Advertisement

Environmental Adaptations: Desiccation Tolerance

  • Ralph O. SchillEmail author
  • Steffen Hengherr
Chapter
Part of the Zoological Monographs book series (ZM, volume 2)

Abstract

Survival in microhabitats that experience extreme fluctuations in water availability and temperature requires extreme adaptations. Antonie van Leeuwenhoek was the first who describe the phenomenon of the resurrection of a desiccated rotifer in 1702. As with some rotifers and other small organisms, tardigrades enter a desiccated state known as anhydrobiosis to withstand such environmental conditions. This allows them to cope with the temporal variation of available water and to extend their lifespan in an anhydrobiotic state by up to 20 years without biological aging, according to the Sleeping Beauty hypothesis. Heat shock proteins serve as molecular chaperones to preserve or restore protein integrity, and tardigrade-specific intrinsically disordered proteins (TDPs) as well as metabolite help prevent the formation of damaging cellular compartments aggregates during water stress.

References

  1. Albertson NH, Nyström T, Kjelleberg S (1990) Functional mRNA half-lives in the marine Vibrio sp. S14 during starvation and recovery. J Gen Microbiol 136:2195–2199CrossRefGoogle Scholar
  2. Alpert P (2000) The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol 151:5–17CrossRefGoogle Scholar
  3. Altiero T, Rebecchi L, Bertolani R (2006) Phenotypic variations in the life history of two clones of Macrobiotus richtersi (Eutardigrada, Macrobiotidae). Hydrobiologia 558:33–40CrossRefGoogle Scholar
  4. Arakawa K (2018) The complete mitochondrial genome of Echiniscus testudo (Heterotardigrada: Echiniscidae). Mitochondrial DNA Part B 3:810–811CrossRefGoogle Scholar
  5. Arakawa K, Yoshida Y, Tomita M (2016) Genome sequencing of a single tardigrade Hypsibius dujardini individual. Sci Data 3:16006CrossRefGoogle Scholar
  6. Arrigo A-P, Müller WEG (2002) Small stress proteins. Springer, Berlin, I–XV, 1–270 ppGoogle Scholar
  7. Bahrndorff S, Tunnacliffe A, Wise MJ, McGee B, Holmstrup M, Loeschcke V (2008) Bioinformatics and protein expression analyses implicate LEA proteins in the drought response of Collembola. J Insect Physiol 55:210–217CrossRefGoogle Scholar
  8. Battista JR, Park MJ, McLemore AE (2001) Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 43:133–139PubMedCrossRefGoogle Scholar
  9. Baumann H (1927) Anabiosis of tardigrades. Zool Anz 72:175–179Google Scholar
  10. Beisser D, Grohme M, Kopka J, Frohme M, Schill RO, Hengherr S, Dandekar T, Klau GW, Dittrich M, Müller T (2012) Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum. BMC Syst Biol 6:72PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bell LN, Hageman MJ (1996) Glass transition explanation for the effect of polyhydroxy compounds on protein denaturation in dehydrated solids. J Food Sci Technol 61:372–378Google Scholar
  12. Bemm F, Weiss CL, Schultz J, Förster F (2016) Genome of a tardigrade: horizontal gene transfer or bacterial contamination? Proc Natl Acad Sci U S A 113:E3054–E3056PubMedPubMedCentralCrossRefGoogle Scholar
  13. Benítez L, Gutiérrez JC (1997) Encystment – specific mRNA is accumulated in the resting cysts of the ciliate Colpoda inflata. Biochem Mol Biol Int 41:1137–1141PubMedGoogle Scholar
  14. Bertolani R, Guidetti R, Jönsson KI, Altiero T, Boschini D, Rebecchi L (2004) Experiences with dormancy in tardigrades. J Limnol 63:16–25CrossRefGoogle Scholar
  15. Bianchi G, Gamba A, Limiroli R, Pzzi N, Ester R, Salamini F, Bartels D (1993) The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol Plant 87:223–226CrossRefGoogle Scholar
