Advertisement

Theoretical Foundations of Optimal Two-Step Control of Suspension Stiffness of Transport Vehicle in Oscillation Cycle

  • K. V. Chernyshov
  • I. M. Ryabov
  • A. V. Pozdeev
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The article dwells upon the issues of control over suspension stiffness of transport vehicle in the oscillation cycle. This article describes the methods of stiffness change for suspension and identifies two principal schemes of two-step stiffness change for the suspension: a suspension with constant step stiffness and a suspension with variable step stiffness. Mathematical models of suspensions with a two-step stiffness control in a single-mass oscillating system were developed for each of the two principal schemes of stiffness control. Having employed the maximum principle of L. S. Pontriagin, the algorithms for the optimal suspension stiffness control were determined. In particular, it was found that, when the oscillating system is unbalanced with the subsequent absence of the external force and kinematic action, any stiffness switching, even chaotic one, results in a decrease in the motion amplitudes of the sprung mass and oscillation damping. The optimal control algorithm in case of kinematic disturbance of the oscillating system is an algorithm at which the activation of a suspension step with a higher stiffness occurs during the change in the direction of suspension deformation, and the system switches to the lower stiffness during the change in the direction of the sprung mass motion.

Keywords

Vehicle suspension Vibration isolation Algorithm Constant stiffness Variable stiffness Two-step control Springing element Additional volume 

