Advertisement

Data Science and Conversational Interfaces: A New Revolution in Digital Business

  • David GriolEmail author
  • Zoraida Callejas
Chapter

Abstract

Recent advances in Artificial Intelligence, Semantic Web and intelligent interaction devices have made conversational interfaces increasingly popular. These advances in technologies including automatic speech recognition and synthesis, natural language understanding and generation, and dialog management are result of decades of work in these areas to make possible a more natural and intuitive communication with machines. In this chapter, we describe the tremendous potential of Data Science to improve the performance of conversational interfaces and increase the number of users of these interfaces. Following this cycle, the more people use these systems, more data is generated to learn their models and improve their performance, thus increasing the number of users and extending the possibilities for new applications in Digital Business.

References

  1. 1.
    Baker, J., Deng, L., Glass, J., Khudanpur, S., Lee, C., Morgan, N., et al. (2009). Developments and directions in speech recognition and understanding. IEEE Signal Processing Magazine, 26(3), 75–80.CrossRefGoogle Scholar
  2. 2.
    Bohus, D., Grau, S., Huggins-Daines, D., Keri, V., Krishna, G., Kumar, R., et al. (2007) Conquest—an Open-Source Dialog System for Conferences. In Proceedings of of Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics, Rochester, NY, USA (pp. 9–12).Google Scholar
  3. 3.
    Cavazza, M., de la Cámara, & R.S., Turunen. (2010). How Was Your Day? a Companion ECA. In Proceedings of International Conference on Autonomous Agents and Multiagent Systems (AAMAS’10), Toronto, Canada (pp. 1629–1630).Google Scholar
  4. 4.
    Ezen-Can, A., & Boyer, K. (2013). Unsupervised classification of student dialogue acts with query-likelihood clustering. In Proceedings of 6th International Conference on Educational Data Mining (pp. 2–9).Google Scholar
  5. 5.
    Fryer, L., & Carpenter, R. (2006). Bots as Language Learning Tools. Language Learning and Technology, 10(3), 8–14.Google Scholar
  6. 6.
    García-Márquez, F., & Lev, B. (2017). Big data management. Springer International Publishing.Google Scholar
  7. 7.
    Glass, J., Flammia, G., Goodine, D., Phillips, M., Polifroni, J., Sakai, S., et al. (1995). Multilingual spoken-language understanding in the MIT Voyager system. Speech Communication, 17, 1–18.CrossRefGoogle Scholar
  8. 8.
    Griol, D., Callejas, Z., López-Cózar, R., & Riccardi, G. (2014). A domain-independent statistical methodology for dialog management in spoken dialog systems. Computer Speech & Language, 28(3), 743–768.CrossRefGoogle Scholar
  9. 9.
    Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., & Jaitly, N. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 82, 82–97.CrossRefGoogle Scholar
  10. 10.
    Hodson, H. (2014). The first family robot. New Scientist, 223(2978), 21–22.CrossRefGoogle Scholar
  11. 11.
    Lee, G., Kim, H., Jeong, M., & Kim, J. (2015). Natural language dialog systems and intelligent assistants. Springer.Google Scholar
  12. 12.
    Levin, E., Pieraccini, R., & Eckert, W. (2000). A stochastic model of human-machine interaction for learning dialog strategies. IEEE Transactions on Speech and Audio Processing, 8(1), 11–23.CrossRefGoogle Scholar
  13. 13.
    McTear, M. F. (2017). Future and emerging trends in language technology. In Second International Workshop on Machine Learning and Big Data, FETLT 2016, Chap. The Rise of the Conversational Interface: A New Kid on the Block? (pp. 38–49). Springer International Publishing.Google Scholar
  14. 14.
    McTear, M. F., Callejas, Z., & Griol, D. (2016). The conversational interface: Talking to smart devices. Springer.Google Scholar
  15. 15.
    Melin, H., Sandell, A., & Ihse, M. (2001). CTT-bank: A speech controlled telephone banking system—An initial evaluation. In TMH Quarterly Progress and Status Report (TMH-QPSR) (Vol. 1, pp. 1–27).Google Scholar
