Advertisement

Modeling and Dynamic Analysis of Adjustable Axial Flow Divider

  • D. L. Karelin
  • A. V. Boldyrev
  • A. M. Belousov
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The use of an axial divider as a part of the hydrostatic transmission makes it possible to realize the torque regulation of the motorized wheel due to pressure dynamics without increasing the flow of working fluid and also to simplify the control system. This paper is concerned with mathematical modeling and dynamic analysis of an axial adjustable volumetric flow divider. The model was developed using the equation of a flow divider’s section displacement, the equation of torque on the shaft of the flow divider’s section, and the equation of theoretical consumption of the divider’s section. The Runge–Kutta method of the fourth order with a fixed step was used to solve the equation. Transient dynamic characteristics were obtained for the cases of displacement changes of the divider section.

Keywords

Hydrostatic transmission Flow divider Mathematical model Dynamic characteristics 

References

  1. 1.
    Kugi A, Schlacher K, Aizetmuller H, Hirmann G (2000) Modeling and simulation of a hydrostatic transmission with variable-displacement pump. Math Comput Simul 53:409–414CrossRefGoogle Scholar
  2. 2.
    Cidras J, Carillo C (2000) Regulation of synchronous generators by means of hydrostatic transmission. IEEE Trans Power Syst 2:771–778CrossRefGoogle Scholar
  3. 3.
    Akkaya AV (2006) Effect of bulk modulus on performance of a hydrostatic transmission control system. Sadhana 31:543–556CrossRefGoogle Scholar
  4. 4.
    Rabbo SA, Tutunji T (2007) Identification and analysis of hydrostatic transmission system. Int J Adv Manuf Technol 37:221–229.  https://doi.org/10.1007/s00170-007-0966-3CrossRefGoogle Scholar
  5. 5.
    Ho TH, Ahn KK (2010) Modeling and simulation of hydrostatic transmission system with energy regeneration using hydraulic accumulator. J Mech Sci Technol 24:1163–1175.  https://doi.org/10.1007/s12206-010-0313-8CrossRefGoogle Scholar
  6. 6.
    Ho TH, Ahn KK (2013) Velocity control of a secondary controlled closed-loop hydrostatic transmission system using an adaptive fuzzy sliding mode controller. J Mech Sci Technol 27:875–884.  https://doi.org/10.1007/s12206-012-1237-2CrossRefGoogle Scholar
  7. 7.
    Comellas M, Pijuan J, Potau X, Nogues M, Roca J (2012) Analysis of a hydrostatic transmission driveline for its use in off-road multiple axle vehicles. J Terrramech 49:245–254.  https://doi.org/10.1016/j.jterra.2012.07.003CrossRefGoogle Scholar
  8. 8.
    Comellas M, Pijuan J, Potau X, Nogues M, Roca J (2013) Efficiency sensitivity analysis of a hydrostatic transmission for an off-road multiple axle vehicle. Int J Automot Technol 14:151–161.  https://doi.org/10.1007/s12239-013-0017-zCrossRefGoogle Scholar
  9. 9.
    Skorek G (2013) Energy efficiency of a hydrostatic drive with proportional control compared with volumetric control. Pol Marit Res 3:14–19.  https://doi.org/10.2478/pomr-2013-0030CrossRefGoogle Scholar
  10. 10.
    Kim DM, Kim SC, Noh DK, Jang JS (2015) Jerk phenomenon of the hydrostatic transmission through the experiment and analysis. Int J Automot Technol 16:783–790.  https://doi.org/10.1007/s12239-015-0079-1CrossRefGoogle Scholar
  11. 11.
    Sun H, Aschemann H (2016) A backstepping sliding mode control for a hydrostatic transmission with unknown disturbances. IFAC-PapersOnLine 49(18):879–884.  https://doi.org/10.1016/j.ifacol.2016.10.277CrossRefGoogle Scholar
  12. 12.
    Zeman P, Kemmetmuller W, Kugi A (2016) Model predictive speed control of axial piston motors. IFAC-PapersOnLine 49(18):772–777.  https://doi.org/10.1016/j.ifacol.2016.10.259CrossRefGoogle Scholar
  13. 13.
    Kim H, Oh K, Ko K, Kim P, Yi K (2016) Modeling, validation and energy flow analysis of a wheel loader. J Mech Sci Technol 30:603–610.  https://doi.org/10.1007/s12206-016-0114-9CrossRefGoogle Scholar
  14. 14.
    Sun H, Aschemann H (2016) Sliding mode control for a hydrostatic transmission in combination with a sliding mode observer. Math Eng 155–188.  https://doi.org/10.1007/978-3-319-31539-3_6Google Scholar
  15. 15.
    Mahato AC, Ghoshal SK, Samantaray AK (2017) Energy saving of a hydrostatic drive system by incorporating soft switch. J Braz Soc Mech Sci Eng 39:1929–1945.  https://doi.org/10.1007/s40430-017-0739-3CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • D. L. Karelin
    • 1
  • A. V. Boldyrev
    • 1
  • A. M. Belousov
    • 1
  1. 1.Naberezhnye Chelny Institute, Kazan Federal UniversityNaberezhnye ChelnyRussia

Personalised recommendations