  16. Billi D (2009) Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles 13:49–57PubMedCrossRefGoogle Scholar
  17. Blasius M, Hubscher U, Sommer S (2008) Deinococcus radiodurans: what belongs to the survival kit? Crit Rev Biochem Mol Biol 43:221–238PubMedCrossRefGoogle Scholar
  18. Boothby TC, Tapia H, Brozena AH, Piszkiewicz S, Smith AE, Giovannini I, Rebecchi L, Pielak GJ, Koshland D, Goldstein B (2017) Tardigrades use intrinsically disordered proteins to survive desiccation. Mol Cell 65(975–984):e975CrossRefGoogle Scholar
  19. Boothby TC, Tenlen JR, Smith FW, Wang JR, Patanella KA, Nishimura EO, Tintori SC, Li Q, Jones CD, Yandell M, Messina DN, Glasscock J, Goldstein B (2015) Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proc Natl Acad Sci U S A 112:15976–15981PubMedPubMedCentralCrossRefGoogle Scholar
  20. Borner J, Rehm P, Schill RO, Ebersberger I, Burmester T (2014) A transcriptome approach to ecdysozoan phylogeny. Mol Phylogenet Evol 80:79–87PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bose S, Weikl T, Bugl H, Buchner J (1996) Chaperone function of Hsp90-associated proteins. Science 274:1715–1717PubMedCrossRefGoogle Scholar
  22. Browne J, Tunnacliffe A, Burnell A (2002) Anhydrobiosis – plant desiccation gene found in a nematode. Nature 416:38PubMedCrossRefGoogle Scholar
  23. Browne JA, Dolan KM, Tyson T, Goyal K, Tunnacliffe A, Burnell AM (2004) Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode Aphelenchus avenae. Eukaryot Cell 3:966–975PubMedPubMedCentralCrossRefGoogle Scholar
  24. Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–228PubMedCrossRefGoogle Scholar
  25. Byers TJ, Kim BG, King LE, Hugo ER (1991) Molecular aspects of the cell cycle and encystment of Acanthamoeba. Rev Infect Dis 5:373–384CrossRefGoogle Scholar
  26. Camonis J, Julien J, Ayala J, Jaequet M (1982) Polyadenylated RNA population present in dormant spores of Dictyostelium discoideum. Cell Differ (1):55–61CrossRefGoogle Scholar
  27. Carpenter JF, Crowe LM, Crowe JH (1987) Stabilization of phosphofructokinase with sugars during freeze-drying characterization of enhanced protection in the presence of divalent cations. Biochim Biophys Acta 923:109–115PubMedCrossRefGoogle Scholar
  28. Chandler J, Bartels D (1999) Plant desiccation. In: Lerner HR (ed) Plant responses to environmental stresses: from phytohormones to genome reorganization. Marcel Dekker, New York, pp 575–590Google Scholar
  29. Chen T, Amons R, Clegg JS, Warner AH, MacRae TH (2003) Molecular characterization of artemin and ferritin from Artemia franciscana. Eur J Biochem 270:137–145PubMedCrossRefGoogle Scholar
  30. Chen T, Villeneuve TS, Garant KA, Amons R, MacRae TH (2007) Functional characterization of artemin, a ferritin homolog synthesized in Artemia embryos during encystment and diapause. FEBS J 274:1093–1101PubMedCrossRefGoogle Scholar
  31. Clegg JS (1967) Metabolic studies of crytobiosis in encysted embryos of Artemia salina. Comp Biochem Physiol 20:801–809CrossRefGoogle Scholar
  32. Clegg JS (1986) The physical properties and metabolic status of Artemia cysts at low water contents: the water replacement hypothesis. In: Leopold AC (ed) Membranes, metabolism and dry organisms. Cornell University Press, New York, pp 169–187Google Scholar
  33. Clegg JS (1997) Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression. J Exp Biol 200:467–475PubMedGoogle Scholar
  34. Clegg JS (2007) Protein stability in Artemia embryos during prolonged anoxia. Biol Bull 212:74–81PubMedCrossRefGoogle Scholar
  35. Clegg JS, Conte F (1980) A review of the cellular and developmental biology of Artemia. In: Persoone GP, Sorgeloos P, Roels O, Jaspers E (eds) The brine shrimp, Artemia. Universa Press, Wetteren, pp 11–54Google Scholar