  16. 16.
    Meng, H. H., Wai, C., & Pieraccini, R. (2003). The use of belief networks for mixed-initiative dialog modeling. IEEE Transactions on Speech and Audio Processing, 11(6), 757–773.CrossRefGoogle Scholar
  17. 17.
    Nigam, K., Lafferty, J., & Mccallum, A. (1999). Using maximum entropy for text classification. In Proceedings of IJCAI-99 Workshop on Machine Learning for Information Filtering (pp. 61–67).Google Scholar
  18. 18.
    Nigam, K., McCalum, A., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and unlabeled documents using EM. Machine Learning, 39(2/3), 103–134. https://citeseer.nj.nec.com/nigam99text.html.
  19. 19.
    Ota, R., & Kimura, M. (2014). Proposal of open-ended dialog system based on topic maps. Procedia Technology, 17, 122–129.CrossRefGoogle Scholar
  20. 20.
    Pieraccini, R., & Rabiner, L. (2012). The voice in the machine: Building computers that understand speech. The MIT Press.Google Scholar
  21. 21.
    Pon-Barry, H., Schultz, K., Bratt, E. O., Clark, B., & Peters, S. (2006). Responding to student uncertainty in spoken tutorial dialogue systems. International Journal of Artificial Intelligence in Education, 16, 171–194.Google Scholar
  22. 22.
    Reiter, E., & Dale, R. (1997). Building applied natural language generation systems. Journal of Natural Language Engineering, 3(1), 57–87.CrossRefGoogle Scholar
  23. 23.
    Schatzmann, J., Weilhammer, K., Stuttle, M., & Young, S. (2006). A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies. Knowledge Engineering Review, 21(2), 97–126.CrossRefGoogle Scholar
  24. 24.
    Scheffler, K., & Young, S. 2001. Corpus-based dialogue simulation for automatic strategy learning and evaluation. In Proceedings of the 2nd Meeting of the North American Chapter of the Association for Computational Linguistics (NAACL-2001). Workshop on Adaptation in Dialogue Systems, Pittsburgh, USA (pp. 64–70).Google Scholar
  25. 25.
    Suendermann, D., & Pieraccini, R. (2012). One year of contender: What have we learned about assessing and tuning industrial spoken dialog systems? In Proceedings of SD-CTD’12 (pp. 45–48).Google Scholar
  26. 26.
    Vaquero, C., Saz, O., Lleida, E., Marcos, J., & Canalís, C. (2006). VOCALIZA: An application for computer-aided speech therapy in Spanish language. In Proceedings of IV Jornadas en Tecnología del Habla, Zaragoza, Spain (pp. 321–326).Google Scholar
  27. 27.
    Wang, X., & Yuan, C. (2016). Recent advances on human-computer dialogues. CAAI Transactions on Intelligence Technology, 1(4), 303–312.CrossRefGoogle Scholar
  28. 28.
    Wang, Y., Wang, W., & Huang, C. (2007). Enhanced semantic question answering system for e-learning environment. In Proceedings of of 21st Conference on Advanced Information Networking and Applications (AINAW’07), Niagara Falls, Canada (pp. 1023–1028).Google Scholar
  29. 29.
    Watkins, C., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3–4), 279–292.Google Scholar
  30. 30.
    Williams, J., & Young, S. (2007). Partially observable markov decision processes for spoken dialog systems. Computer Speech and Language, 21(2), 393–422.CrossRefGoogle Scholar
  31. 31.
    Young, S., Gasic, M., Thomson, B., & Williams, J. (2013). POMDP-based statistical spoken dialogue systems: A review. Proceedings of IEEE, 101(5), 1160–1179.CrossRefGoogle Scholar
  32. 32.
    Young, S., Schatzmann, J., Weilhammer, K., & Ye, H.: The hidden information state approach to dialogue management. In Proceedinds of 32nd IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, Haway, USA (Vol. 4, pp. 149–152).Google Scholar
  33. 33.
    Zue, V., Seneff, S., Glass, J., Polifroni, J., Pao, C., Hazen, T., et al. (2000). JUPITER: A telephone-based conversational interface for weather information. IEEE Transactions on Speech and Audio Processing, 8(1), 85–96.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversidad Carlos III de Madrid, LeganésLeganésSpain
  2. 2.Department of Languages and Computer SystemsUniversity of Granada, CITIC-UGRGranadaSpain

Personalised recommendations