Advertisement

Hydroelastic Response of Three-Layered Plate Interacting with Pulsating Viscous Liquid Layer

  • V. S. Popov
  • L. I. Mogilevich
  • E. D. Grushenkova
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The problem of longitudinal and bending oscillations of the sandwich plate interacting with the pulsating viscous fluid layer was investigated. The three-layered plate with an incompressible filler was considered. The model of viscous incompressible fluid was chosen to study viscous fluid dynamics. A mathematical model of the investigated mechanical system consists of dynamic equations of the three-layered plate with an incompressible filler, the Navier–Stokes equations and the continuity equation for a viscous incompressible fluid. The no-slip conditions and pressure coincidence at the edges with pressure in the surrounding liquid were selected as boundary ones. The plane problem of hydroelasticity was considered. We investigated the regime of steady harmonic oscillations. The dimensionless variables and small parameters were proposed to solve the problem. The solution of the hydroelastic problem was carried out by the perturbations method using the proposed small parameters of the problem. As a result, we obtained the linearization problem of hydroelasticity. The elastic displacement of the plate and the hydrodynamic parameters of the fluid were founded.

Keywords

Hydroelasticity Oscillations Sandwich plate Viscous fluid Pulsating pressure Mathematical modeling 

Notes

Acknowledgements

The study was funded by Russian Foundation for Basic Research (RFBR) according to the projects № 18-01-00127-a and № 16-01-00175-a.