  36. Clegg JS, Drost-Hansen W (1990) On the biochemistry and cell physiology of water. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes. Elsevier, Amsterdam, pp 1–23Google Scholar
  37. Clegg JS, Jackson SA, Liang P, MacRae TH (1995) Nuclear-cytoplasmic translocations of protein p26 during aerobic-anoxic transitions in embryos of Artemia franciscana. Exp Cell Res 219:1–7PubMedCrossRefGoogle Scholar
  38. Clegg JS, Jackson SA, Warner AH (1994) Extensive intracellular translocations of a major protein accompany anoxia in embryos of Artemia franciscana. Exp Cell Res 212:77–83PubMedCrossRefGoogle Scholar
  39. Clegg JS, Willsie JK, Jackson SA (1999) Adaptive significance of a small heat shock/alpha-crystallin protein (p26) in encysted embryos of the brine shrimp, Artemia franciscana. Am Zool 39:836–847CrossRefGoogle Scholar
  40. Crowe JH (1971) Anhydrobiosis: an unsolved problem. Am Nat 105:563–573CrossRefGoogle Scholar
  41. Crowe JH (1975) The physiology of cryptobiosis in tardigrades. Memorie dell’Istituto Italiano di Idrobiologica 32(Suppl):37–59Google Scholar
  42. Crowe LM (2002) Lessons from nature: the role of sugars in anhydrobiosis. Comp Biochem Physiol A Mol Integr Physiol 131:505–513PubMedCrossRefGoogle Scholar
  43. Crowe JH, Clegg JS (1973) Anhydrobiosis. Dowden, Hutchinson and Ross, Stroudsburg, p 477Google Scholar
  44. Crowe JH, Clegg JS (1978) Dry biological systems. Academic Press, New YorkGoogle Scholar
  45. Crowe JH, Madin KAC (1975) Anhydrobiosis in nematodes: evaporative water loss and survival. J Exp Zool 193:323–333CrossRefGoogle Scholar
  46. Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1–10PubMedPubMedCentralCrossRefGoogle Scholar
  47. Crowe JH, Crowe LM, Carpenter JF, Rudolph AS, Wistrom CA, Spargo BJ, Anchordoguy TJ (1988) Interactions of sugars with membranes. Biochim Biophys Acta 947:367–384PubMedCrossRefGoogle Scholar
  48. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599PubMedCrossRefGoogle Scholar
  49. Crowe JH, Leslie SB, Crowe LM (1994) Is vitrification sufficient to preserve liposomes during freeze-drying? Cryobiology 31:355–366PubMedCrossRefGoogle Scholar
  50. Crowe JH, Crowe LM, Petrelski S, Hoekstra FA, Araujo PD, Panek AD (1997) Anhydrobiosis: cellular adaptation to extreme dehydration. In: Dantzler WH (ed) Handbook of physiology. Oxford University Press, New YorkGoogle Scholar
  51. Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103PubMedCrossRefGoogle Scholar
  52. De Graaf J, Amons R, Möller W (1990) The primary structure of artemin from artemia cysts. Eur J Biochem 193:737–750PubMedCrossRefGoogle Scholar
  53. Doyère PLN (1842) Memoires sur les Tardigrades. Sur le facilité que possedent les Tardigrades, les rotiferes, les anguillules des toits et quelques autres animalcules, de revenir à la vie après été completement desséchées. Ann Sci Nat Zool Biol Anim 2e:5–35Google Scholar
  54. Drennan P, Smith M, Goldsworthly D, van Staden J (1993) The occurence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius. J Plant Physiol 142:493–496CrossRefGoogle Scholar
  55. Ellis RJ (2004) From chloroplasts to chaperones: how one thing led to another. Photosynth Res 80:333–343CrossRefGoogle Scholar
  56. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282CrossRefGoogle Scholar
  57. Fielding MJ (1951) Observations on the length of dormancy in certain plant infecting nematodes. Proc Helminthol Soc Wash 18:110–112Google Scholar
  58. Förster F, Beisser D, Frohme M, Schill RO, Dandekar T (2011a) Tardigrade bioinformatics: molecular adaptations, DNA j-family and dynamical modeling. J Zool Syst Evol Res 49:120–126CrossRefGoogle Scholar
