Advertisement

Student Desertion: What Is and How Can It Be Detected on Time?

  • Jonathan Vásquez
  • Jaime Miranda
Chapter

Abstract

Student attrition is a voluntary/involuntary failure or early dropout to complete a program in which an individual enrolled. For voluntary desertions, detection is more complex due to a variety of factors related to the program and individual context. National academics have complained of a research shortage about desertion student investigations in the Chilean context. We applied data-mining techniques in order to reduce lack of studies and identify key factors and predict desertions for first 6 semesters in a program of Business School at Universidad de Chile; 288 hybrid models were built and the 6 final best models are composed of techniques of clustering, optimal-threshold classifiers, and SVM and Logistic Regression algorithms. In addition, they showed most important variables are related to University Selection Test (PSU in Spanish) score, followed by the educational level of parents and academic performances. On the second level of importance are funding and family configuration.

Notes

Acknowledgements

Authors would like to appreciate the help provided in the data access for this investigation by Ariel La Paz, Director of Information Systems and Business School, Cesar Ortega, Chair of the Student Records Unit, and Marcia Oyarce, Social Assistant.

References

  1. 1.
    Alkhasawneh, R., & Hargraves, R. H. (2014). Developing a hybrid model to predict student first year retention in stem disciplines using machine learning techniques. Journal of STEM Education: Innovations and Research, 15, 35.CrossRefGoogle Scholar
  2. 2.
    Barrios, A. (2013). Deserción universitaria en Chile: incidencia del financiamiento y otros factores asociados. Revistacis.Google Scholar
  3. 3.
    Bean, J. P. (1980). Dropouts and turnover: The synthesis and test of a causal model of student attrition. Research in Higher Education, 12, 155–187.CrossRefGoogle Scholar
  4. 4.
    Bean, J. P., & Metzner, B. S. (1985). A conceptual model of nontraditional undergraduate student attrition. Review of Educational Research, 55, 485–540.CrossRefGoogle Scholar
  5. 5.
    Byrd, G., Garza, C., & Nieswiadomy, R. (1999). Predictors of successful completion of a baccalaureate nursing program. Nurse Education, 24, 33–37.CrossRefGoogle Scholar
  6. 6.
    Centros de Estudios MINEDUC. (2012). Serie Evidencias: Deserción en la educación superior en Chile.Google Scholar
  7. 7.
    Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6, 1–6.CrossRefGoogle Scholar
  8. 8.
    Delen, D. (2010). A comparative analysis of machine learning techniques for student retention management. Decision Support Systems, 49, 498–506.  https://doi.org/10.1016/j.dss.2010.06.003.CrossRefGoogle Scholar
  9. 9.
    Díaz, C. (2008). Modelo conceptual para la deserción estudiantil universitaria chilena. Estud. Pedagógicos Valdivia, 34, 65–86.Google Scholar
  10. 10.
    Durkheim, E. (1951). Suicide: A study in sociology (J.A. Spaulding & G. Simpson, Trans.). Glencoe IL Free Press. Work Publ. 1897.Google Scholar
  11. 11.
    Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17, 37.Google Scholar
  12. 12.
    Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39, 27–34.CrossRefGoogle Scholar
  13. 13.
    González, L. E., & Uribe, D. (2002). Estimaciones sobre la “repitencia” y deserción en la educación superior chilena. Consideraciones sobre sus implicaciones. Rev. Calid. En Educ. Cons. Super. Educ. Diciembre Del 2002 (Vol. 77).Google Scholar
  14. 14.
    Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques. Elsevier.Google Scholar
  15. 15.
    Hartigan, J. A., & Hartigan, J. A. (1975). Clustering algorithms. New York: Wiley.Google Scholar
  16. 16.
    Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28, 100–108.Google Scholar
  17. 17.
    Himmel, E. (2002). Modelos de análisis de la deserción estudiantil en la educación superior. Calidad en la Educación, 17, 91–107.Google Scholar
  18. 18.
    McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.CrossRefGoogle Scholar
  19. 19.
    Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine learning. MIT press.Google Scholar
  20. 20.
    Morales, F., Fuentes, R., Riquielme, S., & Kraemer, H. (2011). Impacto de la intervención del programa de inducción, adaptación y vinculacón a la vida universitaria en la facultad de ciencias empresariales de universidad del Bío Bío. Presented at the ENEFA (pp. 2730–2757).Google Scholar
  21. 21.
    Morales, F., Riquelme, S., Bascuñan, E., & Navarrete, M. (2014). Estudio sobre el éxito académico de estudiantes de ciencias empresariales de la Universidad del Bío-Bío. Presented at the ENEFA.Google Scholar
  22. 22.
    Peña-Ayala, A. (2014). Educational data mining: A survey and a data mining-based analysis of recent works. Expert Systems with Applications, 41, 1432–1462.  https://doi.org/10.1016/j.eswa.2013.08.042.CrossRefGoogle Scholar
  23. 23.
    Pyke, S. W., & Sheridan, P. M. (1993). Logistic regression analysis of graduate student retention. Canadian Journal of Higher Education, 23, 44–64.Google Scholar
  24. 24.
    Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.Google Scholar
  25. 25.
    Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386.CrossRefGoogle Scholar
  26. 26.
    Sadler, J. (2003). Effectiveness of student admission essays in identifying attrition. Nurse Education Today, 23, 620–627.  https://doi.org/10.1016/S0260-6917(03)00112-6.CrossRefGoogle Scholar
  27. 27.
    Spady, W. G. (1970). Dropouts from higher education: An interdisciplinary review and synthesis. Interchange, 1, 64–85.CrossRefGoogle Scholar
  28. 28.
    Thammasiri, D., Delen, D., Meesad, P., & Kasap, N. (2014). A critical assessment of imbalanced class distribution problem: The case of predicting freshmen student attrition. Expert Systems with Applications, 41, 321–330.  https://doi.org/10.1016/j.eswa.2013.07.046.CrossRefGoogle Scholar
  29. 29.
    Tinto, V. (2007). Taking student retention seriously. Syracuse University.Google Scholar
  30. 30.
    Tinto, V., & Cullen, J. (1975). Dropout from higher education: A theoretical synthesis of recent research. Review of Educational Research, 45, 89–125.  https://doi.org/10.3102/00346543045001089.CrossRefGoogle Scholar
  31. 31.
    Tinto, V., & Cullen, J. (1973). Dropout in higher education: A review and theoretical synthesis of recent research.Google Scholar
  32. 32.
    Vapnik, V., & Chervonenkis, A. (1964). A note on one class of perceptrons (p. 25). Remote Control: Autom.Google Scholar
  33. 33.
    Yu, C. H., DiGangi, S., Jannasch-Pennell, A., & Kaprolet, C. (2010). A data mining approach for identifying predictors of student retention from sophomore to junior year. Journal of Data Science, 8, 307–325.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Management Control and Information Systems, School of Economics and BusinessUniversity of ChileSantiagoChile

Personalised recommendations