References

  1. 1.
    Lamb H (1921) On the vibrations of an elastic plate in contact with water. Proc Roy Soc A 98:205–216CrossRefGoogle Scholar
  2. 2.
    Amabili M (2001) Vibrations of circular plates resting on a sloshing liquid: solution of the fully coupled problem. J Sound Vib 245(2):261–283.  https://doi.org/10.1006/jsvi.2000.3560CrossRefGoogle Scholar
  3. 3.
    Askari E, Jeong K-H, Amabili M (2013) Hydroelastic vibration of circular plates immersed in a liquid-filled container with free surface. J Sound Vib 332(12):3064–3085.  https://doi.org/10.1016/j.jsv.2013.01.007CrossRefGoogle Scholar
  4. 4.
    Indeitsev DA, Polypanov IS, Sokolov SK (1994) Calculation of cavitation life-time of ship engine liner. Problemy Mashinostraeniya i Nadezhnos’ti Mashin 4:59–64Google Scholar
  5. 5.
    Kerboua Y, Lakis AA, Thomas M, Marcouiller L (2008) Vibration analysis of rectangular plates coupled with fluid. Appl Math Model 32(12):2570–2586.  https://doi.org/10.1016/j.apm.2007.09.004CrossRefGoogle Scholar
  6. 6.
    Bochkarev SA, Lekomtsev SV, Matveenko VP (2016) Hydroelastic stability of a rectangular plate interacting with a layer of ideal flowing fluid. Fluid Dyn 51(6):821–833.  https://doi.org/10.1134/S0015462816060132MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Avramov KV, Strel’nikova EA (2014) Chaotic oscillations of plates interacting on both sides with a fluid flow. Int Appl Mech 50(3):303–309.  https://doi.org/10.1007/s10778-014-0633-yMathSciNetCrossRefGoogle Scholar
  8. 8.
    Haddara MR, Cao SA (1996) Study of the dynamic response of submerged rectangular flat plates. Mar Struct 9(10):913–933.  https://doi.org/10.1016/0951-8339(96)00006-8CrossRefGoogle Scholar
  9. 9.
    Chapman CJ, Sorokin SV (2005) The forced vibration of an elastic plate under significant fluid loading. J Sound Vib 281(3):719–741.  https://doi.org/10.1016/j.jsv.2004.02.013CrossRefGoogle Scholar
  10. 10.
    Ergin A, Ugurlu B (2003) Linear vibration analysis of cantilever plates partially submerged in fluid. J Fluids Struct 17:927–939.  https://doi.org/10.1016/S0889-9746(03)00050-1CrossRefGoogle Scholar
  11. 11.
    Önsay T (1993) Effects of layer thickness on the vibration response of a plate-fluid layer system. J Sound Vib 163:231–259.  https://doi.org/10.1006/jsvi.1993.1162CrossRefzbMATHGoogle Scholar
  12. 12.
    Popov VS et al (2014) Mathematical model of pulsating viscous liquid layer movement in a flat channel with elastically fixed wall. Appl Math Sci 8(159):7899–7908.  https://doi.org/10.12988/ams.2014.410795CrossRefGoogle Scholar
  13. 13.
    Faria CT, Inman DJ (2014) Modeling energy transport in a cantilevered Euler-Bernoulli beam actively vibrating in Newtonian fluid. Mech Syst Signal Process 45:317–329.  https://doi.org/10.1016/j.ymssp.2013.12.003CrossRefGoogle Scholar
  14. 14.
    Mogilevich LI, Popov VS (2011) Investigation of the interaction between a viscous incompressible fluid layer and walls of a channel formed by coaxial vibrating discs. Fluid Dyn 46(3):375–388.  https://doi.org/10.1134/S0015462811030033MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mogilevich LI, Popov VS, Popova AA (2010) Dynamics of interaction of elastic elements of a vibrating machine with the compressed liquid layer lying between them. J Mach Manuf Reliab 39(4):322–331.  https://doi.org/10.3103/S1052618810040047CrossRefGoogle Scholar
  16. 16.
    Akcabay DT, Young YL (2012) Hydroelastic response and energy harvesting potential of flexible piezoelectric beams in viscous flow. Phys Fluids 24(5).  https://doi.org/10.1063/1.4719704CrossRefGoogle Scholar
  17. 17.
    Popov VS et al (2014) Mathematical model of movement of a pulsing layer of viscous liquid in the channel with an elastic wall. PNRPU Mech Bull 3:17–35.  https://doi.org/10.15593/perm.mech/2014.3.02CrossRefGoogle Scholar
  18. 18.
    Popov VS et al (2017) Hydroelastic oscillation of a plate resting on Pasternak foundation. Vibro Eng Proc 12:102–108.  https://doi.org/10.21595/vp.2017.18358CrossRefGoogle Scholar
  19. 19.
    Mogilevich LI, Popov VS, Popova AA (2017) Interaction dynamics of pulsating viscous liquid with the walls of the conduit on an elastic foundation. J Mach Manuf Reliab 46(1):12–19.  https://doi.org/10.3103/S1052618817010113CrossRefGoogle Scholar
  20. 20.
    Mogilevich LI, Popov VS, Kondratov DV, Rabinskiy LN (2017) Bending oscillations of a cylinder, surrounded by an elastic medium and containing a viscous liquid and an oscillator. J Vibro Eng 19(8):5758–5766.  https://doi.org/10.21595/jve.2017.18179CrossRefGoogle Scholar
  21. 21.
    Gorshkov AG, Starovoitov EI, Yarovaya AV (2005) Mechanics of layered viscoelastoplastic structural elements. Fizmatlit, MoscowGoogle Scholar
  22. 22.
    Kubenko VD, Pleskachevskii YuM, Starovoitov EI, Leonenko DV (2006) Natural vibration of a sandwich beam on an elastic foundation. Int Appl Mech 42(5):541–547.  https://doi.org/10.1007/s10778-006-0118-8CrossRefGoogle Scholar
  23. 23.
    Starovoitov EI, Leonenko DV (2012) Thermal impact on a circular sandwich plate on an elastic foundation. Mech Solids 47(1):111–118.  https://doi.org/10.3103/S0025654412010116CrossRefGoogle Scholar
  24. 24.
    Pradhan M, Dash PR, Pradhan PK (2016) Static and dynamic stability analysis of an asymmetric sandwich beam resting on a variable Pasternak foundation subjected to thermal gradient. Meccanica 51(3):725–739.  https://doi.org/10.1007/s11012-015-0229-6MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kramer MR, Liu Z, Young YL (2013) Free vibration of cantilevered composite plates in air and in water. Compos Struct 95:254–263.  https://doi.org/10.1016/j.compstruct.2012.07.017CrossRefGoogle Scholar
  26. 26.
    Ageev RV, Mogilevich LI, Popov VS (2014) Vibrations of the walls of a slot channel with a viscous fluid formed by three-layer and solid disks. J Mach Manuf Reliab 43(1):1–8.  https://doi.org/10.3103/S1052618814010026CrossRefGoogle Scholar
  27. 27.
    Popov VS et al (2015) Mathematical model of three-layer plate interaction with viscous incompressible liquid layer under foundation vibration. Appl Math Sci 9(112):5551–5559.  https://doi.org/10.12988/ams.2015.57482CrossRefGoogle Scholar
  28. 28.
    Popov VS et al (2017) Mathematical modeling of three layer beam hydroelastic oscillations. Vibro Eng Proc 12:12–18.  https://doi.org/10.21595/vp.2017.18462CrossRefGoogle Scholar
  29. 29.
    Panovko YG, Gubanova II (1965) Stability and oscillations of elastic systems. Consultants Bureau Enterprises. Inc., New YorkzbMATHGoogle Scholar
  30. 30.
    Lamb H (1945) Hydrodynamics, 6th edn. Dover Publications Inc., New YorkzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • V. S. Popov
    • 1
  • L. I. Mogilevich
    • 1
  • E. D. Grushenkova
    • 1
  1. 1.Yuri Gagarin State Technical University of SaratovSaratovRussia

Personalised recommendations