  59. Förster F, Beisser D, Grohme M, Liang C, Mali B, Siegl AM, Engelmann JC, Shkumatov AV, Schokraie E, Müller T, Schnölzer M, Schill RO, Frohme M, Dandekar T (2011b) Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations. Bioinf Biol Insights 6:69–96Google Scholar
  60. Förster F, Liang C, Shkumatov A, Beisser D, Engelmann JC, Schnölzer M, Frohme M, Müller T, Schill RO, Dandekar T (2009) Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades. BMC Genomics 10:469–479PubMedPubMedCentralCrossRefGoogle Scholar
  61. Franceschi T (1948) Anabiosi nei tardigradi. Boll Mus Ist Biot Univ Genova:47–49Google Scholar
  62. Freeman BC, Morimoto RI (1996) The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J 15:2969–2979PubMedPubMedCentralCrossRefGoogle Scholar
  63. Galau GA, Hughes DW, Dure L III (1986) Abscisic-acid induction of cloned cotton gossypium-hirsutum late embryogenesis-abundant lea messenger rna species. Plant Mol Biol 7:155–170PubMedCrossRefGoogle Scholar
  64. Gething M-J, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45PubMedPubMedCentralCrossRefGoogle Scholar
  65. Goodey T (1923) Quiescence and reviviscence in nematodes, with special reference to Tylenchus tritici and Tylenchus dipsaci. J Helminthol 1:47–52CrossRefGoogle Scholar
  66. Goyal K, Pinelli C, Maslen SL, Rastogi RK, Stephens E, Tunnacliffe A (2005) Dehydration-regulated processing of late embryogenesis abundant protein in a desiccation-tolerant nematode. FEBS Lett 579:4093–4098PubMedCrossRefPubMedCentralGoogle Scholar
  67. Goyal K, Tisi L, Basran A, Browne J, Burnell A, Zurdo J, Tunnacliffe A (2003) Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J Biol Chem 278:12977–12984PubMedCrossRefPubMedCentralGoogle Scholar
  68. Gros L, Saparbaev MK, Laval J (2002) Enzymology of the repair of free radicals-induced DNA damage. Oncogene 21:8905–8925PubMedCrossRefPubMedCentralGoogle Scholar
  69. Grzelezak ZF, Sattalo MH, Hanley-Bowdoin LK, Kennedy TD, Lane BG (1982) Synthesis and turnover of proteins and mRNA in germinating wheat embryos. Can J Biochem Physiol:389–397Google Scholar
  70. Guidetti R, Jönsson KI (2002) Long-term anhydrobiotic survival in semi-terrestrial micrometazonas. J Zool (Lond) 257:181–187CrossRefGoogle Scholar
  71. Guzhova I, Krallish I, Khroustalyova G, Margulis B, Rapoport A (2008) Dehydration of yeast: changes in the intracellular content of Hsp70 family proteins. Process Biochem 43:1138–1141CrossRefGoogle Scholar
  72. Hanafusa H (1969) Rapid transformation of cells by rous sarcoma virus. Proc Natl Acad Sci 63:318–325PubMedCrossRefPubMedCentralGoogle Scholar
  73. Harrigan PR, Madden TD, Cullis PR (1990) Protection of liposomes during dehydration or freezing. Chem Phys Lipids 52:139–149PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hengherr S, Heyer AG, Brümmer F, Schill RO (2008) Trehalose as protecting agent in aquatic invertebrates during dormancy induced by desiccation. Comp Biochem Physiol A Comp Physiol 151:S34CrossRefGoogle Scholar
  75. Hengherr S, Heyer AG, Brümmer F, Schill RO (2011) Trehalose and vitreous states: desiccation tolerance in dormant stages of the crustaceans Triops and Daphnia. Physiol Biochem Zool 84:147–153PubMedCrossRefPubMedCentralGoogle Scholar
  76. Hengherr S, Schill RO (2011) Dormant stages in freshwater bryozoans – an adaptation to transcend environmental constraints. J Insect Physiol 57:595–601PubMedCrossRefGoogle Scholar
  77. Hengherr S, Worland MR, Reuner A, Brümmer F, Schill RO (2009) High-temperature tolerance in anhydrobiotic tardigrades is limited by glass transition. Physiol Biochem Zool 82:749–755PubMedCrossRefGoogle Scholar
