMedGoogle Scholar
  22. Kelty JD, Lee RE (1999) Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster. J Insect Physiol 45:719–726CrossRefGoogle Scholar
  23. Kikawada T, Nakahara Y, Kanamori Y, Iwata KI, Watanabe M, McGee B, Tunnacliffe A, Okuda T (2006) Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem Biophys Res 348:56–61CrossRefGoogle Scholar
  24. Knight CA, Duman JG (1986) Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiology 23:256–262CrossRefGoogle Scholar
  25. Lalouette L, Kostal V, Colinet H, Gagneul D, Renault D (2007) Cold exposure and associated metabolic changes in adult tropical beetles exposed to fluctuating thermal regimes. FEBS J 274:1759–1767CrossRefGoogle Scholar
  26. Lee RE, Costanzo JP (1998) Biological ice nucleation and ice distribution in cold-hardy ectothermic animals. Annu Rev Physiol 60:55–72CrossRefGoogle Scholar
  27. Lee YJ, Chung TJ, Park CW, Hahn Y, Chung JH, Lee BL, Han DM, Jung YH, Kim S, Lee Y (1996) Structure and expression of the tenecin 3 gene in Tenebrio molitor. Biochem Biophys Res Commun 218:6–11CrossRefGoogle Scholar
  28. Mackenzie AP, Derbyshire W, Reid DS (1977) Nonequilibrium freezing behaviour of aqueous systems. Philos Trans R Soc Lond Ser B Biol Sci 278:167–189CrossRefGoogle Scholar
  29. Newsham KK, Maslen NR, Mcinnes S (2006) Survival of Antarctic soil metazoans at -80°C for six years. CryoLetters 27:269–280Google Scholar
  30. Overgaard J, Tomcala A, Sørensen JG, Holmstrup M, Krogh PH, Simek P, Kost lV (2008) Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster. J Insect Physiol 54:619–629CrossRefGoogle Scholar
  31. Ramazzotti G, Maucci W (1983) The phylum tardigrada. Mem Ist Ital Idrob 41:1–1012Google Scholar
  32. Ramløv H (2000) Aspects of natural cold tolerance in ectothermic animals. Hum Reprod 15:26–46CrossRefGoogle Scholar
  33. Ramløv H, Westh P (1992) Survival of the cyptobiotic Eutardigrade Adorybiotus coronifer during cooling to -196°C: effect of cooling rate, trehalose level, and short-term acclimation. Cryobiology 29:125–130CrossRefGoogle Scholar
  34. Ramløv H, Westh P (2001) Cryptobiosis in the eutardigrade Adorybiotus (Richtersius) coronifer: tolerance to alcohols, temperature and de novo protein synthesis. Zool Anz 240:517–523CrossRefGoogle Scholar
  35. Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A 74:2589–2593CrossRefGoogle Scholar
  36. Ring RA, Danks HV (1994) Desiccation and cryoprotection—overlapping adaptations. CryoLetters 15:181–190Google Scholar
  37. Sakurai M, Furuki T, Akao K, Tanaka D, Nakahara Y, Kikawada T, Watanabe M, Okuda T (2008) Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc Natl Acad Sci U S A 105:5093–5098CrossRefGoogle Scholar
  38. Salvucci ME, Strecher DS, Henneberry TJ (2000) Heat shock proteins in whiteflies, an insect that accumulates sorbitol in response to heat stress. J Thermal Biol 25:363–371CrossRefGoogle Scholar
  39. Schill RO, Fritz GB (2008) Desiccation tolerance in embryonic stages of the tardigrade Milnesium tardigradum. J Zool (Lond) 276:103–107CrossRefGoogle Scholar
  40. Seki K, Toyoshima M (1998) Preserving tardigrades under pressure. Nature 395:853–854CrossRefGoogle Scholar
  41. Sinclair BJ (2001) Field ecology of freeze tolerance: interannual variation in cooling rates, freeze-thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata. Oikos 93:286–293CrossRefGoogle Scholar
  42. Sinclair BJ, Vernon P, Klok CJ, Chown SL (2003) Insects at low temperatures: an ecological perspective. Trends Ecol Evol 18:257–262CrossRefGoogle Scholar
  43. Smith T, Wharton DA, Marshall CJ (2008) Cold tolerance of an Antarctic nematode that survives intracellular freezing: comparisons with other nematode species. J Comp Physiol B Biochem Syst Environ Physiol 178:93–100CrossRefGoogle Scholar
  44. Sømme L, Meier T (1995) Cold tolerance in Tardigrada from Dronning Maud Land, Antarctica. Polar Biol 15:221–224CrossRefGoogle Scholar
  45. Storey KB, Storey JM (1996) Natural freezing survival in animals. Annu Rev Ecol Syst 27:365–386CrossRefGoogle Scholar
