Advertisement

Fatigue Life Prediction of Track Link of a High-Speed Vehicle

  • A. A. Abyzov
  • I. I. Berezin
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The paper presents a methodology for calculating the fatigue life of tracks of a high-speed tracked vehicle. The methodology includes computer simulation of motion of the machine on the road, calculation of loads acting on the tracks of tracks, stresses in the most stressed areas of the tracks, and prediction of durability by the criterion of fatigue failure. In the simulation of motion, the dynamic properties of the projected machine and the typical operating conditions in different climatic conditions are taken into account. The characteristics of loading are determined by the results of full-scale field tests. The maximum stresses in the tracks occur under the action of random loads from the ground. Ground is regarded as a Winkler half-space with randomly distributed elastic elements. To calculate the stresses in the most loaded zones of the tracks, a technique based on the principle of independence of the action of forces and the use of the finite element method is proposed. In different loading cycles, the relationship between the components of the stress tensor in the most stressed zone is different. The loading of the track is multiparameter. Therefore, a special method was used to calculate the accumulated fatigue damage. The article presents the results of using the proposed methodology for predicting the fatigue life of tracks of tracked transport vehicles.

Keywords

Tracked vehicle Track link Stochastic load Winkler foundation Fatigue failure 

References

  1. 1.
    Zabavnikov NA (1975) Osnovy teorii transportnyh gusenichnyh mashin (Fundamentals of the theory of transport tracked vehicles). Mashinostroenie, MoskowGoogle Scholar
  2. 2.
    Platonov VF (1973) Dinamika i nadezhnost’ gusenichnogo dvizhitelya (Dynamics and reliability of caterpillar tracks). Mashinostroenie, MoskowGoogle Scholar
  3. 3.
    Bekker M (1956) Theory of land locomotion. University of Michigan Press, MichiganGoogle Scholar
  4. 4.
    South J, Blass B (2001) The future of modern genomics. Blackwell, LondonGoogle Scholar
  5. 5.
    Abyzov AA, Berezin II (2015) Obespechenie bezotkaznosti ehlementov hodovyh sistem bystrohodnyh gusenichnyh mashin pri proektirovanii na osnove modelirovaniya processov ehkspluatacii i formirovaniya otkazov (Ensuring reliability of elements of running systems of fast tracked machines on the basis of the operation modeling and shaping operation failures). Technology of wheelend and tracked machines. Rev Anal Sci Tech J 3:39–45Google Scholar
  6. 6.
    Kolodkin VA (1982) Issledovanie nagruzhennosti dvizhitelya transportnoj mashiny i razrabotka metodov prognozirovaniya nadezhnosti gusenic po kriteriyu ustalostnogo razrusheniya trakov (Study of loading of running gear of the transport vehicle and the development of track reliability prediction methods according to the criterion of fatigue failure of rack link). Dissertation, Chelyabinsk Polytechnical InstituteGoogle Scholar
  7. 7.
    Abyzov AA (2012) Ispol’zovanie metoda konechnyh ehlementov dlya modelirovaniya vzaimodejstviya gusenicy s gruntom pri krivolinejnom dvizhenii mashiny (Using the finite element method to simulate the interaction between the track and ground in the curvilinear motion of the machine). In: Proceedings of the 15th All-Russian scientific-practical conference. T. 3: Armored machinery and armament. NGOs Spetsmaterialy, Saint Petersburg, pp 184–190Google Scholar
  8. 8.