  78. Hoekstra FA (1986) Water content in relation to stress in pollen. In: Leopold CA (ed) Membranes, metabolism and dry organisms. Cornell University Press, New YorkGoogle Scholar
  79. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403PubMedCrossRefGoogle Scholar
  80. Jönsson KI, Bertolani R (2001) Facts and fiction about long-term survival in tardigrades. J Zool (Lond) 255:121–123CrossRefGoogle Scholar
  81. Jørgensen A, Møbjerg N, Kristensen RM (2007) A molecular study of the tardigrade Echiniscus testudo (Echiniscidae) reveals low DNA sequence diversity over a large geographical area. J Limnol 66:77–83CrossRefGoogle Scholar
  82. Kalichevsky MT, Jaroszkiewicz EM, Ablett S, Blanshard JMV, Lillford PJ (1992) The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohydr Polym 18:77–88CrossRefGoogle Scholar
  83. Keilin D (1959) The leeuwenhoek lecture. The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B Biol Sci 150:149–191PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kikawada T, Nakahara Y, Kanamori Y, Iwata K-i, Watanabe M, McGee B, Tunnacliffe A, Okuda T (2006) Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem Biophys Res Commun 348:56–61PubMedCrossRefPubMedCentralGoogle Scholar
  85. Kondo K, Kubo T, Kunieda T (2015) Suggested involvement of PP1/PP2A activity and de novo gene expression in anhydrobiotic survival in a tardigrade, Hypsibius dujardini, by chemical genetic approach. PLoS One 10:e0144803PubMedPubMedCentralCrossRefGoogle Scholar
  86. Koster KL, Leopold AC (1988) Sugars and desiccation tolerance in seeds. Plant Physiol (Rockv) 88:829–832CrossRefGoogle Scholar
  87. Lapinski J, Tunnacliffe A (2003) Anhydrobiosis without trehalose in bdelloid rotifers. FEBS Lett 553:387–390PubMedCrossRefGoogle Scholar
  88. Lee DL (1961) Two new species of cryptobiotic (anabiotic) freshwater nematodes, Actinolaimus hintoni sp. nov. and Dorylaimus keilini sp. nov. (Dorylaimidae). Parasitology 51:237–240CrossRefGoogle Scholar
  89. Liang P, Amons R, Clegg JS, MacRae TH (1997a) Molecular characterization of a small heat shock/alpha-crystallin protein in encysted Artemia embryos. J Biol Chem 272:19051–19058PubMedCrossRefGoogle Scholar
  90. Liang P, Amons R, MacRae TH, Clegg JS (1997b) Purification, structure and in vitro molecular-chaperone activity of Artemia p26, a small heatshock a-crystallin protein. Eur J Biochem 243:225–232PubMedCrossRefGoogle Scholar
  91. Liang P, MacRae TH (1999) The synthesis of a small heat shock/alpha-crystallin protein in Artemia and its relationship to stress tolerance during development. Dev Biol 207:445–456PubMedCrossRefGoogle Scholar
  92. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715PubMedCrossRefGoogle Scholar
  93. Madin KAC, Crowe JH (1975) Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration. J Exp Zool 193:335–342CrossRefGoogle Scholar
  94. Mali B, Grohme M, Wełnicz W, Dandekar T, Schnölzer M, Reuter D, Schill RO, Frohme M (2008) Genomic analyses of cryptobiotic tardigrades. In: Wissenschaftliche Beiträge 2008. WildauGoogle Scholar
  95. Martinez-Guitarte JL, Planello R, Morcillo G (2007) Characterization and expression during development and under environmental stress of the genes encoding ribosomal proteins L11 and L13 in Chironomus riparius. Comp Biochem Physiol B Biochem Mol Biol 147:590–596PubMedCrossRefGoogle Scholar
  96. Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637PubMedPubMedCentralCrossRefGoogle Scholar
  97. McGee B, Schill RO, Tunnacliffe A (2004) Hydrophilic proteins in invertebrate anhydrobiosis. Integr Comp Biol 44:679–679Google Scholar
  98. Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410PubMedCrossRefGoogle Scholar