  46. Storey KB, Baust JG, Buescher P (1981) Determination of water “bound” by soluble subcellular components during low-temperature acclimation in the gall fly larva, Eurosta solidagensis. Cryobiology 18:315–321CrossRefGoogle Scholar
  47. Sträßer M (1998) Klimadiagramm-Atlas der Erde, Bd. 1. Dortmunder Vertrieb für Bau und Planungsliteratur. Dortmund, GermanyGoogle Scholar
  48. Suzuki AC (2003) Life history of Milnesium tardigradum Doyère (Tardigrada) under a rearing environment. Zool Sci (Tokyo) 20:40–57Google Scholar
  49. Tsujimoto M, Satoschi I, Hiroshi K (2016) Recovery and reproduction of an Antarctic tardigrade retrieved from a moss sample frozen for over 30 years. Cryobiology 72:78–81CrossRefGoogle Scholar
  50. Watanabe M, Tanaka K (1998) Adult diapause and cold hardiness in Aulacophora nigripennis (Coleoptera: Chrysomelidae). J Insect Physiol 44:1103–1110CrossRefGoogle Scholar
  51. Westh P, Kristensen RM (1992) Ice formation in the freeze-tolerant eutardigrades Adorybiotus coronifer and Amphibolus nebulosus studied by differential scanning calorimetry. Polar Biol 12:693–699CrossRefGoogle Scholar
  52. Westh P, Kristiansen J, Hvidt A (1991) Ice-nucleating activity in the freeze-tolerant tardigrade Adorybiotus coronifer. Comp Biochem Physiol A Mol Physiol 99:401–404CrossRefGoogle Scholar
  53. Wharton DA (2003) The environmental physiology of Antarctic terrestrial nematodes: a review. J Comp Physiol B 173:621–628CrossRefGoogle Scholar
  54. Wharton DA, Goodall G, Marshall CJ (2003) Freezing survival and cryoprotective dehydration as cold tolerance mechanisms in the antarctic nematode Panagrolaimus davidi. J Exp Biol 206:215–221CrossRefGoogle Scholar
  55. Wharton DA, Downes MF, Goodall G, Marshall CJ (2005) Freezing and cryoprotective dehydration in an antarctic nematode (Panagrolaimus davidi) visualised using a freeze substitution technique. Cryobiology 50:21–28CrossRefGoogle Scholar
  56. Wilson PW, Heneghan AF, Haymet ADJ (2003) Ice nucleation in nature: supercooling point (SCP) measurements and the role of heterogeneous nucleation. Cryobiology 46:88–98CrossRefGoogle Scholar
  57. Worland MR, Block W (2003) Desiccation stress at sub-zero temperatures in polar terrestrial arthropods. J Insect Physiol 49:193–203CrossRefGoogle Scholar
  58. Worland MR, Convey P (2008) The significance of the moult cycle to cold tolerance in the Antarctic collembolan Cryptopygus antarcticus. J Insect Physiol 54:1281–1285CrossRefGoogle Scholar
  59. Worland MR, Grubor-Lajsic G, Montiel PO (1998) Partial desiccation induced by sub-zero temperatures as a component of the survival strategy of the Arctic collembolan Onychiurus arcticus (Tullberg). J Insect Physiol 44:211–219CrossRefGoogle Scholar
  60. Worland MR, Leinaas HP, Chown SL (2006) Supercooling point frequency distributions in Collembola are affected by moulting. Funct Ecol 20:323–329CrossRefGoogle Scholar
  61. Wright JC (2001) Cryptobiosis 300 years on from van Leuwenhoek: what have we learned about tardigrades? Zool Anz 240:563–582CrossRefGoogle Scholar
  62. Yoder JA, Benoit JB, Denlinger DL, Rivers DB (2006) Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. J Insect Physiol 52:202–214CrossRefGoogle Scholar
  63. Zachariassen KE (1985) Physiology of cold tolerance in insects. Physiol Rev 65:799–832CrossRefGoogle Scholar
  64. Zachariassen KE (1991) The water relations of overwintering insects. In: Lee RE, Denlinger DL (eds) Insects at low temperature. Chapman and Hall, London, pp 47–63CrossRefGoogle Scholar
  65. Zachariassen KE, Kristiansen E, Pedersen SA, Hammel HT (2004) Ice nucleation in solutions and freeze-avoiding insects - homogeneous or heterogeneous? Cryobiology 48:309–321CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Jakob-Friedrich-Schöllkopf SchoolKirchheim u. T.Germany
  2. 2.Institute of Biological Materials and Biomolecular SystemsUniversity of StuttgartStuttgartGermany

Personalised recommendations