    Berezin II, Kolodkin VA (1977) Stohasticheskoe modelirovanie vzaimodejstviya gusenicy s gruntom (Stochastic modeling of the interaction between the track and ground). Dynamics and durability of structures. Coll. scientific. Chelyabinsk Polytechnical Institute, Chelyabinsk, pp 112–166Google Scholar
  9. 9.
    Berezin II, Abyzov AA (2017) Probabilistic modeling of tracked vehicle mover and ground interaction. Proc Eng 206:432–436CrossRefGoogle Scholar
  10. 10.
    Abyzov AA, Berezin II, Byvaltsev VI et al (2002) Primenenie metodiki imitacionnyh resursnyh ispytanij dlya ocenki resursa tyazhelonagruzhennyh ehlementov dvizhitelya bystrohodnyh gusenichnyh mashin (The use of simulation techniques to assess the endurance test of the resource elements of heavy-duty propulsion fast tracked vehicles). In: Environmental engineering in transport-road complex. Coll. scientific. tr. MADI (TU). MADI, Moscow, pp 143–154Google Scholar
  11. 11.
    Berezin II, Abyzov AA (2000) Modelirovanie processa ehkspluatacii pri imitacionnyh resursnyh ispytaniyah mobil’noj tekhniki (Process modeling simulation of resource use at trial of mobile technology). In: Technique and technology of construction and operation of highways. Coll. scientific. tr. MADI (TU). MADI, Moscow, pp 56–74Google Scholar
  12. 12.
    Wong J (2001) Theory of ground vehicles, 3rd edn. Wiley, LondonGoogle Scholar
  13. 13.
    Berezin II, Sadakov OS, Kolodkin VA (1979) K voprosu opredeleniya spektrov napryazhenij v detalyah slozhnoj formy pri sluchajnom nagruzhenii (To the problem of determining the stress spectra in details of a complex shape under random loading). Durability of machine-building structures under variable loads. Coll. scientific. tr. ChPI. Chelyabinsk Polytechnical Institute, Chelyabinsk, pp 107–111Google Scholar
  14. 14.
    Abyzov AA, Berezin II, Sadakov OS (2015) Fatigue life prediction of engineering structures under multivariable random loading using structural model. Proc Eng 129:845–850CrossRefGoogle Scholar
  15. 15.
    Abyzov AA, Sadakov OS (2016) Model of accumulation of cycle fatigue damage in multi-parametric random loading. Proc Eng 150:254–259CrossRefGoogle Scholar
  16. 16.
    Abyzov AA, Sadakov OS (2005) Primenenie strukturnoj modeli dlya ocenki ustalosti pri mnogoparametricheskom sluchajnom vozdejstvii (Use of a structural model for the assessment of fatigue multiparameter random impact). Vestnik IuUrGU. Seriia: Matematika. Fizika. Khimiia 2:73–79Google Scholar
  17. 17.
    Abyzov AA, Sadakov OS, Felk NO (2005) Model’ nakopleniya ustalostnogo povrezhdeniya pri proizvol’noj istorii napryazhenij. Identifikaciya i verifikaciya (Model accumulation of fatigue damage in the history of any stress. Identification and verification). Vestnik IuUrGU. Seriia: Matematika. Fizika. Khimiia 6:72–76Google Scholar
  18. 18.
    Sergeev VG, Berezin II (1980) K raschetu resursa detalej, rabotayushchih v usloviyah neregulyarnogo nagruzheniya i ploskogo napryazhennogo sostoyaniya (Calculation of the resource components operating in conditions of irregular loading and plane stress). Mashinovedenie 4:67–73Google Scholar
  19. 19.
    Gusev AS (1989) Soprotivlenie ustalosti i zhivuchest’ konstrukcij pri sluchajnyh nagruzkah (Fatigue resistance and survivability of structures under random loads). Mashinostroenie, MoscowGoogle Scholar
  20. 20.
    Abyzov AA, Berezin II, Sadakov OS (2006) Primenenie metoda imitacionnogo modelirovaniya ispytanij k raschetu resursa hodovoj chasti transportnyh mashin (Application of the simulation test to the calculation of the resource undercarriage transport vehicles). Vestnik IuUrGU. Seriia: Mashinostroenie 11:122–129Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.South Ural State UniversityChelyabinskRussia

Personalised recommendations