  99. Nathan DF, Vos MH, Lindquist S (1997) In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci U S A 94:12949–12956PubMedPubMedCentralCrossRefGoogle Scholar
  100. Neumann S, Reuner A, Brümmer F, Schill RO (2009) DNA damage in storage cells of anhydrobiotic tardigrades. Comp Biochem Physiol A Mol Integr Physiol 153:425–429PubMedCrossRefGoogle Scholar
  101. Örstan A (1995) Desiccation survival of the eggs of the rotifer Adineta vaga (Davis, 1873). Hydrobiologia 313/314:373–375Google Scholar
  102. Örstan A (1998) Factors affecting long-term survival of dry bdelloid rotifers: a preliminary study. Hydrobiologia 387/388:327–331CrossRefGoogle Scholar
  103. Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496CrossRefGoogle Scholar
  104. Picard D, Khursheed B, Garabedian MJ, Fortin MG, Lindquist S, Yamamoto KR (1990) Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348:166–168PubMedCrossRefGoogle Scholar
  105. Potts M (2001) Desiccation tolerance: a simple process? Trends Microbiol 9:553–559PubMedCrossRefGoogle Scholar
  106. Prestrelski SJ, Tedeschi N, Arakawa T, Carpenter JF (1993) Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J 65:661–671PubMedPubMedCentralCrossRefGoogle Scholar
  107. Priestley DA (1986) Seed aging. Cornell University Press, New YorkGoogle Scholar
  108. Rahm PG (1923) Biologische und physiologische Beiträge zur Kenntnis der Moosfauna. Zeitschrift für allgemeine Physiologie 20:1–34Google Scholar
  109. Ramazzotti G, Maucci W (1983) Il phylum Tardigrada. Memorie dell’Istituto Italiano di ldrobiologia. Istituto Italiano di idrobiologia, Verbana Pallanza, Italien, 1014 ppGoogle Scholar
  110. Ramløv H, Westh P (2001) Cryptobiosis in the eutardigrade Adorybiotus (Richtersius) coronifer: tolerance to alcohols, temperature and de novo protein synthesis. Zool Anz 240:517–523CrossRefGoogle Scholar
  111. Rebecchi L, Guidetti R, Borsari S, Altiero T, Bertolani R (2006) Dynamics of long-term anhydrobiotic survival of lichen-dwelling tardigrades. Hydrobiologia 558:23–30CrossRefGoogle Scholar
  112. Reuner A, Hengherr S, Mali B, Förster F, Arndt D, Reinhardt R, Dandekar T, Frohme M, Brümmer F, Schill RO (2009) Stress-response in tardigrades: differential gene expression of molecular chaperones. Cell Stress Chaperones 15:423–430PubMedPubMedCentralCrossRefGoogle Scholar
  113. Ricci C (1998) Anhydrobiotic capabilities of bdelloid rotifers. Hydrobiologia 387/388:321–326CrossRefGoogle Scholar
  114. Ricci C (2001) Dormancy patterns in rotifers. Hydrobiologia 446/447:1–11CrossRefGoogle Scholar
  115. Ricci C, Pagani M (1997) Desiccation of Panagrolaimus rigidus (nematoda): survival, reproduction and the influence on the internal clock. Hydrobiologia 347:1–13CrossRefGoogle Scholar
  116. Ricci C, Caprioli M (1998) Stress during dormancy: effect on recovery rates and life-history traits of anhydrobiotic animals. Aquat Ecol 32:353–359CrossRefGoogle Scholar
  117. Ricci C, Caprioli M (2005) Anhydrobiosis in bdelloid species, populations and individuals. Integr Comp Biol 45:759–763PubMedCrossRefGoogle Scholar
  118. Ricci C, Covino C (2005) Anhydrobiosis of Adineta ricciae: costs and benefits. Hydrobiologia 546:307–314CrossRefGoogle Scholar
  119. Ricci C, Vaghi L, Manzini ML (1987) Desiccation of rotifers (Macrotrachela quadricornifera): survival and reproduction. Ecology 68:1488–1494CrossRefGoogle Scholar
  120. Sakurai M, Furuki T, Akao K-i, Tanaka D, Nakahara Y, Kikawada T, Watanabe M, Okuda T (2008) Vitrification is essential for anhydrobiosis in an african chironomid, Polypedilum vanderplanki. Proc Natl Acad Sci 105:5093–5098PubMedCrossRefGoogle Scholar