References

  1. 1.
    Fitilev BN, Averyanov GS, Belkov VN (1981) Air suspension. USSR patent 8,442,295, 30 Jun 1981Google Scholar
  2. 2.
    Gustomiasov AN (1978) Analiz kolebatel’noj sistemy podveski avtomobilya s diskretnym izmeneniem zhyostkosti (Analysis of the oscillating system of vehicle suspension with discontinuous stiffness change). Izv Vuzov 5:187–188Google Scholar
  3. 3.
    Yoshimura T, Takagi A (2004) Pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. J Zhejiang Univ Sci 5(9):1060–1068CrossRefGoogle Scholar
  4. 4.
    Gneusheva EM, Fominova OV, Chernyshev VI (2006) Dinamicheskie svojstva vibrozashchitnyh sistem s dopolnitel’nym uprugodempfiruyushchim zvenom preryvistogo dejstviya (Dynamic behavior of vibration isolation systems with an auxiliary springing and damping component element of interruptive action). Spravochnik Inzhenernyj Zh 6:59–64Google Scholar
  5. 5.
    Kalashnikov BA (2008) Sistemy amortizacii ob”ektov s diskretnoj kommutaciej uprugih ehlementov (Shock-absorbing system of the installations with discontinuous overlapping of the springing elements). Omsk State Technical University, Omsk, p 344Google Scholar
  6. 6.
    Fitilev BN, Komochkov VA, Pozdeev AV (2009) K raschyotu kharakteristik pnevmoelementa s vozdushnym dempfirovaniem (Determination of characteristics of the pneumatic element with damping by air). In: Progress transportnyh sredstv i sistem—2009, vol. 2. Volgograd State Technical University, Volgograd, 13–15 Oct 2009, pp 40–47Google Scholar
  7. 7.
    Khamitov RN (2008) Sintez sistemy upravleniya impul’snym ehlektrodinamicheskim klapanom pnevmoamortizatora (Synthesis of a system to control the impulse operated electrodynamical valve of the impact attenuation bag). Spravochnik Inzhenernyj Zh 2:62–64Google Scholar
  8. 8.
    Khamitov RN, Averyanov GS, Korchagin AB (2009) Rabochie processy dvuhkamernogo pnevmaticheskogo amortizatora s kratkovremennoj kommutaciej ob”emov (Work processes of a two-chamber air-assisted shock absorber with a short-time overlapping of volumes). Vestn Mashinostr 10:19–23Google Scholar
  9. 9.
    Chernyshov KV, Pozdeev AV, Novikov VV, Riabov IM (2010) Opredelenie uslovij optimal’nogo regulirovaniya zhestkosti pnevmaticheskoj podveski ATS (Determination of conditions for the optimal control of air suspension stiffness of a vehicle). Gruzovik 11:2–5Google Scholar
  10. 10.
    Novikov VV, Pozdeev AV (2010) Opredelenie optimal’nyh algorit-mov regulirovaniya aktivno-upravlyaemyh pnevmopodvesok (Determination of optimal control algorithms for the actively controlled air suspensions). Gruzovik 5:6–10Google Scholar
  11. 11.
    Podzorov AV, Gorobtsov AS, Liashenko MV (2010) Matematicheskaya model’ upravlyaemoj sistemy podressorivaniya ATS (Mathematical model of the controlled springing system of a vehicle). Avtomobil Prom 9:16–19Google Scholar
  12. 12.
    Pozdeev AV, Novikov VV, Chernyshov KV, Riabov IM (2011) Sintez algoritmov optimal’nogo upravleniya dempfirovaniem i zhyostkost’yu podveski ATS (Design of algorithms for the optimal control of damping and stiffness of vehicle suspension). Gruzovik 6:2–6Google Scholar
  13. 13.
    Diakov AS, Pozdeev AV, Pokhlebin AV (2011) Optimal’noe upravlenie zhyostkost’yu i dempfirovaniem podveski ATS na osnove principa maksimuma L.S. Pontryagina (Optimal damping and stiffness control of vehicle suspension based on the maximum principle of L.S. Pontriagin). Vestn Akad Voen Nauk 2:132–139Google Scholar
  14. 14.
    Pozdeev AV (2011) Kommutaciya polostej kak sposob povysheniya vibrozashchitnyh svojstv dvuhkamernyh pnevma-ticheskih ressor (Overlapping of chambers as a way to improve the vibration isolation qualities of two-chamber air springs). In: SWorld: Nauchnye issledovaniya i ih prakticheskoe primenenie. Sovremennoe sostoyanie i puti razvitiya `2011. Part 2. Engineering sciences, Odessa National Maritime University, Odessa, 4–15 Oct 2011, pp 40–48Google Scholar
  15. 15.
    Novikov VV, Pozdeev AV, Diakov AS, Karlov VI, Cherkashina EA (2011) Air suspension. RU Utility model 109,698, 2011Google Scholar
  16. 16.
    Riabov IM, Pozdeev AV, Novikov VV, Diakov AS, Chernyshov KV (2011) Vehicle wheel suspension. RU Utility model 109,697, 2011Google Scholar
  17. 17.
    Pozdeev AV, Novikov VV, Diakov AS, Pokhlebin AV, Riabov IM, Chernyshov KV (2013) Reguliruemye pnevmaticheskie i pnevmogidravli-cheskie ressory podvesok avtotransportnyh sredstv (Controlled air and air-hydraulic springs of vehicle suspensions). Volgograd State Technical University, Volgograd, p 244Google Scholar
  18. 18.
    Pozdeev AV, Diakov AS, Novikov VV, Riabov IM (2013) Samoreguliruemye dvuhkamernye pnevmaticheskie ressory s kommutaciej polostej (Self-regulated two-chamber air springs with overlapping of chambers). Gruzovik 9:2–5Google Scholar
  19. 19.
    Pozdeev AV, Diakov AS, Novikov VV, Riabov IM (2013) Issledovaniya dvuhkamernoj pnevmaticheskoj ressory s kommutaciej polostej (Researches of a two-chamber air spring with overlapping of chambers). Gruzovik 1:35–37Google Scholar
  20. 20.
    Chernyshov KV, Pozdeev AV, Riabov IM (2013) Matematicheskoe obosnovanie al-goritma optimal’nogo upravleniya zhyostkost’yu uprugogo ehlementa v odnomassovoj kolebatel’noj sisteme (Mathematical justification of the algorithm of optimal stiffness control of the springing element in a single mass oscillation system). Izv VolgGTU. Seriya “Nazemnye transportnye sistemy”, part 6. Interuniversity collection of scientific articles, Volgograd State Technical University 10(113):38–42Google Scholar
  21. 21.
    Pozdeev AV (2015) Vibrozashchitnye svojstva dvuhpo-lostnyh pnevmaticheskih ressor na osnove sinteza opti-mal’nyh algoritmov kommutacii polostej (Vibration isolation qualities of two-chamber air springs based on design of the optimal algorithms of overlapping of chambers). Tekhnol Koliosnykh Gusenichnykh Mashyn 1:27–31Google Scholar
  22. 22.
    Pontriagin LS, Boltianskiy VG, Gamkrelidze RV, Mishchenko EF (1976) Matematicheskaya teoriya optimal’nyh processov (Mathematical theory of optimal processes). Nauka, Moscow, p 392Google Scholar
  23. 23.
    Chernyshov KV, Novikov VV, Riabov IM (2006) Opredelenie uslovij optimal’nogo upravleniya dempfirovaniem podveski ATS na osnove principa maksimuma L.S. Pontryagina (Determination of conditions of the optimal damping control of vehicle suspension based on the maximum principle of L.S. Pontriagin). Traktory Selskokhoziaystvennyie Mashiny 2:13–15Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • K. V. Chernyshov
    • 1
  • I. M. Ryabov
    • 1
  • A. V. Pozdeev
    • 1
  1. 1.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations