Advertisement

Semantic Space Representation and Latent Semantic Analysis

  • Murugan Anandarajan
  • Chelsey Hill
  • Thomas Nolan
Chapter
Part of the Advances in Analytics and Data Science book series (AADS, volume 2)

Abstract

In this chapter, we introduce latent semantic analysis (LSA), which uses singular value decomposition (SVD) to reduce the dimensionality of the document-term representation. This method reduces the large matrix to an approximation that is made up of fewer latent dimensions that can be interpreted by the analyst. Two important concepts in LSA, cosine similarity and queries, are explained. Finally, we discuss decision-making in LSA.

Keywords

Latent semantic analysis (LSA) Singular value decomposition (SVD) Latent semantic indexing (LSI) Cosine similarity Queries 

References

  1. Berry, M. W., & Browne, M. (1999). Understanding search engines: Mathematical modeling and text retrieval. Philadelphia: Society for Industrial and Applied Mathematics.Google Scholar
  2. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391.CrossRefGoogle Scholar
  3. Dumais, S. T. (1991). Improving the retrieval of information from external sources. Behavior Research Methods, Instruments, & Computers, 23(2), 229–236.CrossRefGoogle Scholar
  4. Dumais, S. T., Furnas, G. W., Landauer, T. K., & Deerwester, S. (1988). Using latent semantic analysis to improve information retrieval. In Proceedings of CHI’88: Conference on Human Factors in Computing (pp. 281–285). New York: ACM.Google Scholar
  5. Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation. Psychological Review, 114(2), 211–244.CrossRefGoogle Scholar
  6. Hu, M., & Liu, B. (2004, August). Mining and summarizing customer reviews. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 168–177). ACM.Google Scholar
  7. Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211.CrossRefGoogle Scholar
  8. Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25(2–3), 259–284.CrossRefGoogle Scholar
  9. Martin, D. I., & Berry, M. W. (2007). Mathematical foundations behind latent semantic analysis. In Handbook of latent semantic analysis, 35–56.Google Scholar
  10. Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research, 37, 141–188.CrossRefGoogle Scholar

Further Reading

  1. For more about latent semantic analysis (LSA), see Landauer et al. (2007).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Murugan Anandarajan
    • 1
  • Chelsey Hill
    • 2
  • Thomas Nolan
    • 3
  1. 1.LeBow College of BusinessDrexel UniversityPhiladelphiaUSA
  2. 2.Feliciano School of BusinessMontclair State UniversityMontclairUSA
  3. 3.Mercury Data ScienceHoustonUSA

Personalised recommendations