  121. Schill RO, Fritz GB (2008) Desiccation tolerance in embryonic stages of the tardigrade. J Zool (Lond) 276:103–107CrossRefGoogle Scholar
  122. Schill RO, Steinbrück GHB, Köhler H-R (2004) Stress gene (hsp70) sequences and quantitative expression in Milnesium tardigradum (Tardigrada) during active and cryptobiotic stages. J Exp Biol 207:1607–1613PubMedCrossRefGoogle Scholar
  123. Schokraie E, Hotz-Wagenblatt A, Warnken U, Mali B, Frohme M, Forster F, Dandekar T, Hengherr S, Schill RO, Schnölzer M (2010) Proteomic analysis of tardigrades: towards a better understanding of molecular mechanisms by anhydrobiotic organisms. PLoS One 5:e9502.9501–e9502.9537CrossRefGoogle Scholar
  124. Schokraie E, Warnken U, Hotz-Wagenblatt A, Grohme M, Hengherr S, Förster F, Schill RO, Frohme M, Dandekar T, Schnölzer M (2012) Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state. PLoS One 7:e45682PubMedPubMedCentralCrossRefGoogle Scholar
  125. Schöneich C (1999) Reactive oxygen species and biological aging: amechanistical approach. Exp Gerontol 34:19–34PubMedCrossRefPubMedCentralGoogle Scholar
  126. Schumacher RJ, Hansen WJ, Freeman BC, Alnemri E, Litwack G, Toft DO (1996) Cooperative action of Hsp70, Hsp90, and DnaJ proteins in protein renaturation. Biochemistry 35:14889–14898PubMedCrossRefGoogle Scholar
  127. Scott P (2000) Resurrection plants and the secrets of eternal leaf. Ann Bot (Lond) 85:159–166CrossRefGoogle Scholar
  128. Slade L, Levine H (1991) Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr 30:115–360PubMedCrossRefGoogle Scholar
  129. Steiner G, Albin FE (1946) Resuscitation of the nematode Tylenchus polyhypnus n. sp. after almost 39 years’ dormancy. J Wash Acad Sci 36:97–99PubMedGoogle Scholar
  130. Sun WQ, Leopold AC (1997) Cytoplasmic vitrification and survival of anhydrobiotic organisms. Comp Biochem Physiol A Physiol 117:327–333CrossRefGoogle Scholar
  131. Tanaka S, Tanaka J, Miwa Y, Horikawa DD, Katayama T, Arakawa K, Toyoda A, Kubo T, Kunieda T (2015) Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic Tardigrade improve osmotic tolerance of human cells. PLoS One 10:e0118272PubMedPubMedCentralCrossRefGoogle Scholar
  132. Tissières A, Mitchell HK, Tracy UM (1974) Protein synthesis in the salivary glands of Drosophila melanogaster. J Mol Biol 84:389–398PubMedCrossRefGoogle Scholar
  133. Tomos D (1992) Life without water. Curr Biol 2:594–596PubMedCrossRefGoogle Scholar
  134. Tourancheau AB, Morin L, Yang T, Perasso R (1999) Messenger RNA in dormant cells of sterkiella histriomuscorum (oxytrichidae): identification of putative regulatory gene transcripts. Protist 150:137–147PubMedCrossRefGoogle Scholar
  135. Tunnacliffe A, de Castro AG, Manzanera M (2001) Anhydrobiotic engineering of bacterial and mammalian cells: is intracellular trehalose sufficient? Cryobiology 43:124–132PubMedCrossRefGoogle Scholar
  136. Tunnacliffe A, Lapinski J (2003) Resurrecting van Leeuwenhoek’s rotifers: a reappraisal of the role of disaccharides in anhydrobiosis. Philos Trans R Soc Lond Ser B Biol Sci 358:1755–1771CrossRefGoogle Scholar
  137. Tunnacliffe A, Lapinski J, McGee B (2005) A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 546:315–321CrossRefGoogle Scholar
  138. Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812PubMedCrossRefGoogle Scholar
  139. van Leeuwenhoek A (1702) On certain animalcules found in the sediments in gutters of the roofs of houses. Letter 144. In: The selected works of Anton van Leeuwenhoek. London, pp 207–213Google Scholar
  140. Vertucci CW, Farrant JM (1995) Acquisition and loss of desiccation. Marcel Dekker, New YorkGoogle Scholar
  141. Warner AH, Brunet RT, MacRae TH, Clegg JS (2004) Artemin is an RNA-binding protein with high thermal stability and potential RNA chaperone activity. Arch Biochem Biophys 424:189–200PubMedCrossRefGoogle Scholar
  142. Watanabe M, Kikawada T, Minagawa N, Yukuhiro F, Okuda T (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J Exp Biol 205:2799–2802PubMedGoogle Scholar
  143. Webb SJ, Dumasia MD, Bhorjee JS (1965) Bound water, inositol, and the biosynthesis of temperate and virulent bacteriophages by air-dried Escherichia coli. Can J Microbiol 11:141–150PubMedCrossRefGoogle Scholar
  144. Westh P, Ramlov H (1988) Cryptobiosis in arctic tardigrades with special attention to the appearance of trehalose. In: Petersen GH (eds) Bericht über die Grönland-Exkursion des Instituts für Polarökologie. Universität für Polarökologie, Kiel, pp 227–245Google Scholar
  145. Westh P, Ramlov H (1991) Trehalose accumulation in the tardigrade Adorybiotus coronifer during anhydrobiosis. J Exp Zool 258:303–311CrossRefGoogle Scholar
  146. Wharton DA (2003) The environmental physiology of antarctic terrestrial nematodes: a review. J Comp Physiol B Biochem Syst Environ Physiol 173:621–628CrossRefGoogle Scholar
  147. Wharton DA, Aalders O (1999) Desiccation stress and recovery in the anhydrobiotic nematode Ditylenchus dipsaci (Nematoda : Anguinidae). Eur J Entomol 96:199–203Google Scholar
  148. Willsie JK, Clegg JS (2002) Small heat shock protein p26 associates with nuclear lamins and HSP70 in nuclei and nuclear matrix fractions from stressed cells. J Cell Biochem 84:601–614PubMedCrossRefGoogle Scholar
  149. Wolkers WF, McCready S, Brandt WF, Lindsey GG, Hoekstra FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta Protein Struct Mol Enzymol 1544:196–206CrossRefGoogle Scholar
  150. Wolkers WF, Oldenhof H, Alberda M, Hoekstra FA (1998) A Fourier transform infrared microspectroscopy study of sugar glasses: application to anhydrobiotic higher plant cells. Biochim Biophys Acta 1379:83–96PubMedCrossRefGoogle Scholar
  151. Wolkers WF, Tetteroo FA, Alberda M, Hoekstra FA (1999) Changed properties of the cytoplasmic matrix associated with desiccation tolerance of dried carrot somatic embryos. An in situ fourier transform infrared spectroscopic study. Plant Physiol 120:153–164PubMedPubMedCentralCrossRefGoogle Scholar
  152. Womersley CZ (1987) A re-evaluation of strategies employed by nematode anhydrobiotes in relation to their natural environment. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society of Nematologists, Hyattsville, pp 165–173Google Scholar
  153. Wright JC (1991) The significance of four xeric parameters in the ecology of terrestrial tardigrada. J Zool (Lond) 224:59–77CrossRefGoogle Scholar
  154. Wright JC (2001) Cryptobiosis 300 years on from van Leuwenhoek: what have we learned about tardigrades? Zool Anz 240:563–582CrossRefGoogle Scholar
  155. Xu Y, Lindquist S (1993) Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci U S A 90:7074–7078PubMedPubMedCentralCrossRefGoogle Scholar
  156. Yamaguchi A, Tanaka S, Yamaguchi S, Kuwahara H, Takamura C (2012) Two novel heat-soluble protein families abundantly expressed in an anhydrobiotic tardigrade. PLoS One 7:e44209PubMedPubMedCentralCrossRefGoogle Scholar
  157. Yoshida Y, Koutsovoulos G, Laetsch DR, Stevens L, Kumar S, Horikawa DD, Ishino K, Komine S, Kunieda T, Tomita M, Blaxter M, Arakawa K (2017) Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. PLoS Biol 15:e2002266PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Biological Materials and Biomolecular SystemsUniversity of StuttgartStuttgartGermany
  2. 2.Jakob-Friedrich-Schöllkopf SchoolKirchheim u. T.Germany

Personalised recommendations